Molecular Diagnosis & Therapy

, Volume 23, Issue 1, pp 97–112 | Cite as

The Molecular Basis of Fuchs’ Endothelial Corneal Dystrophy

  • Jie Zhang
  • Charles N. J. McGhee
  • Dipika V. PatelEmail author
Review Article


Fuchs’ endothelial corneal dystrophy (FECD) is a common disease resulting from corneal endothelial cell dysfunction. It is inherited in an autosomal dominant fashion with incomplete penetrance, and with a female bias. Approximately half of cases occur sporadically, and the remainder are familial. Early and late-onset forms of the disease exist. A review of the literature has revealed more than 15 genes harbouring mutations and/or single nucleotide polymorphisms associated with FECD. The proteins encoded by these genes cover a wide range of endothelial function, including transcription regulation, DNA repair, mitochondrial DNA mutations, targeting of proteins to the cell membrane, deglutamylation of proteins, extracellular matrix secretion, formation of cell–cell and cell–extracellular matrix junctions, water pump, and apoptosis. These genetic variations will form the platform for the further understanding of the pathological basis of the disease, and the development of targeted treatments. This review aims to summarise known genetic variations associated with FECD, discuss any known molecular effects of the variations, how these provide opportunities for targeted therapies, and what therapies are currently in development.


Compliance with Ethical Standards

Conflict of interest

J. Zhang, C.N.J. McGhee, and D.V. Patel have no relevant financial interests to declare.


This study is supported by funding from the New Zealand Health Research Council and the New Zealand Marsden Fund.


  1. 1.
    Zhang J, Patel DV. The pathophysiology of Fuchs’ endothelial dystrophy—a review of molecular and cellular insights. Exp Eye Res. 2015;130:97–105.Google Scholar
  2. 2.
    Kitagawa K, Kojima M, Sasaki H, Shui YB, Chew SJ, Cheng HM, et al. Prevalence of primary cornea guttata and morphology of corneal endothelium in aging Japanese and Singaporean subjects. Ophthalmic Res. 2002;34(3):135–8.Google Scholar
  3. 3.
    Zoega GM, Fujisawa A, Sasaki H, Kubota A, Sasaki K, Kitagawa K, et al. Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology. 2006;113(4):565–9.Google Scholar
  4. 4.
    Elhalis H, Azizi B, Jurkunas UV. Fuchs endothelial corneal dystrophy. Ocul Surf. 2010;8(4):173–84.Google Scholar
  5. 5.
    Krachmer JH, Purcell JJ Jr, Young CW, Bucher KD. Corneal endothelial dystrophy: a study of 64 families. Arch Ophthalmol. 1978;96(11):2036–9.Google Scholar
  6. 6.
    Louttit MD, Kopplin LJ, Igo RP Jr, Fondran JR, Tagliaferri A, Bardenstein D, et al. A multicenter study to map genes for Fuchs endothelial corneal dystrophy: baseline characteristics and heritability. Cornea. 2012;31(1):26–35.Google Scholar
  7. 7.
    Cross HE, Maumenee AE, Cantolino SJ. Inheritance of Fuchs’ endothelial dystrophy. Arch Ophthalmol. 1971;85(3):268–72.Google Scholar
  8. 8.
    Forrest MP, Hill MJ, Quantock AJ, Martin-Rendon E, Blake DJ. The emerging roles of TCF4 in disease and development. Trends Mol Med. 2014;20(6):322–31.Google Scholar
  9. 9.
    Sundin OH, Broman KW, Chang HH, Vito EC, Stark WJ, Gottsch JD. A common locus for late-onset Fuchs corneal dystrophy maps to 18q21.2-q21.32. Investig Ophthalmol Vis Sci. 2006;47(9):3919–26.Google Scholar
  10. 10.
    Marangi G, Ricciardi S, Orteschi D, Lattante S, Murdolo M, Dallapiccola B, et al. The Pitt-Hopkins syndrome: report of 16 new patients and clinical diagnostic criteria. Am J Med Genet A. 2011;155A(7):1536–45.Google Scholar
  11. 11.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.Google Scholar
  12. 12.
