The Role of Lipidomics in Autism Spectrum Disorder

  • Afaf El-Ansary
  • Salvatore Chirumbolo
  • Ramesa Shafi Bhat
  • Maryam Dadar
  • Eiman M. Ibrahim
  • Geir BjørklundEmail author
Review Article


Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.


Compliance with Ethical Standards

Conflict of Interest

Afaf El-Ansary, Salvatore Chirumbolo, Ramesa Shafi Bhat, Maryam Dadar, Eiman M. Ibrahim, and Geir Bjørklund declare that they have no conflicts of interest.


No funding was received for this article.


  1. 1.
    Anderson GM. Autism biomarkers: challenges, pitfalls and possibilities. J Autism Dev Disord. 2015;45(4):1103–13.PubMedCrossRefGoogle Scholar
  2. 2.
    Kim JY, Son MJ, Son CY, Radua J, Eisenhut M, Gressier F, et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry. 2019;6(7):590–600.PubMedCrossRefGoogle Scholar
  3. 3.
    Elhawary NA, Tayeb MT, Sindi IA, Qutub N, Rashad M, Mufti A, et al. Genetic biomarkers predict susceptibility to autism spectrum disorder through interactive models of inheritance in a Saudi community. Cogent Biol. 2019;5(1):1606555.CrossRefGoogle Scholar
  4. 4.
    Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9(5):341.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mussap M, Noto A, Fanos V. Metabolomics of autism spectrum disorders: early insights regarding mammalian-microbial cometabolites. Expert Rev Mol Diagn. 2016;16(8):869–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Abo El Fotoh WMM, El Hady A, Said NM. Autism spectrum disorders: the association with inherited metabolic disorders and some trace elements. A retrospective study. CNS Neurol Disord Drug Targets. 2019;18(5):413-420.CrossRefGoogle Scholar
  7. 7.
    Hens K, Peeters H, Dierickx K. The ethics of complexity. Genetics and autism, a literature review. Am J Med Genet B Neuropsychiatr Genet. 2016;171(3):305–16.CrossRefGoogle Scholar
  8. 8.
    Vargason T, Kruger U, Roth E, Delhey LM, Tippett M, Rose S, et al. Comparison of three clinical trial treatments for autism spectrum disorder through multivariate analysis of changes in metabolic profiles and adaptive behavior. Front Cell Neurosci. 2018;12:503.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gevi F, Zolla L, Gabriele S, Persico AM. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism. 2016;7(1):47.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA. 2008;105(6):2117–22.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Diémé B, Mavel S, Blasco H, Tripi G, Bonnet-Brilhault F, Malvy J, et al. Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J Proteome Res. 2015;14(12):5273–82.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Cortelazzo A, De Felice C, Guerranti R, Signorini C, Leoncini S, Zollo G, et al. Expression and oxidative modifications of plasma proteins in autism spectrum disorders: Interplay between inflammatory response and lipid peroxidation. Proteom Clin Appl. 2016;10(11):1103–12.CrossRefGoogle Scholar
  13. 13.
    Shen L, Zhang K, Feng C, Chen Y, Li S, Iqbal J, et al. iTRAQ-based proteomic analysis reveals protein profile in plasma from children with autism. Proteom Clin Appl. 2018;12(3):1700085.CrossRefGoogle Scholar
  14. 14.
    Wang H, Liang S, Wang M, Gao J, Sun C, Wang J, et al. Potential serum biomarkers from a metabolomics study of autism. J Psychiatry Neurosci. 2016;41(1):27.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Smith AM, King JJ, West PR, Ludwig MA, Donley EL, Burrier RE, et al. Amino acid dysregulation metabotypes: potential biomarkers for diagnosis and individualized treatment for subtypes of autism spectrum disorder. Biol Psychiatry. 2019;85(4):345–54.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Bjørklund G, Meguid NA, El-Ansary A, El-Bana MA, Dadar M, Aaseth J, et al. Diagnostic and severity-tracking biomarkers for autism spectrum disorder. J Mol Neurosci. 2018;66(4):492–511.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Han X. Lipidomics for studying metabolism. Nat Rev Endocrinol. 2016;12(11):668–79.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016;41(11):954–69.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fahy E, Cotter D, Sud M, Subramaniam S. Lipid classification, structures and tools. Biochim Biophys Acta. 2011;1811(11):637–47.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gloyn AL, Faber JH, Malmodin D, Thanabalasingham G, Lam F, Ueland PM, et al. Metabolic profiling in maturity-onset diabetes of the young (MODY) and young onset type 2 diabetes fails to detect robust urinary biomarkers. PLoS One. 2012;7(7):e40962.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rauschert S, Uhl O, Koletzko B, Kirchberg F, Mori TA, Huang R-C, et al. Lipidomics reveals associations of phospholipids with obesity and insulin resistance in young adults. J Clin Endocrinol Metab. 2016;101(3):871–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Tonks KT, Coster AC, Christopher MJ, Chaudhuri R, Xu A, Gagnon-Bartsch J, et al. Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity. 2016;24(4):908–16.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Yu D, Shu XO, Rivera ES, Zhang X, Cai Q, Calcutt MW, et al. Urinary levels of trimethylamine-N-oxide and incident coronary heart disease: a prospective investigation among urban Chinese adults. J Am Heart Assoc. 2019;8(1):e010606.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tallberg T, Dabek J, Hallamaa R, Atroshi F. Lipidomics: the function of vital lipids in embryogenesis preventing autism spectrum disorders, treating sterile inflammatory diatheses with a lymphopoietic central nervous system component. J Lipid. 2011;2011:137175.CrossRefGoogle Scholar
  25. 25.
