Leading RNA Interference Therapeutics Part 1: Silencing Hereditary Transthyretin Amyloidosis, with a Focus on Patisiran

  • Simoneide S. Titze-de-Almeida
  • Pedro Renato de Paula Brandão
  • Ingrid Faber
  • Ricardo Titze-de-AlmeidaEmail author
Review Article


In 2018, patisiran was the first-ever RNA interference (RNAi)-based drug approved by the US Food and Drug Administration. Now pharmacology textbooks may include a new drug class that results in the effect first described by Fire and Mello 2 decades ago: post-transcriptional gene silencing by a small-interfering RNA (siRNA). Patients with hereditary transthyretin-mediated amyloidosis (hATTR amyloidosis) present with mutations in the transthyretin (TTR) gene that lead to the formation of amyloid deposits in peripheral nerves and heart. The disease may also affect the eye and central nervous system. The formulation of patisiran comprises the RNAi drug encapsulated into a nanoparticle especially developed to deliver the anti-TTR siRNA into the main TTR producer: the liver. Hepatic cells contain apolipoprotein E receptors that recognize ApoE proteins opsonized in the lipid carrier and internalize the drug by endocytosis. Lipid vesicles are disrupted in the cell cytoplasm, and siRNAs are free to trigger the RNAi-based TTR gene silencing. The silencing process involves the binding of siRNA guide strand to 3′-untranslated region sequence of both mutant and wild-type TTR messenger RNA, which culminates in the TTR mRNA cleavage by the RNA-induced silencing complex (RISC) as the first biochemical drug effect. Patisiran 0.3 mg/kg is administered intravenously every 3 weeks. Patients require premedication with anti-inflammatory drugs and antagonists of histamine H1 and H2 receptors to prevent infusion-related reactions and may require vitamin A supplementation. Following patisiran treatment, TTR knockdown remained stable for at least 2 years. Adverse effects were mild to moderate with unchanged hematological, renal, or hepatic parameters. No drug-related severe adverse effects occurred in a 24-month follow-up phase II open-label extension study. At the recommended dosage of patisiran, Cmax and AUC values (mean ± standard deviation) were 7.15 ± 2.14 μg/mL and 184 ± 159 μg·h/mL, respectively. The drug showed stability in circulation with > 95% encapsulated in lipid particles. Metabolization occurred by ribonuclease enzymes, with less than 1% excreted unchanged in the urine. Patisiran ameliorated neuropathy impairment according to the modified Neuropathy Impairment Score + 7 analysis of the phase III study. The Norfolk Quality of Life-Diabetic Neuropathy score and gait speed improved in 51% of the patisiran-treated group in 18 months. Additionally, the modified body mass index showed positive outcomes. Altogether, the data across phase I–III clinical trials points to patisiran as an effective and safe drug for the treatment of hATTR amyloidosis. It is hoped that real-world data from a larger number of patients treated with patisiran will confirm the effectiveness of this first-approved siRNA-based drug.



Simoneide S. Titze-de-Almeida, Pedro Renato de Paula Brandão, Ingrid Faber, and Ricardo Titze-de-Almeida are members of the Network for Translational Neuroscience - International Consortium for Academic Cooperation in Experimental and Clinical Studies Regarding Neurodegenerative Diseases (

Compliance with Ethical Standards

Conflict of interest

Ingrid Faber received financial support from Pfizer to attend the ARIA VII meeting in Frankfurt, Germany, in February 2018. Simoneide S. Titze-de-Almeida, Pedro Renato de Paula Brandão, and Ricardo Titze-de-Almeida declare no conflict of interest, financial or otherwise.


The authors declare that no funding was received in relation to this review article.