    Forrest MP, Waite AJ, Martin-Rendon E, Blake DJ. Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation. PLoS One. 2013;8(8):e73169.Google Scholar
  13. 13.
    Okumura N, Hashimoto K, Kitahara M, Okuda H, Ueda E, Watanabe K, et al. Activation of TGF-beta signaling induces cell death via the unfolded protein response in Fuchs endothelial corneal dystrophy. Sci Rep. 2017;7(1):6801.Google Scholar
  14. 14.
    Cano A, Portillo F. An emerging role for class I bHLH E2-2 proteins in EMT regulation and tumor progression. Cell Adhes Migr. 2010;4(1):56–60.Google Scholar
  15. 15.
    Sobrado VR, Moreno-Bueno G, Cubillo E, Holt LJ, Nieto MA, Portillo F, et al. The class I bHLH factors E2-2A and E2-2B regulate EMT. J Cell Sci. 2009;122(Pt 7):1014–24.Google Scholar
  16. 16.
    Baratz KH, Tosakulwong N, Ryu E, Brown WL, Branham K, Chen W, et al. E2-2 protein and Fuchs’s corneal dystrophy. N Engl J Med. 2010;363(11):1016–24.Google Scholar
  17. 17.
    Wieben ED, Aleff RA, Tosakulwong N, Butz ML, Highsmith WE, Edwards AO, et al. A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS One. 2012;7(11):e49083.Google Scholar
  18. 18.
    Mootha VV, Gong X, Ku HC, Xing C. Association and familial segregation of CTG18.1 trinucleotide repeat expansion of TCF4 gene in Fuchs’ endothelial corneal dystrophy. Investig Ophthalmol Vis Sci. 2014;55(1):33–42.Google Scholar
  19. 19.
    Wieben ED, Aleff RA, Eckloff BW, Atkinson EJ, Baheti S, Middha S, et al. Comprehensive assessment of genetic variants within TCF4 in Fuchs’ endothelial corneal dystrophy. Investig Ophthalmol Vis Sci. 2014;55(9):6101–7.Google Scholar
  20. 20.
    Nanda GG, Padhy B, Samal S, Das S, Alone DP. Genetic association of TCF4 intronic polymorphisms, CTG18.1 and rs17089887, with Fuchs’ endothelial corneal dystrophy in an Indian population. Investig Ophthalmol Vis Sci. 2014;55(11):7674–80.Google Scholar
  21. 21.
    Xing C, Gong X, Hussain I, Khor CC, Tan DT, Aung T, et al. Transethnic replication of association of CTG181 repeat expansion of TCF4 gene with Fuchs’ corneal dystrophy in Chinese implies common causal variant. Investig Ophthalmol Vis Sci. 2014;55(11):7073–8.Google Scholar
  22. 22.
    Vasanth S, Eghrari AO, Gapsis BC, Wang J, Haller NF, Stark WJ, et al. Expansion of CTG18.1 trinucleotide repeat in TCF4 is a potent driver of Fuchs’ corneal dystrophy. Investig Ophthalmol Vis Sci. 2015;56(8):4531–6.Google Scholar
  23. 23.
    Nakano M, Okumura N, Nakagawa H, Koizumi N, Ikeda Y, Ueno M, et al. Trinucleotide repeat expansion in the TCF4 gene in Fuchs’ endothelial corneal dystrophy in Japanese. Investig Ophthalmol Vis Sci. 2015;56(8):4865–9.Google Scholar
  24. 24.
    Rao BS, Tharigopala A, Rachapalli SR, Rajagopal R, Soumittra N. Association of polymorphisms in the intron of TCF4 gene to late-onset Fuchs endothelial corneal dystrophy: an Indian cohort study. Indian J Ophthalmol. 2017;65(10):931–5.Google Scholar
  25. 25.
    Eghrari AO, Vahedi S, Afshari NA, Riazuddin SA, Gottsch JD. CTG18.1 expansion in TCF4 among African Americans with Fuchs’ corneal dystrophy. Investig Ophthalmol Vis Sci. 2017;58(14):6046–9.Google Scholar
  26. 26.
    Foja S, Luther M, Hoffmann K, Rupprecht A, Gruenauer-Kloevekorn C. CTG18.1 repeat expansion may reduce TCF4 gene expression in corneal endothelial cells of German patients with Fuchs’ dystrophy. Graefe’s Arch Clin Exp Ophthalmol. 2017;255(8):1621–31.Google Scholar
  27. 27.