    Grayaa S, Zerbinati C, Messedi M, HadjKacem I, Chtourou M, Touhemi DB, et al. Plasma oxysterol profiling in children reveals 24-hydroxycholesterol as a potential marker for autism spectrum disorders. Biochimie. 2018;153:80–5.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Han X, Gross RW. Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteom. 2005;2(2):253–64.CrossRefGoogle Scholar
  27. 27.
    Balazy M. Eicosanomics: targeted lipidomics of eicosanoids in biological systems. Prostaglandins Other Lipid Mediat. 2004;73(3–4):173–80.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bent S, Lawton B, Warren T, Widjaja F, Dang K, Fahey JW, et al. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Mol Autism. 2018;9(1):35.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Obrenovich ME, Donskey CJ, Schiefer IT, Bongiovanni R, Li L, Jaskiw GE. Quantification of phenolic acid metabolites in humans by LC–MS: a structural and targeted metabolomics approach. Bioanalysis. 2018;10(19):1591–608.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yap IK, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res. 2010;9(6):2996–3004.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    El-Ansary AK, Bacha AGB, Al-Ayahdi LY. Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia. Lipids Health Dis. 2011;10(1):62.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Qasem H, Al-Ayadhi L, Bjørklund G, Chirumbolo S, El-Ansary A. Impaired lipid metabolism markers to assess the risk of neuroinflammation in autism spectrum disorder. Metab Brain Dis. 2018;33:1141-1153.CrossRefGoogle Scholar
  33. 33.
    Mirza R, Sharma B. Selective modulator of peroxisome proliferator-activated receptor-α protects propionic acid induced autism-like phenotypes in rats. Life Sci. 2018;214:106–17.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ming X, Stein TP, Barnes V, Rhodes N, Guo L. Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res. 2012;11(12):5856–62.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Li Q, Zhou J-M. The microbiota–gut–brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience. 2016;324:131–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Berry RC, Novak P, Withrow N, Schmidt B, Rarback S, Feucht S, et al. Nutrition management of gastrointestinal symptoms in children with autism spectrum disorder: guideline from an expert panel. J Acad Nutr Diet. 2015;115(12):1919–27.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hsiao EY. Gastrointestinal issues in autism spectrum disorder. Harv Rev Psychiatry. 2014;22(2):104–11.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Choi J, Yin T, Shinozaki K, Lampe JW, Stevens JF, Becker LB, et al. Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids. Mol Cell Biochem. 2018;442(1–2):187–201.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15(12):771.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Oxford: Oxford University Press; 2015.CrossRefGoogle Scholar
  41. 41.
    Cobley JN, Sakellariou GK, Owens D, Murray S, Waldron S, Gregson W, et al. Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle. Free Radic Biol Med. 2014;70:23–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Heffernan AL, Hare DJ. Tracing environmental exposure from neurodevelopment to neurodegeneration. Trends Neurosci. 2018;41(8):496–501.PubMedCrossRefGoogle Scholar
  43. 43.
    Wood PL. Mass spectrometry strategies for clinical metabolomics and lipidomics in psychiatry, neurology, and neuro-oncology. Neuropsychopharmacology. 2014;39(1):24.PubMedCrossRefGoogle Scholar
  44. 44.
    Kałużna-Czaplińska J, Socha E, Rynkowski J. B vitamin supplementation reduces excretion of urinary dicarboxylic acids in autistic children. Nutr Res. 2011;31(7):497–502.PubMedCrossRefGoogle Scholar
  45. 45.
    Zeng M, Cao H. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction. J Chromatogr B. 2018;1083:137–45.CrossRefGoogle Scholar
  46. 46.
    Luan H, Yang L, Ji F, Cai Z. PCI–GC–MS–MS approach for identification of non-amino organic acid and amino acid profiles. J Chromatogr B. 2017;1047:180–4.CrossRefGoogle Scholar
  47. 47.
    Pasikanti KK, Ho P, Chan E. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B. 2008;871(2):202–11.CrossRefGoogle Scholar
  48. 48.
    Kałużna-Czaplińska J, Żurawicz E, Jóźwik J. Chromatographic techniques coupled with mass spectrometry for the determination of organic acids in the study of autism. J Chromatogr B. 2014;964:128–35.CrossRefGoogle Scholar
  49. 49.
    Puig-Alcaraz C, Fuentes-Albero M, Cauli O. Relationship between adipic acid concentration and the core symptoms of autism spectrum disorders. Psychiatry Res. 2016;242:39–45.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kurian M, Ryan S, Besley G, Wanders R, King M. Straight-chain acyl-CoA oxidase deficiency presenting with dysmorphia, neurodevelopmental autistic-type regression and a selective pattern of leukodystrophy. J Inherit Metab Dis. 2004;27(1):105–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Triggs WJ, Roe CR, Rhead WJ, Hanson SK, Lin S-N, Willmore LJ. Neuropsychiatric manifestations of defect in mitochondrial beta oxidation response to riboflavin. J Neurol Neurosurg. Psychiatry. 1992;55(3):209–11.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Morris AA, Spiekerkoetter U. Disorders of mitochondrial fatty acid oxidation and riboflavin metabolism. In: Saudubray J-M, van den Berghe G, Walter JH, editors. Inborn metabolic diseases. Berlin: Springer; 2016. p. 201–13.CrossRefGoogle Scholar
  53. 53.
    Papamichael MM, Katsardis C, Erbas B, Itsiopoulos C, Tsoukalas D. Urinary organic acids as biomarkers in the assessment of pulmonary function in children with asthma. Nutr Res. 2019;61:31–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Lord RS, Bralley JA. Clinical applications of urinary organic acids. Part 2. Dysbiosis markers. Altern Med Rev. 2008;13(4):292–306.PubMedGoogle Scholar
  55. 55.
