Use of the mtrR Gene for Rapid Molecular Diagnosis of Neisseria gonorrhoeae and Identification of the Reduction of Susceptibility to Antibiotics in Endocervical Swabs

  • Marcos R. Escobedo-Guerra
  • Mitzuko Katoku-Herrera
  • Marcela Lopez-Hurtado
  • Rodrigo Gutierrez-Trujillo
  • Fernando M. Guerra-Infante
Original Research Article
  • 25 Downloads

Abstract

Background

Neisseria gonorrhoeae is one of the main etiological agents of sexually transmitted diseases. The asymptomatic course of the infection and its resistance to antibiotics can lead to pelvic inflammatory disease and infertility.

Objectives

We developed a polymerase chain reaction (PCR) test using the methyltetrahydrofolate homocysteine methyltransferase reductase (mtrR) gene to identify N. gonorrhoeae and detect reduced susceptibility to antibiotics.

Material and Methods

We analysed 250 samples of endocervical exudate from infertile women with a negative diagnosis of N. gonorrhoeae. We designed NGmtr primers to detect N. gonorrhoeae and identify the antibiotic-resistant strain.

Results

Of the 250 samples, 60 (24%) tested positive for N. gonorrhoeae using real-time PCR. Our study was validated using the HO primers and the Seeplex STD6 ACE System, with a 100% correlation. Furthermore, the NGmtr primers are specific for N. gonorrhoeae and not for other species. Additionally, the curves generated by real-time PCR differed between wild and variant strains (10.93%). The dissociation temperatures for the wild and variant strains were 86.5 and 89 °C, respectively.

Conclusions

The NGmtr primers enabled us to identify N. gonorrhoeae strains with or without reduction of susceptibility to antibiotics. Therefore, this work constitutes a tool that will facilitate the diagnosis of this infection for a low cost and improve patient quality of life.

Notes

Acknowledgements

The authors thank the Institute of Biology of the UNAM for the sequencing service provided for this work.

Compliance with Ethical Standards

Conflict of interest

Marcos R. Escobedo-Guerra, Mitzuko Katoku-Herrera, Marcela Lopez Hurtado, Rodrigo Gutierrez Trujillo, and Fernando M. Guerra-Infante are researchers from the National Institute of Perinatology and have no conflicts of interest that are directly relevant to the content of this work.

Funding

This work was funded by the National Institute of Perinatology.

Ethical approval and informed consent

This work was regulated by the Ethics Committee of the National Institute of Perinatology (Approval number: 212250-3120-10607-01-14).