    Kuot A, Hewitt AW, Snibson GR, Souzeau E, Mills R, Craig JE, et al. TGC repeat expansion in the TCF4 gene increases the risk of Fuchs’ endothelial corneal dystrophy in Australian cases. PLoS One. 2017;12(8):e0183719.Google Scholar
  28. 28.
    Zarouchlioti C, Sanchez-Pintado B, Hafford Tear NJ, Klein P, Liskova P, Dulla K, et al. Antisense therapy for a common corneal dystrophy ameliorates TCF4 repeat expansion-mediated toxicity. Am J Hum Genet. 2018;102(4):528–39.Google Scholar
  29. 29.
    Eghrari AO, Vasanth S, Wang J, Vahedi F, Riazuddin SA, Gottsch JD. CTG18.1 expansion in TCF4 increases likelihood of transplantation in Fuchs corneal dystrophy. Cornea. 2017;36(1):40–3.Google Scholar
  30. 30.
    Riazuddin SA, Eghrari AO, Al-Saif A, Davey L, Meadows DN, Katsanis N, et al. Linkage of a mild late-onset phenotype of Fuchs corneal dystrophy to a novel locus at 5q33.1–q35.2. Investig Ophthalmol Vis Sci. 2009;50(12):5667–71.Google Scholar
  31. 31.
    Kuot A, Hewitt AW, Griggs K, Klebe S, Mills R, Jhanji V, et al. Association of TCF4 and CLU polymorphisms with Fuchs’ endothelial dystrophy and implication of CLU and TGFBI proteins in the disease process. Eur J Hum Genet EJHG. 2012;20(6):632–8.Google Scholar
  32. 32.
    Riazuddin SA, McGlumphy EJ, Yeo WS, Wang J, Katsanis N, Gottsch JD. Replication of the TCF4 intronic variant in late-onset Fuchs corneal dystrophy and evidence of independence from the FCD2 locus. Investig Ophthalmol Vis Sci. 2011;52(5):2825–9.Google Scholar
  33. 33.
    Stamler JF, Roos BR, Wagoner MD, Goins KM, Kitzmann AS, Riley JB, et al. Confirmation of the association between the TCF4 risk allele and Fuchs endothelial corneal dystrophy in patients from the Midwestern United States. Ophthalmic Genet. 2013;34:32–4.Google Scholar
  34. 34.
    Oldak M, Ruszkowska E, Udziela M, Ozieblo D, Binczyk E, Sciezynska A, et al. Fuchs endothelial corneal dystrophy: strong association with rs613872 not paralleled by changes in corneal endothelial TCF4 mRNA level. BioMed Res Int. 2015;2015:640234.Google Scholar
  35. 35.
    Minear MA, Li YJ, Rimmler J, Balajonda E, Watson S, Allingham RR, et al. Genetic screen of African Americans with Fuchs endothelial corneal dystrophy. Mol Vis. 2013;19:2508–16.Google Scholar
  36. 36.
    Thalamuthu A, Khor CC, Venkataraman D, Koh LW, Tan DT, Aung T, et al. Association of TCF4 gene polymorphisms with Fuchs’ corneal dystrophy in the Chinese. Investig Ophthalmol Vis Sci. 2011;52(8):5573–8.Google Scholar
  37. 37.
    Wang KJ, Jhanji V, Chen J, Law RW, Leung AT, Zhang M, et al. Association of transcription factor 4 (TCF4) and protein tyrosine phosphatase, receptor type G (PTPRG) with corneal dystrophies in southern Chinese. Ophthalmic Genet. 2014;35(3):138–41.Google Scholar
  38. 38.
    Afshari NA, Igo RP Jr, Morris NJ, Stambolian D, Sharma S, Pulagam VL, et al. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat Commun. 2017;30(8):14898.Google Scholar
  39. 39.
    Eghrari AO, McGlumphy EJ, Iliff BW, Wang J, Emmert D, Riazuddin SA, et al. Prevalence and severity of Fuchs corneal dystrophy in Tangier Island. Am J Ophthalmol. 2012;153(6):1067–72.Google Scholar
  40. 40.