    Kałużna-Czaplińska J, Żurawicz E, Struck W, Markuszewski M. Identification of organic acids as potential biomarkers in the urine of autistic children using gas chromatography/mass spectrometry. J Chromatogr B. 2014;966:70–6.CrossRefGoogle Scholar
  56. 56.
    Kałużna-Czaplińska J. Noninvasive urinary organic acids test to assess biochemical and nutritional individuality in autistic children. Clin Biochem. 2011;44(8–9):686–91.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Watson BD, Busto R, Goldberg WJ, Santiso M, Yoshida S, Ginsberg MD. Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J Neurochem. 1984;42(1):268–74.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kumral A, Gonenc S, Acikgoz O, Sonmez A, Genc K, Yilmaz O, et al. Erythropoietin increases glutathione peroxidase enzyme activity and decreases lipid peroxidation levels in hypoxic-ischemic brain injury in neonatal rats. Neonatology. 2005;87(1):15–8.CrossRefGoogle Scholar
  59. 59.
    Wu JY, Roberts E. Properties of brain l-glutamate decarboxylase: inhibition studies. J Neurochem. 1974;23(4):759–67.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    El-Ansary A, Al-Ayadhi L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J Neuroinflamm. 2014;11(1):189.CrossRefGoogle Scholar
  61. 61.
    Oberman LM. mGluR antagonists and GABA agonists as novel pharmacological agents for the treatment of autism spectrum disorders. Expert Opin Investig Drug. 2012;21(12):1819–25.CrossRefGoogle Scholar
  62. 62.
    Chao H-T, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468(7321):263.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Fluegge K. Adipic acid and autism spectrum disorders: a confounding role for environmental exposure to nitrous oxide. Psychiatry Res. 2017;247:330–1.PubMedCrossRefGoogle Scholar
  64. 64.
    Tesei A, Crippa A, Ceccarelli SB, Mauri M, Molteni M, Agostoni C, et al. The potential relevance of docosahexaenoic acid and eicosapentaenoic acid to the etiopathogenesis of childhood neuropsychiatric disorders. Eur Child Adolesc Psychiatry. 2017;26(9):1011–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Gao J, Wang X, Sun H, Cao Y, Liang S, Wang H, et al. Neuroprotective effects of docosahexaenoic acid on hippocampal cell death and learning and memory impairments in a valproic acid-induced rat autism model. Int J Dev Neurosci. 2016;49:67–78.PubMedCrossRefGoogle Scholar
  66. 66.
    Jones B, Han T-L, Delplancke T, McKenzie EJ, de Seymour JV, Chua MC, et al. Association between maternal exposure to phthalates and lower language ability in offspring derived from hair metabolome analysis. Sci Rep. 2018;8:6745.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Santocchi E, Guiducci L, Fulceri F, Billeci L, Buzzigoli E, Apicella F, et al. Gut to brain interaction in autism spectrum disorders: a randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry. 2016;16(1):183.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Carter CJ, Blizard R. Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem Int. 2016;101:83–109.CrossRefGoogle Scholar
  69. 69.
    Kardas F, Bayram AK, Demirci E, Akin L, Ozmen S, Kendirci M, et al. Increased serum phthalates (MEHP, DEHP) and Bisphenol a concentrations in children with autism spectrum disorder: the role of endocrine disruptors in autism etiopathogenesis. J Child Neurol. 2016;31(5):629–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Matousova M, Soucek R, Tloustova E, Slavikova B, Chodounska H, Mertlikova-Kaiserova H, et al. Pregn-5-en-3β-ol and androst-5-en-3β-ol dicarboxylic acid esters as potential therapeutics for NMDA hypofunction: in vitro safety assessment and plasma stability. Steroids. 2019;147:4–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Petrov A, Kasimov M, Zefirov A. Cholesterol in the pathogenesis of Alzheimer’s, Parkinson’s diseases and autism: link to synaptic dysfunction. Acta Naturae. 2017;9(1):26–37.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gillberg C, Fernell E, Kočovská E, Minnis H, Bourgeron T, Thompson L, et al. The role of cholesterol metabolism and various steroid abnormalities in autism spectrum disorders: a hypothesis paper. Autism Res. 2017;10(6):1022–44.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Björkhem I. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med. 2006;260(6):493–508.PubMedCrossRefGoogle Scholar
  74. 74.
    Griffiths WJ, Abdel-Khalik J, Hearn T, Yutuc E, Morgan AH, Wang Y. Current trends in oxysterol research. Biochem Soc Trans. 2016;44(2):652–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Vurusaner B, Leonarduzzi G, Gamba P, Poli G, Basaga H. Oxysterols and mechanisms of survival signaling. Mol Asp Med. 2016;49:8–22.CrossRefGoogle Scholar
  76. 76.
    Sun M-Y, Taylor A, Zorumski CF, Mennerick S. 24S-Hydroxycholesterol and 25-hydroxycholesterol differentially impact hippocampal neuronal survival following oxygen-glucose deprivation. PLoS One. 2017;12(3):e0174416.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Vorstman JA, Parr JR, Moreno-De-Luca D, Anney RJ, Nurnberger JI Jr, Hallmayer JF. Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet. 2017;18(6):362–76.PubMedCrossRefGoogle Scholar
  78. 78.
    Luchetti F, Crinelli R, Cesarini E, Canonico B, Guidi L, Zerbinati C, et al. Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol. 2017;13:581–7.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Olloquequi J, Cornejo-Córdova E, Verdaguer E, Soriano FX, Binvignat O, Auladell C, et al. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: therapeutic implications. J Psychopharmacol. 2018;32(3):265–75.PubMedCrossRefGoogle Scholar
  80. 80.
