Conditional Edge Connectivity of the Locally Twisted Cubes

  • Hui Shang
  • Eminjan Sabir
  • Ji-Xiang MengEmail author


The k-component edge connectivity \(c\lambda _{k}(G)\) of a non-complete graph G is the minimum number of edges whose deletion results in a graph with at least k components. In this paper, we extend some results by Guo et al. (Appl Math Comput 334:401–406, 2018) by determining the component edge connectivity of the locally twisted cubes \(\mathrm{LTQ}_{n}\), i.e., \(c\lambda _{k+1}(\mathrm{LTQ}_{n})=kn-\frac{ex_{k}}{2}\) for \(1\leqslant k\leqslant 2^{[\frac{n}{2}]}\), \(n\geqslant 7\), where \(ex_{k}=\sum _{i=0}^{s}t_{i}2^{t_{i}}+\sum _{i=0}^{s}2\cdot i\cdot 2^{t_{i}}\), and k is a positive integer with decomposition \(k=\sum _{i=0}^{s}2^{t_{i}}\) such that \(t_{0}=\lfloor \mathrm{log}_{2}k\rfloor \) and \(t_{i}=\lfloor \mathrm{log}_{2}(k-\sum _{r=0}^{i-1}2^{t_{r}})\rfloor \) for \(i\geqslant 1\). As a by-product, we characterize the corresponding optimal solutions.


Fault tolerance Locally twisted cubes Component edge connectivity 

Mathematics Subject Classification



  1. 1.
    Guo, L., Su, G., Lin, W., Chen, J.: Fault tolerance of locally twisted cubes. Appl. Math. Comput. 334, 401–406 (2018)MathSciNetGoogle Scholar
  2. 2.
    Harary, F.: Conditional connectivity. Networks 13, 347–357 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Latifi, S., Hegde, M., Pour, M.N.: Conditional connectivity measures for large multiprocessor systems. IEEE Trans. Comput. 43, 218–222 (1994)CrossRefGoogle Scholar
  4. 4.
    Sampathkumar, E.: Connectivity of a graph-a generalization. J. Comb. Inf. Syst. Sci. 9, 71–78 (1984)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Guo, L.: Reliability analysis of hypercube networks and folded hypercube networks. WSEAS Trans. Math. 16, 331–338 (2017)Google Scholar
  6. 6.
    Zhao, S., Yang, W.: Component edge connectivity of the folded hypercube. arXiv:1803.01312vl [math.CO] (2018)
  7. 7.
    Zhao, S., Yang, W.: Component edge connectivity of hypercubes. Int. J. Found. Comput. Sci. 29, 995–1001 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Yang, X., Evans, D.J., Megson, G.M.: The locally twisted cubes. Int. J. Comput. Math. 82, 401–413 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hsieh, S.-Y., Wu, C.-Y.: Edge-fault-tolerant Hamiltonicity of locally twisted cubes under conditional edge faults. J. Comb. Optim. 19, 16–30 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hsieh, S.-Y., Huang, H.-W., Lee, C.-W.: \(\{2,3\}\)-restricted connected of locally twisted cubes. Theor. Comput. Sci. 615, 78–90 (2016)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hung, R.-W.: Embedding two edge-disjoint Hamiltonian cycles into locally twisted cubes. Theor. Comput. Sci. 412, 4747–4753 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ma, M., Xu, J.-M.: Panconnectivity of locally twisted cubes. Appl. Math. Lett. 19, 673–677 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pai, K.-J., Chang, J.-M.: Improving the diameters of completely independent spanning trees in locally twisted cubes. Inf. Process. Lett. 141, 22–24 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ren, Y., Wang, S.: The tightly super 2-extra connectivity and 2-extra diagnosability of locally twisted cubes. J. Interconnect. Netw. 17, 1–18 (2017)CrossRefGoogle Scholar
  16. 16.
    Wei, C.-C., Hsieh, S.-Y.: \(h\)-restricted connectivity of locally twisted cubes. Discret. Appl. Math. 217, 330–339 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wei, Y.-L., Xu, M.: The \(g\)-good-neighbor conditional diagnosability of locally twisted cubes. J. Oper. Res. Soc. China 6, 333–347 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wang, M., Ren, Y., Lin, Y., Wang, S.: The tightly super 3-extra connectivity and diagnosability of locally twisted cubes. Am. J. Comput. Math. 7, 127–144 (2017)CrossRefGoogle Scholar
  19. 19.
    Zhang, M., Meng, J., Yang, W., Tian, Y.: Reliability analysis of bejective connection networks in terms of the extra edge-connectivity. Inf. Sci. 279, 374–382 (2014)CrossRefzbMATHGoogle Scholar
  20. 20.
    Yang, W., Lin, H.: Reliability evaluation of BC networks in terms of the extra vertex- and edge-connectivity. IEEE Trans. Comput. 63, 2540–2547 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Katseff, H.: Incomplete hypercubes. IEEE Trans. Comput. 37, 604–608 (1988)CrossRefGoogle Scholar

Copyright information

© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mathematics and System SciencesXinjiang UniversityUrumqiChina

Personalised recommendations