    Li D, Peng X, Sun H. Association of TCF4 polymorphisms and Fuchs’ endothelial dystrophy: a meta-analysis. BMC Ophthalmol. 2015;19(15):61.Google Scholar
  41. 41.
    Mootha VV, Hussain I, Cunnusamy K, Graham E, Gong X, Neelam S, et al. TCF4 triplet repeat expansion and nuclear RNA foci in Fuchs’ endothelial corneal dystrophy. Investig Ophthalmol Vis Sci. 2015;56(3):2003–11.Google Scholar
  42. 42.
    Hu J, Rong Z, Gong X, Zhou Z, Sharma VK, Xing C, et al. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs’ dystrophy. Hum Mol Genet. 2018;27(6):1015–26.Google Scholar
  43. 43.
    Du J, Aleff RA, Soragni E, Kalari K, Nie J, Tang X, et al. RNA toxicity and missplicing in the common eye disease Fuchs endothelial corneal dystrophy. J Biol Chem. 2015;290(10):5979–90.Google Scholar
  44. 44.
    Wieben ED, Aleff RA, Tang X, Butz ML, Kalari KR, Highsmith EW, et al. Trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene leads to widespread mRNA splicing changes in Fuchs’ endothelial corneal dystrophy. Investig Ophthalmol Vis Sci. 2017;58(1):343–52.Google Scholar
  45. 45.
    Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995–1003.Google Scholar
  46. 46.
    Pinto BS, Saxena T, Oliveira R, Mendez-Gomez HR, Cleary JD, Denes LT, et al. Impeding transcription of expanded microsatellite repeats by deactivated Cas9. Mol Cell. 2017;68(3):479–90.Google Scholar
  47. 47.
    Afshari NA, Li YJ, Pericak-Vance MA, Gregory S, Klintworth GK. Genome-wide linkage scan in Fuchs endothelial corneal dystrophy. Investig Ophthalmol Vis Sci. 2009;50(3):1093–7.Google Scholar
  48. 48.
    Shuttleworth CA. Type VIII collagen. Int J Biochem Cell Biol. 1997;29(10):1145–8.Google Scholar
  49. 49.
    Biswas S, Munier FL, Yardley J, Hart-Holden N, Perveen R, Cousin P, et al. Missense mutations in COL8A2, the gene encoding the alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet. 2001;10(21):2415–23.Google Scholar
  50. 50.
    Gottsch JD, Sundin OH, Liu SH, Jun AS, Broman KW, Stark WJ, et al. Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of Fuchs corneal dystrophy. Investig Ophthalmol Vis Sci. 2005;46(6):1934–9.Google Scholar
  51. 51.
    Liskova P, Prescott Q, Bhattacharya SS, Tuft SJ. British family with early-onset Fuchs’ endothelial corneal dystrophy associated with p.L450W mutation in the COL8A2 gene. Br J Ophthalmol. 2007;91(12):1717–8.Google Scholar
  52. 52.
    Kobayashi A, Fujiki K, Murakami A, Kato T, Chen LZ, Onoe H, et al. Analysis of COL8A2 gene mutation in Japanese patients with Fuchs’ endothelial dystrophy and posterior polymorphous dystrophy. Jpn J Ophthalmol. 2004;48(3):195–8.Google Scholar
  53. 53.
    Mehta JS, Vithana EN, Tan DT, Yong VH, Yam GH, Law RW, et al. Analysis of the posterior polymorphous corneal dystrophy 3 gene, TCF8, in late-onset Fuchs endothelial corneal dystrophy. Investig Ophthalmol Vis Sci. 2008;49(1):184–8.Google Scholar
  54. 54.
    Aldave AJ, Rayner SA, Salem AK, Yoo GL, Kim BT, Saeedian M, et al. No pathogenic mutations identified in the COL8A1 and COL8A2 genes in familial Fuchs corneal dystrophy. Investig Ophthalmol Vis Sci. 2006;47(9):3787–90.Google Scholar
  55. 55.
    Gupta R, Kumawat BL, Paliwal P, Tandon R, Sharma N, Sen S, et al. Association of ZEB1 and TCF4 rs613872 changes with late onset Fuchs endothelial corneal dystrophy in patients from northern India. Mol Vis. 2015;21:1252–60.Google Scholar
  56. 56.