    Kasimov M, Fatkhrakhmanova M, Mukhutdinova K, Petrov A. 24S-Hydroxycholesterol enhances synaptic vesicle cycling in the mouse neuromuscular junction: Implication of glutamate NMDA receptors and nitric oxide. Neuropharmacology. 2017;117:61–73.PubMedCrossRefGoogle Scholar
  81. 81.
    El-Ansary A. Data of multiple regressions analysis between selected biomarkers related to glutamate excitotoxicity and oxidative stress in Saudi autistic patients. Data Brief. 2016;7:111–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hu Y, Ehli EA, Boomsma DI. MicroRNAs as biomarkers for psychiatric disorders with a focus on autism spectrum disorder: current progress in genetic association studies, expression profiling, and translational research. Autism Res. 2017;10(7):1184–203.PubMedCrossRefGoogle Scholar
  83. 83.
    Bezine M, Debbabi M, Nury T, Ben-Khalifa R, Samadi M, Cherkaoui-Malki M, et al. Evidence of K+ homeostasis disruption in cellular dysfunction triggered by 7-ketocholesterol, 24S-hydroxycholesterol, and tetracosanoic acid (C24: 0) in 158N murine oligodendrocytes. Chem Phys Lipids. 2017;207:135–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Das UN. Nutritional factors in the pathobiology of autism. Nutrition. 2013;29(7/8):1066.PubMedCrossRefGoogle Scholar
  85. 85.
    Agostoni C, Nobile M, Ciappolino V, Delvecchio G, Tesei A, Turolo S, et al. The role of omega-3 fatty acids in developmental psychopathology: a systematic review on early psychosis, autism, and ADHD. Int J Mol Sci. 2017;18(12):2608.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Jory J. Abnormal fatty acids in Canadian children with autism. Nutrition. 2016;32(4):474–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Al-Farsi YM, Waly MI, Deth RC, Al-Sharbati MM, Al-Shafaee M, Al-Farsi O, et al. Impact of nutrition on serum levels of docosahexaenoic acid among Omani children with autism. Nutrition. 2013;29(9):1142–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Yu N, Martin J-L, Stella N, Magistretti PJ. Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes. Proc Natl Acad Sci USA. 1993;90(9):4042–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Das U. Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory. Nutrition. 2003;19(1):62.PubMedCrossRefGoogle Scholar
  90. 90.
    Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al. Omega 3 polyunsaturated fatty acid improves spatial learning and hippocampal peroxisome proliferator activated receptors (PPARα and PPARγ) gene expression in rats. BMC Neurosci. 2012;13(1):109.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Boone KM, Gracious B, Klebanoff MA, Rogers LK, Rausch J, Coury DL, et al. Omega-3 and-6 fatty acid supplementation and sensory processing in toddlers with ASD symptomology born preterm: a randomized controlled trial. Early Hum Dev. 2017;115:64–70.PubMedCrossRefGoogle Scholar
  92. 92.
    Horvath A, Łukasik J, Szajewska H. ω-3 fatty acid supplementation does not affect autism spectrum disorder in children: a systematic review and meta-analysis. J Nutr. 2017;147(3):367–76.PubMedCrossRefGoogle Scholar
  93. 93.
    Nurhasan M, Roos N, Skau JK, Wieringa FT, Friis H, Michaelsen KF, et al. Effect of complementary food with small amounts of freshwater fish on whole blood n-3 fatty acids in Cambodian infants age 6–15 months. Prostaglandins Leukot Essent Fatty Acids. 2018;135:92–101.PubMedCrossRefGoogle Scholar
  94. 94.
    Vancassel S, Durand G, Barthelemy C, Lejeune B, Martineau J, Guilloteau D, et al. Plasma fatty acid levels in autistic children. Prostaglandins Leukot Essent Fatty Acids. 2001;65(1):1–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Liddle D, Hutchinson A, Wellings H, Power K, Robinson L, Monk J. Integrated immunomodulatory mechanisms through which long-chain n-3 polyunsaturated fatty acids attenuate obese adipose tissue dysfunction. Nutrients. 2017;9(12):1289.PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Yaqoob P. Mechanisms underlying the immunomodulatory effects of n-3 PUFA. Proc Nutr Soc. 2010;69(3):311–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Rey C, Delpech J, Madore C, Nadjar A, Greenhalgh A, Amadieu C, et al. Dietary n-3 long chain PUFA supplementation promotes a pro-resolving oxylipin profile in the brain. Brain Behav Immun. 2019;76:17–27.PubMedCrossRefGoogle Scholar
  98. 98.
    Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA. 2004;101(22):8491–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Manchia M, Fanos V. Targeting aggression in severe mental illness: The predictive role of genetic, epigenetic, and metabolomic markers. Prog Neuropsychopharmacol Biol Psychiatry. 2017;77:32–41.PubMedCrossRefGoogle Scholar
  100. 100.
    Hegazy HG, Ali EH, Elgoly AHM. Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: evidence of parallels between butyl paraben intoxication and the valproic acid brain physiopathology in autism rat model. Cytokine. 2015;71(2):173–80.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Lee M. Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sci. 2013;14(1):21–32.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Estrada JA, Contreras I. Nutritional modulation of immune and central nervous system homeostasis: the role of diet in development of neuroinflammation and neurological disease. Nutrients. 2019;11(5):1076.PubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bousquet M, Gibrat C, Saint-Pierre M, Julien C, Calon F, Cicchetti F. Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fatty acids in a parkinsonian animal model. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(8):1401–8.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Armeanu R, Mokkonen M, Crespi B. Meta-analysis of BDNF levels in autism. Cell Mol Neurobiol. 2017;37(5):949–54.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Hutchinson AJ, Chou C-L, Israel DD, Xu W, Regan JW. Activation of EP2 prostanoid receptors in human glial cell lines stimulates the secretion of BDNF. Neurochem Int. 2009;54(7):439–46.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wu A, Ying Z, Gomez-Pinilla F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotraum. 2004;21(10):1457–67.CrossRefGoogle Scholar
  107. 107.