References

  1. 1.
    Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10(12):e0143304.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Webster SB. Asymptomatic gonorrhea. Am Fam Physician. 1977;16(5):121–7.PubMedGoogle Scholar
  3. 3.
    Detels R, Green AM, Klausner JD, Katzenstein D, Gaydos C, Handsfield HH, et al. The incidence and correlates of symptomatic and asymptomatic Chlamydia trachomatis and Neisseria gonorrhoeae infections in selected populations in five countries. Sex Transm Dis. 2011;38(6):503–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Marrazzo JM, Thomas KK, Fiedler TL, Ringwood K, Fredricks DN. Relationship of specific vaginal bacteria and bacterial vaginosis treatment failure in women who have sex with women: a cohort study. Ann Intern Med. 2009;149(1):20–8.CrossRefGoogle Scholar
  5. 5.
    Ng L-K, Martin IE. The laboratory diagnosis of Neisseria gonorrhoeae. Can J Infect Dis Med Microbiol. 2005;16(1):15–25.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Luijt DS, Bos PAJ, van Zwet AA AA, van Voorst Vader PC, Schirm J. Comparison of COBAS AMPLICOR Neisseria gonorrhoeae PCR, including confirmation with N. gonorrhoeae-specific 16S rRNA PCR, with traditional culture. J Clin Microbiol. 2005;43(3):1445–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moncada J, Donegan E, Schachter J. Evaluation of CDC-recommended approaches for confirmatory testing of positive Neisseria gonorrhoeae nucleic acid amplification test results. J Clin Microbiol. 2008;46(5):1614–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Whiley DM, Limnios A, Moon NJ, Gehrig N, Goire N, Hogan T, et al. False-negative results using Neisseria gonorrhoeae porA pseudogene PCR—a clinical gonococcal isolate with an N. meningitidis porA sequence, Australia, March 2011. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2011;16(21).Google Scholar
  9. 9.
    Alary M, Gbenafa-Agossa C, Aïna G, Ndour M, Labbé AC, Fortin D, et al. Evaluation of a rapid point-of-care test for the detection of gonococcal infection among female sex workers in Benin. Sex Transm Infect. 2006;82(Suppl 5):29–32.CrossRefGoogle Scholar
  10. 10.
    Tapsall JW. Antibiotic resistance in Neisseria gonorrhoeae. Clin Infect Dis. 2005;41(Suppl 4):263–8.CrossRefGoogle Scholar
  11. 11.
    Ho BS, Feng WG, Wong BK, Egglestone SI. Polymerase chain reaction for the detection of Neisseria gonorrhoeae in clinical samples. J Clin Pathol. 1992;45(5):439–42.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shafer WM, Balthazar JT, Hagman KE, Morse SA. Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to fecal lipids. Microbiol Read Engl. 1995;141(4):907–11.CrossRefGoogle Scholar
  13. 13.
    Hagman KE, Shafer WM. Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J Bacteriol. 1995;177(14):4162–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sethi S, Golparian D, Bala M, Dorji D, Ibrahim M, Jabeen K, et al. Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from India, Pakistan, and Bhutan in 2007–2011. BMC Infect Dis. 2013;13:35.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Veal WL, Yellen A, Balthazar JT, Pan W, Spratt BG, Shafer WM. Loss-of-function mutations in the mtr efflux system of Neisseria gonorrhoeae. Microbiol Read Engl. 1998;144(3):621–7.CrossRefGoogle Scholar
  16. 16.
    Veal WL, Nicholas RA, Shafer WM. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol. 2002;184(20):5619–24.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Unemo W, Shafer M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev. 2014;27:587–613.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Colson P, Gouriet F, Badiaga S, Tamalet C, Stein A, Raoult D. Real-time laboratory surveillance of sexually-transmissible infections in Marseille University hospitals reveals rise of gonorrhoea, syphilis and human immunodeficiency virus seroconversions in 2012. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2013;18(7):4.Google Scholar
  19. 19.
    Zarantonelli L, Borthagaray G, Lee EH, Shafer WM. Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrob Agents Chemother. 1999;43(10):2468–72.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol J Comput Mol Cell Biol. 2000;7(1–2):203–14.CrossRefGoogle Scholar
  21. 21.
    Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. Database indexing for production MegaBLAST searches. Bioinform Oxf Engl. 2008;24(16):1757–64.CrossRefGoogle Scholar
  22. 22.
    Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988;16(22):10881–90.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    van Bergen JE, Spaargaren J, Götz HM, Veldhuijzen IK, Bindels PJ, Coenen TJ, et al. Population prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae in the Netherlands. Should asymptomatic persons be tested during Population-based Chlamydia Screening also for gonorrhoea or only if chlamydial infection is found? BMC Infect Dis. 2006;6:42.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Samra Z, Rosenberg S, Madar-Shapiro L. Direct simultaneous detection of 6 sexually transmitted pathogens from clinical specimens by multiplex polymerase chain reaction and auto-capillary electrophoresis. Diagn Microbiol Infect Dis. 2011;70(1):17–21.CrossRefPubMedGoogle Scholar
  26. 26.
    Vernel-Pauillac F, Nandi S, Nicholas RA, Goarant C. Genotyping as a tool for antibiotic resistance surveillance of Neisseria gonorrhoeae in New Caledonia: evidence of a novel genotype associated with reduced penicillin susceptibility. Antimicrob Agents Chemother. 2008;52(9):3293–300.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hagman KE, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiol Read Engl. 1995;141(3):611–22.CrossRefGoogle Scholar
  28. 28.
    Blake RD, Bizzaro JW, Blake JD, Day GR, Delcourt SG, Knowles J, et al. Statistical mechanical simulation of polymeric DNA melting with MELTSIM. Bioinform Oxf Engl. 1999;15(5):370–5.CrossRefGoogle Scholar
  29. 29.
    Hidalgo-Grass C, Strahilevitz J. High-resolution melt curve analysis for identification of single nucleotide mutations in the quinolone resistance gene aac (6′)-Ib-cr. Antimicrob Agents Chemother. 2010;54(8):3509–11.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mangold KA, Regner M, Tajuddin M, Tajuddin AM, Jennings L, Du H, et al. Neisseria species identification assay for the confirmation of Neisseria gonorrhoeae-positive results of the COBAS Amplicor PCR. J Clin Microbiol. 2007;45(5):1403–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marcos R. Escobedo-Guerra
    • 1
  • Mitzuko Katoku-Herrera
    • 1
  • Marcela Lopez-Hurtado
    • 1
  • Rodrigo Gutierrez-Trujillo
    • 1
  • Fernando M. Guerra-Infante
    • 1
  1. 1.Departamento de InfectologíaInstituto Nacional de PerinatologíaMexico CityMexico

Personalised recommendations