    Mok JW, Kim HS, Joo CK. Q455V mutation in COL8A2 is associated with Fuchs’ corneal dystrophy in Korean patients. Eye (London, England). 2009;23(4):895–903.Google Scholar
  57. 57.
    Kuot A, Mills R, Craig JE, Sharma S, Burdon KP. Screening of the COL8A2 gene in an Australian family with early-onset Fuchs’ endothelial corneal dystrophy. Clin Exp Ophthalmol. 2014;42(2):198–200.Google Scholar
  58. 58.
    Chae H, Kim M, Kim Y, Kim J, Kwon A, Choi H, et al. Mutational spectrum of Korean patients with corneal dystrophy. Clin Genet. 2016;89(6):678–89.Google Scholar
  59. 59.
    Hemadevi B, Srinivasan M, Arunkumar J, Prajna NV, Sundaresan P. Genetic analysis of patients with Fuchs endothelial corneal dystrophy in India. BMC Ophthalmol. 2010;10(10):3.Google Scholar
  60. 60.
    Gottsch JD, Zhang C, Sundin OH, Bell WR, Stark WJ, Green WR. Fuchs corneal dystrophy: aberrant collagen distribution in an L450W mutant of the COL8A2 gene. Investig Ophthalmol Vis Sci. 2005;46(12):4504–11.Google Scholar
  61. 61.
    Zhang C, Bell WR, Sundin OH, De La Cruz Z, Stark WJ, Green WR, et al. Immunohistochemistry and electron microscopy of early-onset Fuchs corneal dystrophy in three cases with the same L450W COL8A2 mutation. Trans Am Ophthalmol Soc. 2006;104:85–97.Google Scholar
  62. 62.
    Kelliher C, Chakravarti S, Vij N, Mazur S, Stahl PJ, Engler C, et al. A cellular model for the investigation of Fuchs’ endothelial corneal dystrophy. Exp Eye Res. 2011;93(6):880–8.Google Scholar
  63. 63.
    Jun AS, Meng H, Ramanan N, Matthaei M, Chakravarti S, Bonshek R, et al. An alpha 2 collagen VIII transgenic knock-in mouse model of Fuchs endothelial corneal dystrophy shows early endothelial cell unfolded protein response and apoptosis. Hum Mol Genet. 2012;21(2):384–93.Google Scholar
  64. 64.
    Meng H, Matthaei M, Ramanan N, Grebe R, Chakravarti S, Speck CL, et al. L450W and Q455K Col8a2 knock-in mouse models of Fuchs endothelial corneal dystrophy show distinct phenotypes and evidence for altered autophagy. Investig Ophthalmol Vis Sci. 2013;54(3):1887–97.Google Scholar
  65. 65.
    Matthaei M, Hu J, Meng H, Lackner EM, Eberhart CG, Qian J, et al. Endothelial cell whole genome expression analysis in a mouse model of early-onset Fuchs’ endothelial corneal dystrophy. Investig Ophthalmol Vis Sci. 2013;54(3):1931–40.Google Scholar
  66. 66.
    Hopfer U, Fukai N, Hopfer H, Wolf G, Joyce N, Li E, et al. Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. FASEB J. 2005;19(10):1232–44.Google Scholar
  67. 67.
    Kim EC, Meng H, Jun AS. Lithium treatment increases endothelial cell survival and autophagy in a mouse model of Fuchs endothelial corneal dystrophy. Br J Ophthalmol. 2013;97(8):1068–73.Google Scholar
  68. 68.
    Vedana G, Villarreal G Jr, Jun AS. Fuchs endothelial corneal dystrophy: current perspectives. Clin Ophthalmol (Auckland, NZ). 2016;10:321–30.Google Scholar
  69. 69.
    Badior KE, Alka K, Casey JR. SLC4A11 three-dimensional homology model rationalizes corneal dystrophy-causing mutations. Hum Mutat. 2017;38(3):279–88.Google Scholar
  70. 70.