    Bahi A. Hippocampal BDNF overexpression or microR124a silencing reduces anxiety-and autism-like behaviors in rats. Behav Brain Res. 2017;326:281–90.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Zheng Z, Zhang L, Zhu T, Huang J, Qu Y, Mu D. Peripheral brain-derived neurotrophic factor in autism spectrum disorder: a systematic review and meta-analysis. Sci Rep. 2016;6:31241.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dhobale M, Joshi S. Altered maternal micronutrients (folic acid, vitamin B12) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy. J Matern Fetal Neonatal Med. 2012;25(4):317–23.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Cunnane SC. Metabolism of polyunsaturated fatty acids and ketogenesis: an emerging connection. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):237–41.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Wiktorowska-Owczarek A, Berezinska M, Nowak JZ. PUFAs: structures, metabolism and functions. Adv Clin Exp Med. 2015;24(6):931–41.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Shearer GC, Walker R. An overview of the biologic effects of omega-6 oxylipins in humans. Prostaglandins Leukot Essent Fatty Acids. 2018;137:26–38.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M, Gu Z, et al. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fatty Acids. 2018;136:3–13.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Serhan CN, Hirsch U, Palmblad J, Samuelsson B. Formation of lipoxin A by granulocytes from eosinophilic donors. FEBS Lett. 1987;217(2):242–6.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Serhan CN, Chiang N. Novel endogenous small molecules as the checkpoint controllers in inflammation and resolution: entree for resoleomics. Rheum Dis Clin. 2004;30(1):69–95.CrossRefGoogle Scholar
  116. 116.
    Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 2017;31(4):1273–88.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Corminboeuf O, Leroy X. FPR2/ALXR agonists and the resolution of inflammation. J Med Chem. 2014;58(2):537–59.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Börgeson E, McGillicuddy FC, Harford KA, Corrigan N, Higgins DF, Maderna P, et al. Lipoxin A4 attenuates adipose inflammation. FASEB J. 2012;26(10):4287–94.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Reis MB, Pereira PAT, Caetano GF, Leite MN, Galvão AF, Paula-Silva FWG, et al. Lipoxin A4 encapsulated in PLGA microparticles accelerates wound healing of skin ulcers. PLoS One. 2017;12(7):e0182381.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yan C-L, Zhang J, Hou Y. Decreased plasma levels of lipoxin A4 in children with autism spectrum disorders. Neuroreport. 2015;26(6):341–5.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Maldonado-Pérez D, Golightly E, Denison FC, Jabbour HN, Norman JE. A role for lipoxin A4 as anti-inflammatory and proresolution mediator in human parturition. FASEB J. 2011;25(2):569–75.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol. 1986;19(2):105–11.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13(1):171–82.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Maragakis NJ, Rothstein JD. Glutamate transporters in neurologic disease. Arch Neurol. 2001;58(3):365–70.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Robinson M. Review article the family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype. Neurochem Int. 1998;33(6):479–91.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Zschocke J, Bayatti N, Clement AM, Witan H, Figiel M, Engele J, et al. Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem. 2005;280(41):34924–32.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Beaudin S, Welsh J. 1,25-Dihydroxyvitamin D induces the glutamate transporter SLC1A1 and alters glutamate handling in non-transformed mammary cells. Mol Cell Endocrinol. 2016;424:34–41.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Domith I, Socodato R, Portugal CC, Munis AF, Duarte-Silva AT, Paes-de-Carvalho R. Vitamin C modulates glutamate transport and NMDA receptor function in the retina. J Neurochem. 2018;144(4):408–20.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Maksymchuk O, Parkhomets P, et al. Vitamin D3 deficiency in puberty rats causes presynaptic malfunctioning through alterations in exocytotic release and uptake of glutamate/GABA and expression of EAAC-1/GAT-3 transporters. Food Chem Toxicol. 2019;123:142–50.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity. 2014;40(3):315–27.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res. 2011;50(1):35–51.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Dennis EA. Liberating chiral lipid mediators, inflammatory enzymes, and LIPID MAPS from biological grease. J Biol Chem. 2016;291(47):24431–48.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Colas RA, Shinohara M, Dalli J, Chiang N, Serhan CN. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am J Physiol Cell Ph. 2014;307(1):C39–54.CrossRefGoogle Scholar
  136. 136.