  1. 1.
    Ledford H. Gene-silencing technology gets first drug approval after 20-year wait. Nature. 2018;560:291–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:11–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431:343–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith CIE, Zain R. Therapeutic oligonucleotides: state of the art. Annu Rev Pharmacol Toxicol. 2019;59:605–30.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–39.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Svoboda P. Renaissance of mammalian endogenous RNAi. FEBS Lett. 2014;588:2550–6.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ketting RF. The many faces of RNAi. Dev Cell. 2011;20:148–61.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Titze-de-Almeida R, David C, Titze-de-Almeida SS. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm Res. 2017;34:1339–63.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284:17897–901.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature. 2009;457:405–12.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 2019;9:5–23.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sekijima Y. Recent progress in the understanding and treatment of transthyretin amyloidosis. J Clin Pharm Ther. 2014;39:225–33.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Adams D, Koike H, Slama M, Coelho T. Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat Rev Neurol. 2019;15:387–404.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Gertz MA, Benson MD, Dyck PJ, Grogan M, Coelho T, Cruz M, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol. 2015;66:2451–66.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Beiraõ JM, Malheiro J, Lemos C, Beiraõ I, Costa P, Torres P. Ophthalmological manifestations in hereditary transthyretin (ATTR V30M) carriers: a review of 513 cases. Amyloid. 2015;22:117–22.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Maia LF, Magalhães R, Freitas J, Taipa R, Pires MM, Osório H, et al. CNS involvement in V30M transthyretin amyloidosis: clinical, neuropathological and biochemical findings. J Neurol Neurosurg Psychiatry. 2015;86:159–67.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ziskin JL, Greicius MD, Zhu W, Okumu AN, Adams CM, Plowey ED. Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia. Acta Neuropathol Commun. 2015;3:43.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hawkins PN, Ando Y, Dispenzeri A, Gonzalez-Duarte A, Adams D, Suhr OB. Evolving landscape in the management of transthyretin amyloidosis. Ann Med. 2015;47:625–38.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Adams D, Suhr OB, Hund E, Obici L, Tournev I, Campistol JM, et al. First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy. Curr Opin Neurol. 2016;29(Suppl 1):S14–26.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369:819–29.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10:109.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Czauderna F, Fechtner M, Dames S, Aygün H, Klippel A, Pronk GJ, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003;31:2705–16.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ku SH, Jo SD, Lee YK, Kim K, Kim SH. Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev. 2016;104:16–28.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017;35:238–48.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Onpattro—International non-proprietary name: patisiran (procedure no. EMEA/H/C/004699/0000). 2018. Accessed 23 Oct 2019.
  30. 30.
    ONPATTRO® prescribing information. Cambridge: Alnylam® Pharmaceuticals; 2019. Accessed 23 Oct 2019.
  31. 31.
    Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.PubMedCrossRefGoogle Scholar
  32. 32.
    Schroeder A, Levins CG, Cortez C, Langer R, Anderson DG. Lipid-based nanotherapeutics for siRNA delivery. J Intern Med. 2010;267:9–21.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Williford JM, Wu J, Ren Y, Archang MM, Leong KW, Mao HQ. Recent advances in nanoparticle-mediated siRNA delivery. Annu Rev Biomed Eng. 2014;16:347–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Tatiparti K, Sau S, Kashaw S, Iyer A. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials. 2017;7:77.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12:967–77.PubMedCrossRefGoogle Scholar
  36. 36.
    Titze de Almeida SS, Horst CH, Soto-Sanchez C, Fernandez E, Titze de Almeida R. Delivery of miRNA-targeted oligonucleotides in the rat striatum by magnetofection with Neuromag®. Molecules. 2018;23:1825.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Zorde Khvalevsky E, Gabai R, Rachmut IH, Horwitz E, Brunschwig Z, Orbach A, et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc Natl Acad Sci USA. 2013;110:20723–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Zimmermann TS, Lee ACH, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441:111–4.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cullis PR, Hope MJ. Lipid nanoparticle systems for enabling gene therapies. Mol Ther. 2017;25:1467–75.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kulkarni JA, Cullis PR, van der Meel R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28:146–57.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    FDA-Center for Drug Evaluation and Research. Onpattro™ (patisiran). Cross-Discipline Team Leader Review. NDA# 210922. 2018. Accessed 23 Oct 2019.