    Kao L, Azimov R, Abuladze N, Newman D, Kurtz I. Human SLC4A11-C functions as a DIDS-stimulatable H(+)(OH(−)) permeation pathway: partial correction of R109H mutant transport. Am J Physiol Cell Physiol. 2015;308(2):C176–88.Google Scholar
  71. 71.
    Loganathan SK, Schneider HP, Morgan PE, Deitmer JW, Casey JR. Functional assessment of SLC4A11, an integral membrane protein mutated in corneal dystrophies. Am J Physiol Cell Physiol. 2016;311(5):C735–48.Google Scholar
  72. 72.
    Vilas GL, Loganathan SK, Liu J, Riau AK, Young JD, Mehta JS, et al. Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases. Hum Mol Genet. 2013;22(22):4579–90.Google Scholar
  73. 73.
    Jalimarada SS, Ogando DG, Vithana EN, Bonanno JA. Ion transport function of SLC4A11 in corneal endothelium. Investig Ophthalmol Vis Sci. 2013;54(6):4330–40.Google Scholar
  74. 74.
    Guha S, Chaurasia S, Ramachandran C, Roy S. SLC4A11 depletion impairs NRF2 mediated antioxidant signaling and increases reactive oxygen species in human corneal endothelial cells during oxidative stress. Sci Rep. 2017;7(1):4074.Google Scholar
  75. 75.
    Vithana EN, Morgan PE, Ramprasad V, Tan DT, Yong VH, Venkataraman D, et al. SLC4A11 mutations in Fuchs endothelial corneal dystrophy. Hum Mol Genet. 2008;17(5):656–66.Google Scholar
  76. 76.
    Riazuddin SA, Vithana EN, Seet LF, Liu Y, Al-Saif A, Koh LW, et al. Missense mutations in the sodium borate cotransporter SLC4A11 cause late-onset Fuchs corneal dystrophy. Hum Mutat. 2010;31(11):1261–8.Google Scholar
  77. 77.
    Soumittra N, Loganathan SK, Madhavan D, Ramprasad VL, Arokiasamy T, Sumathi S, et al. Biosynthetic and functional defects in newly identified SLC4A11 mutants and absence of COL8A2 mutations in Fuchs endothelial corneal dystrophy. J Hum Genet. 2014;59(8):444–53.Google Scholar
  78. 78.
    Kim JH, Ko JM, Tchah H. Fuchs endothelial corneal dystrophy in a heterozygous carrier of congenital hereditary endothelial dystrophy type 2 with a novel mutation in SLC4A11. Ophthalmic Genet. 2015;36(3):284–6.Google Scholar
  79. 79.
    Groger N, Frohlich H, Maier H, Olbrich A, Kostin S, Braun T, et al. SLC4A11 prevents osmotic imbalance leading to corneal endothelial dystrophy, deafness, and polyuria. J Biol Chem. 2010;285(19):14467–74.Google Scholar
  80. 80.
    Zhang W, Ogando DG, Kim ET, Choi MJ, Li H, Tenessen JM, et al. Conditionally immortal Slc4a11−/− mouse corneal endothelial cell line recapitulates disrupted glutaminolysis seen in Slc4a11−/− mouse model. Investig Ophthalmol Vis Sci. 2017;58(9):3723–31.Google Scholar
  81. 81.
    Vilas GL, Loganathan SK, Quon A, Sundaresan P, Vithana EN, Casey J. Oligomerization of SLC4A11 protein and the severity of FECD and CHED2 corneal dystrophies caused by SLC4A11 mutations. Hum Mutat. 2012;33(2):419–28.Google Scholar
  82. 82.
    Alka K, Casey JR. Molecular phenotype of SLC4A11 missense mutants: setting the stage for personalized medicine in corneal dystrophies. Hum Mutat. 2018;39(5):676–90.Google Scholar
  83. 83.
    Loganathan SK, Casey JR. Corneal dystrophy-causing SLC4A11 mutants: suitability for folding-correction therapy. Hum Mutat. 2014;35(9):1082–91.Google Scholar
  84. 84.
    Chiu AM, Mandziuk JJ, Loganathan SK, Alka K, Casey JR. High throughput assay identifies glafenine as a corrector for the folding defect in corneal dystrophy-causing mutants of SLC4A11. Investig Ophthalmol Vis Sci. 2015;56(13):7739–53.Google Scholar
  85. 85.