    Trépanier MO, Eiden M, Morin-Rivron D, Bazinet RP, Masoodi M. High-resolution lipidomics coupled with rapid fixation reveals novel ischemia-induced signaling in the rat neurolipidome. J Neurochem. 2017;140(5):766–75.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Rey C, Nadjar A, Buaud B, Vaysse C, Aubert A, Pallet V, et al. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain Behav Immun. 2016;55:249–59.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Bolotta A, Battistelli M, Falcieri E, Ghezzo A, Manara MC, Manfredini S, et al. Oxidative stress in autistic children alters erythrocyte shape in the absence of quantitative protein alterations and of loss of membrane phospholipid asymmetry. Oxid Med Cell Longev. 2018;2018:6430601.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Bolotta A, Visconti P, Fedrizzi G, Ghezzo A, Marini M, Manunta P, et al. Na+, K+-ATPase activity in children with autism spectrum disorder: searching for the reason(s) of its decrease in blood cells. Autism Res. 2018;11(10):1388–403.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Brigandi S, Shao H, Qian S, Shen Y, Wu B-L, Kang J. Autistic children exhibit decreased levels of essential fatty acids in red blood cells. Int J Mol Sci. 2015;16(5):10061–76.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Ghezzo A, Visconti P, Abruzzo PM, Bolotta A, Ferreri C, Gobbi G, et al. Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features. PLoS One. 2013;8(6):e66418.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Ciccoli L, De Felice C, Paccagnini E, Leoncini S, Pecorelli A, Signorini C, et al. Erythrocyte shape abnormalities, membrane oxidative damage, and β-actin alterations: an unrecognized triad in classical autism. Mediators Inflamm. 2013;2013:432616. doi: Scholar
  143. 143.
    Cortelazzo A, De Felice C, Pecorelli A, Belmonte G, Signorini C, Leoncini S, et al. Beta-actin deficiency with oxidative posttranslational modifications in Rett syndrome erythrocytes: insights into an altered cytoskeletal organization. PLoS One. 2014;9(3):e93181.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Giacometti G, Ferreri C, Sansone A, Chatgilialoglu C, Marzetti C, Spyratou E, et al. High predictive values of RBC membrane-based diagnostics by biophotonics in an integrated approach for autism spectrum disorders. Sci Rep. 2017;7(1):9854.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Madore C, Leyrolle Q, Lacabanne C, Benmamar-Badel A, Joffre C, Nadjar A, et al. Neuroinflammation in autism: plausible role of maternal inflammation, dietary omega 3, and microbiota. Neural Plast. 2016;2016:3597209.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Stillwell W, Wassall SR. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids. 2003;126(1):1–27.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Hashimoto K. Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci. 2010;64(4):341–57.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Russo F, Chimienti G, Clemente C, Ferreri C, Orlando A, Riezzo G. A possible role for ghrelin, leptin, brain-derived neurotrophic factor and docosahexaenoic acid in reducing the quality of life of coeliac disease patients following a gluten-free diet. Eur J Nutr. 2017;56(2):807–18.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Lyall K, Munger KL, O’Reilly ÉJ, Santangelo SL, Ascherio A. Maternal dietary fat intake in association with autism spectrum disorders. Am J Epidemiol. 2013;178(2):209–20.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Beaudet AL. Brain carnitine deficiency causes nonsyndromic autism with an extreme male bias: a hypothesis. Bio Essays. 2017;39(8):1700012.Google Scholar
  151. 151.
    De Angelis M, Francavilla R, Piccolo M, De Giacomo A, Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015;6(3):207–13.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Pulikkan J, Maji A, Dhakan DB, Saxena R, Mohan B, Anto MM, et al. Gut microbial dysbiosis in Indian children with autism spectrum disorders. Microb Ecol. 2018;76(4):1102–14.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Liu S, Li E, Sun Z, Fu D, Duan G, Jiang M, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci Rep. 2019;9(1):287.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Thomas RH, Foley KA, Mepham JR, Tichenoff LJ, Possmayer F, MacFabe DF. Altered brain phospholipid and acylcarnitine profiles in propionic acid infused rodents: further development of a potential model of autism spectrum disorders. J Neurochem. 2010;113(2):515–29.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Sordillo JE, Zhou Y, McGeachie MJ, Ziniti J, Lange N, Laranjo N, et al. Factors influencing the infant gut microbiome at age 3-6 months: findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART). J Allergy Clin Immun. 2017;139(2):482.e14–491.e14.CrossRefGoogle Scholar
  156. 156.
    Sordillo JE, Korrick S, Laranjo N, Carey V, Weinstock GM, Gold DR, et al. Association of the infant gut microbiome with early childhood neurodevelopmental outcomes: an ancillary study to the VDAART randomized clinical trial. JAMA Netw Open. 2019;2(3):e190905.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Frye RE, Melnyk S, MacFabe DF. Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder. Transl Psychiatry. 2013;3(1):e220.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M, Fernández-Fernández C, Mouriño-Bayolo D. Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion. 2018;46:73–90.PubMedCrossRefGoogle Scholar
  159. 159.
    Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta. 2016;1863(10):2422–35.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Schönfeld P, Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab. 2013;33(10):1493–9.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Filipek PA, Juranek J, Nguyen MT, Cummings C, Gargus JJ. Relative carnitine deficiency in autism. J Autism Dev Disord. 2004;34(6):615–23.PubMedCrossRefGoogle Scholar
  162. 162.
    Lv Q-Q, You C, Zou X-B, Deng H-Z. Acyl-carnitine, C5DC, and C26 as potential biomarkers for diagnosis of autism spectrum disorder in children. Psychiatry Res. 2018;267:277–80.PubMedCrossRefGoogle Scholar
  163. 163.
    Celestino-Soper PB, Shaw CA, Sanders SJ, Li J, Murtha MT, Ercan-Sencicek AG, et al. Use of array CGH to detect exonic copy number variants throughout the genome in autism families detects a novel deletion in TMLHE. Hum Mol Gen. 2011;20(22):4360–70.PubMedCrossRefGoogle Scholar
  164. 164.