  42. 42.
    Minamisawa M, Claggett B, Adams D, Kristen AV, Merlini G, Slama MS, et al. Association of patisiran, an RNA interference therapeutic, with regional left ventricular myocardial strain in hereditary transthyretin amyloidosis: the APOLLO Study. JAMA Cardiol. 2019;4:466–72.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Adams D, Coelho T, Conceicao I, Cruz MW, Schmidt H, Buades J, et al. Phase 2 open-label extension (OLE) study of patisiran, an investigational RNA interference (RNAi) therapeutic for the treatment of hereditary ATTR amyloidosis with polyneuropathy [abstract no. S27.004]. Neurology. 2017;88(16 Suppl):S27.004.Google Scholar
  44. 44.
    Gooding M, Malhotra M, Evans JC, Darcy R, O’Driscoll CM. Oligonucleotide conjugates—candidates for gene silencing therapeutics. Eur J Pharm Biopharm. 2016;107:321–40.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Nair JK, Willoughby JL, Chan A, Charisse K, Alam MR, Wang Q, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136:16958–61.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Zimmermann TS, Karsten V, Chan A, Chiesa J, Boyce M, Bettencourt BR, et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther. 2017;25:71–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    ALNY—2017 RNAi Roundtable: revusiran investigation results. 2017. Accessed 23 Oct 2019.
  48. 48.
    Alnylam Pharmaceuticals. Alnylam Pharmaceuticals discontinues revusiran development. 2016. Accessed 23 Oct 2019.
  49. 49.
    Adams D, Verena K. Phase 1 study of ALN-TTRsc02, a subcutaneously administered investigational RNAi therapeutic for the treatment of transthyretin-mediated amyloidosis. Rev Neurol (Paris). 2019;175:S129.Google Scholar
  50. 50.
    Nair JK, Castoreno A, Milstein S, Thiele C, Nguyen T, Rogers A, et al. Efficient and durable ocular gene silencing of TTR after single intravitreal administration of siRNA conjugates. Alnylam; 2018. Accessed 23 Oct 2019.
  51. 51.
    Kapoor M, Rossor AM, Laura M, Reilly MM. Clinical presentation, diagnosis and treatment of TTR amyloidosis. J Neuromuscul Dis. 2019;6:189–99.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mickle K, Lasser KE, Hoch JS, Cipriano LE, Dreitlein WB, Pearson SD. The effectiveness and value of patisiran and inotersen for hereditary transthyretin amyloidosis. J Manag Care Spec Pharm. 2019;25:10–5.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Coelho T, Inês M, Conceição I, Soares M, de Carvalho M, Costa J. Natural history and survival in stage 1 Val30Met transthyretin familial amyloid polyneuropathy. Neurology. 2018;91:e1999–2009.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Plante-Bordeneuve V. Transthyretin familial amyloid polyneuropathy: an update. J Neurol. 2018;265:976–83.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Berk JL, Suhr OB, Obici L, Sekijima Y, Zeldenrust SR, Yamashita T, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA. 2013;310:2658–67.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Coelho T, Maia LF, Waddington M, Kelly JW, Chan J, Packman J. Tafamidis for transthyretin familial amyloid polyneuropathy. Neurology. 2012;79:785–92.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    US Food and Drug Administration. FDA approves new treatments for heart disease caused by a serious rare disease, transthyretin mediated amyloidosis. 2019. Accessed 23 Oct 2019.
  58. 58.
    Barroso FA, Judge DP, Ebede B, Li H, Stewart M, Amass L, et al. Long-term safety and efficacy of tafamidis for the treatment of hereditary transthyretin amyloid polyneuropathy: results up to 6 years. Amyloid. 2017;24:194–204.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Planté-Bordeneuve V, Gorram F, Salhi H, Nordine T, Ayache SS, Le Corvoisier P, et al. Long-term treatment of transthyretin familial amyloid polyneuropathy with tafamidis: a clinical and neurophysiological study. J Neurol. 2017;264:268–76.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379:1007–16.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Planté-Bordeneuve V, Lin H, Gollob J, Agarwal S, Betts M, Fahrbach K, et al. An indirect treatment comparison of the efficacy of patisiran and tafamidis for the treatment of hereditary transthyretin-mediated amyloidosis with polyneuropathy. Expert Opin Pharmacother. 2019;20:473–81.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Benson MD, Dasgupta NR, Monia BP. Inotersen (transthyretin-specific antisense oligonucleotide) for treatment of transthyretin amyloidosis. Neurodegener Dis Manag. 2019;9:25–30.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:22–31.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technology for Gene Therapy Laboratory, Central Institute of SciencesUniversity of Brasília/FAVBrasíliaBrazil
  2. 2.Laboratory of Neuroscience and BehaviorUniversity of BrasíliaBrasíliaBrazil
  3. 3.Neurology Clinic, Medical Department, Chamber of DeputiesThe National CongressBrasíliaBrazil

Personalised recommendations