    Alka K, Casey JR. Ophthalmic nonsteroidal anti-inflammatory drugs as a therapy for corneal dystrophies caused by SLC4A11 mutation. Investig Ophthalmol Vis Sci. 2018;59(10):4258–67.Google Scholar
  86. 86.
    Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2009;66(5):773–87.Google Scholar
  87. 87.
    Terraz C, Toman D, Delauche M, Ronco P, Rossert J. delta Ef1 binds to a far upstream sequence of the mouse pro-alpha 1(I) collagen gene and represses its expression in osteoblasts. J Biol Chem. 2001;276(40):37011–9.Google Scholar
  88. 88.
    Riazuddin SA, Zaghloul NA, Al-Saif A, Davey L, Diplas BH, Meadows DN, et al. Missense mutations in TCF8 cause late-onset Fuchs corneal dystrophy and interact with FCD4 on chromosome 9p. Am J Hum Genet. 2010;86(1):45–53.Google Scholar
  89. 89.
    Lechner J, Dash DP, Muszynska D, Hosseini M, Segev F, George S, et al. Mutational spectrum of the ZEB1 gene in corneal dystrophies supports a genotype–phenotype correlation. Investig Ophthalmol Vis Sci. 2013;54(5):3215–23.Google Scholar
  90. 90.
    Chung DW, Frausto RF, Ann LB, Jang MS, Aldave AJ. Functional impact of ZEB1 mutations associated with posterior polymorphous and Fuchs’ endothelial corneal dystrophies. Investig Ophthalmol Vis Sci. 2014;55(10):6159–66.Google Scholar
  91. 91.
    Kniestedt C, Taralczak M, Thiel MA, Stuermer J, Baumer A, Gloor BP. A novel PITX2 mutation and a polymorphism in a 5-generation family with Axenfeld-Rieger anomaly and coexisting Fuchs’ endothelial dystrophy. Ophthalmology. 2006;113(10):1791–8.Google Scholar
  92. 92.
    Grillet N, Schwander M, Hildebrand MS, Sczaniecka A, Kolatkar A, Velasco J, et al. Mutations in LOXHD1, an evolutionarily conserved stereociliary protein, disrupt hair cell function in mice and cause progressive hearing loss in humans. Am J Hum Genet. 2009;85(3):328–37.Google Scholar
  93. 93.
    Edvardson S, Jalas C, Shaag A, Zenvirt S, Landau C, Lerer I, et al. A deleterious mutation in the LOXHD1 gene causes autosomal recessive hearing loss in Ashkenazi Jews. Am J Med Genet A. 2011;155A(5):1170–2.Google Scholar
  94. 94.
    Riazuddin SA, Parker DS, McGlumphy EJ, Oh EC, Iliff BW, Schmedt T, et al. Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. Am J Hum Genet. 2012;90(3):533–9.Google Scholar
  95. 95.
    Riazuddin SA, Vasanth S, Katsanis N, Gottsch JD. Mutations in AGBL1 cause dominant late-onset Fuchs corneal dystrophy and alter protein-protein interaction with TCF4. Am J Hum Genet. 2013;93(4):758–64.Google Scholar
  96. 96.
    Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme JC, Bosson A, et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell. 2010;143(4):564–78.Google Scholar
  97. 97.
    Jurkunas UV, Bitar MS, Rawe I, Harris DL, Colby K, Joyce NC. Increased clusterin expression in Fuchs’ endothelial dystrophy. Investig Ophthalmol Vis Sci. 2008;49(7):2946–55.Google Scholar
  98. 98.
    Synowiec E, Wojcik KA, Izdebska J, Binczyk E, Blasiak J, Szaflik J, et al. Polymorphisms of the homologous recombination gene RAD51 in keratoconus and Fuchs endothelial corneal dystrophy. Dis Mark. 2013;35(5):353–62.Google Scholar
  99. 99.
    Wojcik KA, Synowiec E, Polakowski P, Glowacki S, Izdebska J, Lloyd S, et al. Polymorphism of the flap endonuclease 1 gene in keratoconus and Fuchs endothelial corneal dystrophy. Int J Mol Sci. 2014;15(8):14786–802.Google Scholar
  100. 100.