    Celestino-Soper PB, Violante S, Crawford EL, Luo R, Lionel AC, Delaby E, et al. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism. Proc Natl Acad Sci USA. 2012;109(21):7974–81.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Nava C, Lamari F, Heron D, Mignot C, Rastetter A, Keren B, et al. Analysis of the chromosome X exome in patients with autism spectrum disorders identified novel candidate genes, including TMLHE. Transl Psychiatry. 2012;2(10):e179.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Ning Z, Williams JM, Kumari R, Baranov PV, Moore T. Opposite expression patterns of Spry3 and p75NTR in cerebellar vermis suggest a male-specific mechanism of autism pathogenesis. Front Psychiatry. 2019;10:416.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Ferreira GC, McKenna MC. L-Carnitine and acetyl-l-carnitine roles and neuroprotection in developing brain. Neurochem Res. 2017;42(6):1661–75.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Chan YL, Saad S, Al-Odat I, Oliver BG, Pollock C, Jones NM, et al. Maternal l-carnitine supplementation improves brain health in offspring from cigarette smoke exposed mothers. Front Mol Neurosci. 2017;10:33.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Kido Y, Tamai I, Ohnari A, Sai Y, Kagami T, Nezu J, et al. Functional relevance of carnitine transporter OCTN2 to brain distribution of l-carnitine and acetyl-l-carnitine across the blood–brain barrier. J Neurochem. 2001;79(5):959–69.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun. 2012;26(3):383–92.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol. 2004;63(9):901–10.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Roberts LJ II, Fessel JP. The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem Phys Lipids. 2004;128(1–2):173–86.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    El-Ansary A, Al-Ayadhi L. Lipid mediators in plasma of autism spectrum disorders. Lipids Health Dis. 2012;11(1):160.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    De Felice A, Greco A, Calamandrei G, Minghetti L. Prenatal exposure to the organophosphate insecticide chlorpyrifos enhances brain oxidative stress and prostaglandin E 2 synthesis in a mouse model of idiopathic autism. J Neuroinflamm. 2016;13(1):149.CrossRefGoogle Scholar
  175. 175.
    García-Flores LA, Medina S, Cejuela R, Martínez-Sanz JM, Oger C, Galano J-M, et al. Assessment of oxidative stress biomarkers—neuroprostanes and dihomo-isoprostanes—in the urine of elite triathletes after two weeks of moderate-altitude training. Free Radic Res. 2016;50(5):485–94.PubMedCrossRefGoogle Scholar
  176. 176.
    Cardoso C, Afonso C, Bandarra NM. Dietary DHA and health: cognitive function ageing. Nutr Res Rev. 2016;29(2):281–94.PubMedCrossRefGoogle Scholar
  177. 177.
    Signorini C, De Felice C, Durand T, Galano J-M, Oger C, Leoncini S, et al. Relevance of 4-F4t-neuroprostane and 10-F4t-neuroprostane to neurological diseases. Free Radic Biol Med. 2018;115:278–87.PubMedCrossRefGoogle Scholar
  178. 178.
    Galano J-M, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, et al. Isoprostanes, neuroprostanes and phytoprostanes: an overview of 25 years of research in chemistry and biology. Prog Lipid Res. 2017;68:83–108.PubMedCrossRefGoogle Scholar
  179. 179.
    Montine KS, Quinn JF, Zhang J, Fessel JP, Roberts LJ II, Morrow JD, et al. Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids. 2004;128(1–2):117–24.PubMedCrossRefGoogle Scholar
  180. 180.
    Lehmann D, Worwood M, Ellis R, Wimhurst V, Merryweather-Clarke A, Warden D, et al. Iron genes, iron load and risk of Alzheimer’s disease. J Med Genet. 2006;43(10):e52.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW Jr, Cohen ML, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis. 2010;19(1):363–72.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Peng J, Andersen J. The role of c-Jun N-terminal kinase (JNK) in Parkinson’s disease. IUBMB Life. 2003;55(4–5):267–71.PubMedCrossRefGoogle Scholar
  183. 183.
    Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front Pharmacol. 2016;6:321.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Akhter R, Sanphui P, Das H, Saha P, Biswas SC. The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in β-amyloid-induced neuron death. J Neurochem. 2015;134(6):1091–103.PubMedCrossRefGoogle Scholar
  185. 185.
    Morris G, Walker A, Berk M, Maes M, Puri B. Cell death pathways: a novel therapeutic approach for neuroscientists. Mol Neurobiol. 2018;55(7):5767–86.PubMedCrossRefGoogle Scholar
  186. 186.
    Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol. 2017;403:143–70.PubMedGoogle Scholar
  187. 187.
    Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, St Croix C, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81–90.PubMedCrossRefGoogle Scholar
  188. 188.
    Castejon A, Spaw J. Autism and oxidative stress interventions: impact on autistic behavior. Austin J Pharmacol Ther. 2014;2(2):1015.Google Scholar
  189. 189.
    Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 2017;12:8–17.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Ingold I, Conrad M. Selenium and iron, two elemental rivals in the ferroptotic death process. Oncotarget. 2018;9(32):22241.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Bennuri SC, Rose S, Frye RE. Mitochondrial dysfunction is inducible in lymphoblastoid cell lines from children with autism and may involve the TORC1 pathway. Front Psychiatry. 2019;10:269.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Tinkov AA, Skalnaya MG, Simashkova NV, Klyushnik TP, Skalnaya AA, Bjørklund G, et al. Association between catatonia and levels of hair and serum trace elements and minerals in autism spectrum disorder. Biomed Pharmacother. 2019;109:174–80.PubMedCrossRefGoogle Scholar
  193. 193.
    Fuller M, Futerman AH. The brain lipidome in neurodegenerative lysosomal storage disorders. Biochem Biophys Res Commun. 2018;504(3):623–8.PubMedCrossRefGoogle Scholar
  194. 194.
