A Composite Risk Measure Framework for Decision Making Under Uncertainty

  • Peng-Yu Qian
  • Zi-Zhuo Wang
  • Zai-Wen Wen


In this paper, we present a unified framework for decision making under uncertainty. Our framework is based on the composite of two risk measures, where the inner risk measure accounts for the risk of decision if the exact distribution of uncertain model parameters were given, and the outer risk measure quantifies the risk that occurs when estimating the parameters of distribution. We show that the model is tractable under mild conditions. The framework is a generalization of several existing models, including stochastic programming, robust optimization, distributionally robust optimization. Using this framework, we study a few new models which imply probabilistic guarantees for solutions and yield less conservative results compared to traditional models. Numerical experiments are performed on portfolio selection problems to demonstrate the strength of our models.


Risk management Stochastic programming Portfolio management 

Mathematics Subject Classification



  1. 1.
    Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1(3–4), 197–206 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dupačová, J.: The minimax approach to stochastic programming and an illustrative application. Stoch. Int. J. Probab. Stoch. Process. 20(1), 73–88 (1987)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Scarf, H., Arrow, K.J., Karlin, S.: A min–max solution of an inventory problem. Stud. Math. Theory Invent. Prod. 10, 201–209 (1958)Google Scholar
  6. 6.
    Gaivoronski, A.A., Pflug, G.: Value-at-risk in portfolio optimization: properties and computational approach. J. Risk 7(2), 1–31 (2005)CrossRefGoogle Scholar
  7. 7.
    Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)CrossRefGoogle Scholar
  8. 8.
    El Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(4), 543–556 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Zhu, S., Fukushima, M.: Worst-case conditional value-at-risk with application to robust portfolio management. Oper. Res. 57(5), 1155–1168 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bertsimas, D., Brown, D.B.: Constructing uncertainty sets for robust linear optimization. Oper. Res. 57(6), 1483–1495 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Natarajan, K., Pachamanova, D., Sim, M.: Constructing risk measures from uncertainty sets. Oper. Res. 57(5), 1129–1141 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bertsimas, D., Gupta, V., Kallus, N.: Data-driven robust optimization. Math. Progr. 167(2), 235–292 (2013)Google Scholar
  13. 13.
    Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, vol. 9. SIAM, Philadelphia (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    RiskMetrics.: Riskmetrics: Technical Document. Morgan Guaranty Trust Company of New York, New York (1996)Google Scholar
  17. 17.
    Kast, R., Luciano, E., Peccati, L.: VaR and optimization. In: 2nd International Workshop on Preferences and Decisions, Trento, vol. 1 (1998)Google Scholar
  18. 18.
    Lucas, A., Klaassen, P.: Extreme returns, downside risk, and optimal asset allocation. J. Portf. Manag. 25(1), 71–79 (1998)CrossRefGoogle Scholar
  19. 19.
    Einhorn, D., Brown, A.: Private profits and socialized risk. Glob. Assoc. Risk Prof. 42, 10–26 (2008)Google Scholar
  20. 20.
    Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
  21. 21.
    Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)zbMATHCrossRefGoogle Scholar
  23. 23.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    El Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9(1), 33–52 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Bertsimas, D., Pachamanova, D., Sim, M.: Robust linear optimization under general norms. Oper. Res. Lett. 32(6), 510–516 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Chen, X., Sim, M., Sun, P.: A robust optimization perspective on stochastic programming. Oper. Res. 55(6), 1058–1071 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Prékopa, A.: Stochastic Programming. Springer, Berlin (1995)zbMATHCrossRefGoogle Scholar
  30. 30.
    Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15(3), 780–804 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ben-Tal, A., den Hertog, D., De Waegenaere, A., Melenberg, B., Rennen, G.: Robust solutions of optimization problems affected by uncertain probabilities. Manag. Sci. 59(2), 341–357 (2013)CrossRefGoogle Scholar
  32. 32.
    Pardo, L.: Statistical Inference Based on Divergence Measures. CRC Press, Boca Raton (2005)zbMATHCrossRefGoogle Scholar
  33. 33.
    Klabjan, D., Simchi-Levi, D., Song, M.: Robust stochastic lot-sizing by means of histograms. Prod. Oper. Manag. 22(3), 691–710 (2013)CrossRefGoogle Scholar
  34. 34.
    Wang, Z., Glynn, P., Ye, Y.: Likelihood robust optimization for data-driven problems. CMS 13(2), 241–261 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6(4), 429–447 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Huber, P.J.: Robust Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1981)Google Scholar
  37. 37.
    Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Nemirovski, A., Shapiro, A.: Scenario Approximations of Chance Constraints. Probabilistic and Randomized Methods for Design Under Uncertainty, pp. 3–47. Springer, Berlin (2006)zbMATHCrossRefGoogle Scholar
  39. 39.
    Sarykalin, S., Serraino, G., Uryasev, S.: Value-at-risk vs. conditional value-at-risk in risk management and optimization. Tutorials in Operations Research. INFORMS, Hanover, MD (2008)Google Scholar
  40. 40.
    Cui, X., Zhu, S., Sun, X., Li, D.: Nonlinear portfolio selection using approximate parametric value-at-risk. J. Bank. Finance 37(6), 2124–2139 (2013)CrossRefGoogle Scholar
  41. 41.
    Wen, Z., Peng, X., Liu, X., Sun, X., Bai, X.: Asset allocation under the basel accord risk measures. arXiv:1308.1321 (2013)
  42. 42.
    Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schoenbucher, P.J. (eds.) Advances in Finance and Stochastics, pp. 1–37. Springer, Berlin (2002)Google Scholar
  43. 43.
    Guigues, V., Römisch, W.: Sampling-based decomposition methods for multistage stochastic programs based on extended polyhedral risk measures. SIAM J. Optim. 22(2), 286–312 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Philpott, A.B., de Matos, V.L.: Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion. Eur. J. Oper. Res. 218(2), 470–483 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Shapiro, A.: On complexity of multistage stochastic programs. Oper. Res. Lett. 34(1), 1–8 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Wang, W., Ahmed, S.: Sample average approximation of expected value constrained stochastic programs. Oper. Res. Lett. 36(5), 515–519 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Alexander, S., Coleman, T.F., Li, Y.: Minimizing CVaR and VaR for a portfolio of derivatives. J. Bank. Finance 30(2), 583–605 (2006)CrossRefGoogle Scholar
  48. 48.
    Xu, H., Zhang, D.: Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications. Math. Program. 119(2), 371–401 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Iyengar, G., Ma, A.K.C.: Fast gradient descent method for mean-CVaR optimization. Ann. Oper. Res. 205(1), 203–212 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. CRC Press, Boca Raton (2013)zbMATHGoogle Scholar

Copyright information

© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of BusinessColumbia UniversityNew YorkUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Beijing International Center for Mathematical ResearchPeking UniversityBeijingChina

Personalised recommendations