    Synowiec E, Wojcik KA, Izdebska J, Blasiak J, Szaflik J, Szaflik JP. Polymorphisms of the apoptosis-related FAS and FAS ligand genes in keratoconus and Fuchs endothelial corneal dystrophy. Tohoku J Exp Med. 2014;234(1):17–27.Google Scholar
  101. 101.
    Wojcik KA, Synowiec E, Polakowski P, Blasiak J, Szaflik J, Szaflik JP. Variation in DNA base excision repair genes in Fuchs endothelial corneal dystrophy. Med Sci Monit Int Med J Exp Clin Res. 2015;21(21):2809–27.Google Scholar
  102. 102.
    Sundin OH, Jun AS, Broman KW, Liu SH, Sheehan SE, Vito EC, et al. Linkage of late-onset Fuchs corneal dystrophy to a novel locus at 13pTel–13q12.13. Investig Ophthalmol Vis Sci. 2006;47(1):140–5.Google Scholar
  103. 103.
    Meadows DN, Eghrari AO, Riazuddin SA, Emmert DG, Katsanis N, Gottsch JD. Progression of Fuchs corneal dystrophy in a family linked to the FCD1 locus. Investig Ophthalmol Vis Sci. 2009;50(12):5662–6.Google Scholar
  104. 104.
    Li YJ, Minear MA, Qin X, Rimmler J, Hauser MA, Allingham RR, et al. Mitochondrial polymorphism A10398G and Haplogroup I are associated with Fuchs’ endothelial corneal dystrophy. Investig Ophthalmol Vis Sci. 2014;55(7):4577–84.Google Scholar
  105. 105.
    Albin RL. Fuch’s corneal dystrophy in a patient with mitochondrial DNA mutations. J Med Genet. 1998;35(3):258–9.Google Scholar
  106. 106.
    Tuberville AW, Wood TO, McLaughlin BJ. Cytochrome oxidase activity of Fuchs’ endothelial dystrophy. Curr Eye Res. 1986;5(12):939–47.Google Scholar
  107. 107.
    Gendron SP, Theriault M, Proulx S, Brunette I, Rochette PJ. Restoration of mitochondrial integrity, telomere length, and sensitivity to oxidation by in vitro culture of Fuchs’ endothelial corneal dystrophy cells. Investig Ophthalmol Vis Sci. 2016;57(14):5926–34.Google Scholar
  108. 108.
    Matthaei M, Hu J, Kallay L, Eberhart CG, Cursiefen C, Qian J, et al. Endothelial cell microRNA expression in human late-onset Fuchs’ dystrophy. Investig Ophthalmol Vis Sci. 2014;55(1):216–25.Google Scholar
  109. 109.
    Toyono T, Usui T, Villarreal G Jr, Kallay L, Matthaei M, Vianna LM, et al. MicroRNA-29b overexpression decreases extracellular matrix mRNA and protein production in human corneal endothelial cells. Cornea. 2016;35(11):1466–70.Google Scholar
  110. 110.
    Khuc E, Bainer R, Wolf M, Clay SM, Weisenberger DJ, Kemmer J, et al. Comprehensive characterization of DNA methylation changes in Fuchs endothelial corneal dystrophy. PLoS One. 2017;12(4):e0175112.Google Scholar
  111. 111.
    Gottsch JD, Bowers AL, Margulies EH, Seitzman GD, Kim SW, Saha S, et al. Serial analysis of gene expression in the corneal endothelium of Fuchs’ dystrophy. Investig Ophthalmol Vis Sci. 2003;44(2):594–9.Google Scholar
  112. 112.
    Zhu AY, Eberhart CG, Jun AS. Fuchs endothelial corneal dystrophy: a neurodegenerative disorder? JAMA Ophthalmol. 2014;132(4):377–8.Google Scholar
  113. 113.
    Koizumi N, Okumura N, Ueno M, Kinoshita S. New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops. Cornea. 2014;33(Suppl 11):S25–31.Google Scholar
  114. 114.
    Okumura N, Kinoshita S, Koizumi N. Cell-based approach for treatment of corneal endothelial dysfunction. Cornea. 2014;33(Suppl 11):S37–41.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyNew Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of AucklandAucklandNew Zealand

Personalised recommendations