    Olsen AS, Færgeman NJ. Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol. 2017;7(5):170069.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    McCammon JM, Blaker-Lee A, Chen X, Sive H. The 16p11. 2 homologs fam57ba and doc2a generate certain brain and body phenotypes. Hum Mol Genet. 2017;26(19):3699–712.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Pardo CA, Eberhart CG. The neurobiology of autism. Brain Pathol. 2007;17(4):434–47.PubMedCrossRefGoogle Scholar
  197. 197.
    Tierney E, Bukelis I, Thompson RE, Ahmed K, Aneja A, Kratz L, et al. Abnormalities of cholesterol metabolism in autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet. 2006;141(6):666–8.CrossRefGoogle Scholar
  198. 198.
    Chauhan V, Chauhan A. Abnormalities in membrane lipids, membrane-associated proteins, and signal transduction in autism. Boca Raton: CRC Press; 2010. p. 177–206.Google Scholar
  199. 199.
    Füllekrug J, Simons K. Lipid rafts and apical membrane traffic. Ann N Y Acad Sci. 2004;1014(1):164–9.PubMedCrossRefGoogle Scholar
  200. 200.
    Abou-Donia MB, Suliman HB, Siniscalco D, Antonucci N, ElKafrawy P. De novo blood biomarkers in autism: autoantibodies against neuronal and glial proteins. Behav Sci (Basel). 2019;9(5):47.PubMedCentralCrossRefPubMedGoogle Scholar
  201. 201.
    Frank C, Giammarioli AM, Pepponi R, Fiorentini C, Rufini S. Cholesterol perturbing agents inhibit NMDA-dependent calcium influx in rat hippocampal primary culture. FEBS Lett. 2004;566(1–3):25–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Hering H, Lin C-C, Sheng M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci. 2003;23(8):3262–71.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Bannai H, Niwa F, Sherwood MW, Shrivastava AN, Arizono M, Miyamoto A, et al. Bidirectional control of synaptic GABAAR clustering by glutamate and calcium. Cell Rep. 2015;13(12):2768–80.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    West PR, Amaral DG, Bais P, Smith AM, Egnash LA, Ross ME, et al. Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS One. 2014;9(11):e112445.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Zou M, Sun C, Liang S, Sun Y, Li D, Li L, et al. Fisher discriminant analysis for classification of autism spectrum disorders based on folate-related metabolism markers. J Nutr Biochem. 2019;64:25–31.PubMedCrossRefGoogle Scholar
  206. 206.
    Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules. 2018;23(2):509.PubMedCentralCrossRefGoogle Scholar
  207. 207.
    Sadeghi M, Khosrowabadi R, Bakouie F, Mahdavi H, Eslahchi C, Pouretemad H. Screening of autism based on task-free fMRI using graph theoretical approach. Psychiatry Res. 2017;263:48–56.CrossRefGoogle Scholar
  208. 208.
    Howsmon DP, Kruger U, Melnyk S, James SJ, Hahn J. Classification and adaptive behavior prediction of children with autism spectrum disorder based upon multivariate data analysis of markers of oxidative stress and DNA methylation. PLoS Comput Biol. 2017;13(3):e1005385.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Esparham AE, Smith T, Belmont JM, Haden M, Wagner LE, Evans RG, et al. Nutritional and metabolic biomarkers in autism spectrum disorders: an exploratory study. Integr Med. 2015;14(2):40.Google Scholar
  210. 210.
    Khemakhem AM, Frye RE, El-Ansary A, Al-Ayadhi L, Bacha AB. Novel biomarkers of metabolic dysfunction is autism spectrum disorder: potential for biological diagnostic markers. Metab Brain Dis. 2017;32(6):1983–97.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Seneff S, Lauritzen A, Davidson R, Lentz-Marino L. Is encephalopathy a mechanism to renew sulfate in autism? Entropy. 2013;15(1):372–406.CrossRefGoogle Scholar
  212. 212.
    Kern JK, Geier DA, Adams JB, Garver CR, Audhya T, Geier MR. A clinical trial of glutathione supplementation in autism spectrum disorders. Med Sci Monit. 2011;17(12):CR677.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab. 2011;8(1):34.CrossRefGoogle Scholar
  214. 214.
    Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR. A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res. 2009;34(2):386.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Pastural É, Ritchie S, Lu Y, Jin W, Kavianpour A, Su-Myat KK, et al. Novel plasma phospholipid biomarkers of autism: mitochondrial dysfunction as a putative causative mechanism. Prostaglandins Leukot Essent Fatty Acids. 2009;81(4):253–64.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Bowling FG, Heussler HS, McWhinney A, Dawson PA. Plasma and urinary sulfate determination in a cohort with autism. Biochem Genet. 2013;51(1–2):147–53.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45(7):703–14.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27(6):747–51.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Bitar T, Mavel S, Emond P, Nadal-Desbarats L, Lefèvre A, Mattar H, et al. Identification of metabolic pathway disturbances using multimodal metabolomics in autistic disorders in a Middle Eastern population. J Pharmaceut Biomed. 2018;152:57–65.CrossRefGoogle Scholar
  220. 220.
    Worley B, Powers R. Multivariate analysis in metabolomics. Curr Metabolomics. 2013;1(1):92–107.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Central Laboratory, Female Centre for Scientific and Medical StudiesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Autism Research and Treatment CenterRiyadhSaudi Arabia
  3. 3.CONEM Saudi Autism Research GroupKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Therapeutic Chemistry DepartmentNational Research CentreGizaEgypt
  5. 5.Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
  6. 6.CONEM Scientific SecretaryVeronaItaly
  7. 7.Biochemistry Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  8. 8.Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
  9. 9.Council for Nutritional and Environmental Medicine (CONEM)Mo i RanaNorway

Personalised recommendations