Advertisement

Current Prospects of Molecular Therapeutics in Head and Neck Squamous Cell Carcinoma

  • K. DevarajaEmail author
Review Article
  • 13 Downloads

Abstract

Head and neck squamous cell carcinoma (HNSCC) has an estimated annual global death rate of approximately 300,000. Despite advances in surgical techniques, the advent of efficient radiation delivery methods, and the introduction of newer chemotherapeutic agents, the survival rate for HNSCC has alarmingly remained unchanged for the past 50 years. However, there have been some promising developments in this field recently. Tumor protein 53 (TP53)-based gene therapeutics such as Gendicine® and Advexin®, and oncolytic viral therapeutics such as ONYX-015 and H101 have shown encouraging results and are gaining momentum. Cetuximab, the first US Food and Drug Administration-approved targeted therapeutic in HNSCC, although had a promising run initially, failed to garner enough attention subsequently due to its poor results in locally advanced HNSCC. Currently, its major utility is in palliation of recurrent and/or metastatic HNSCC as a part of the EXTREME regimen alongside cisplatin/carboplatin and fluorouracil. Of late, immunotherapeutics are evolving rapidly in HNSCC by demonstrating satisfactory effectiveness and acceptable tolerance both in locally advanced and recurrent tumors, and both as monotherapy and in combination with other agents. Recent accelerated approval of two immune checkpoint receptor blockers, pembrolizumab and nivolumab, has rejuvenated enthusiasm among clinicians and researchers by opening up a new domain for targeted and co-targeted therapeutics. The interim results of many ongoing trials and the latest updates of previous landmark trials such as KEYNOTE and CheckMate show promising trends in this regard. Immunotherapeutic agents belonging to different classes, such as durvalumab, epacadostat, motolimod, and T4 immunotherapy, are all being investigated presently in various therapeutic roles. Human papilloma virus (HPV)-based vaccines are now understood to have both a preventive and therapeutic role in HNSCC. Phase I/II trials are underway evaluating the safety profile, tolerable limits, and therapeutic efficacy of several therapeutic vaccines against HPV-driven HNSCC. Similarly, co-targeting therapeutics and precision medicine concepts are exploring newer and effective options including individuating the therapy based on particular tumor’s molecular makeup and so on, the results of which are expected to change the landscape of HNSCC.

Notes

Compliance with Ethical Standards

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest

K. Devaraja declares that he has no conflict of interest related to this article.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.  https://doi.org/10.1002/ijc.29210.CrossRefGoogle Scholar
  2. 2.
    GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–210.  https://doi.org/10.1016/S0140-6736(17)32152-9.CrossRefGoogle Scholar
  3. 3.
    Belbin TJ, Singh B, Barber I, Socci N, Wenig B, Smith R, et al. Molecular classification of head and neck squamous cell carcinoma using cDNA microarrays. Cancer Res. 2002;62:1184–90.PubMedGoogle Scholar
  4. 4.
    Keck MK, Zuo Z, Khattri A, Stricker TP, Brown CD, Imanguli M, et al. Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res. 2015;21:870–81.  https://doi.org/10.1158/1078-0432.CCR-14-2481.CrossRefPubMedGoogle Scholar
  5. 5.
    Walter V, Yin X, Wilkerson MD, Cabanski CR, Zhao N, Du Y, et al. Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLoS One. 2013;8:e56823.  https://doi.org/10.1371/journal.pone.0056823.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.  https://doi.org/10.1038/nature14129.CrossRefGoogle Scholar
  7. 7.
    Braakhuis BJM, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63:1727–30.PubMedGoogle Scholar
  8. 8.
    Seiwert TY, Zuo Z, Keck MK, Khattri A, Pedamallu CS, Stricker T, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015;21:632–41.  https://doi.org/10.1158/1078-0432.CCR-13-3310.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou G, Liu Z, Myers JN. TP53 mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response. J Cell Biochem. 2016;117:2682–92.  https://doi.org/10.1002/jcb.25592.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Perrone F, Bossi P, Cortelazzi B, Locati L, Quattrone P, Pierotti MA, et al. TP53 mutations and pathologic complete response to neoadjuvant cisplatin and fluorouracil chemotherapy in resected oral cavity squamous cell carcinoma. J Clin Oncol. 2010;28:761–6.  https://doi.org/10.1200/JCO.2009.22.4170.CrossRefPubMedGoogle Scholar
  11. 11.
    Ganci F, Sacconi A, Bossel Ben-Moshe N, Manciocco V, Sperduti I, Strigari L, et al. Expression of TP53 mutation-associated microRNAs predicts clinical outcome in head and neck squamous cell carcinoma patients. Ann Oncol. 2013;24:3082–8.  https://doi.org/10.1093/annonc/mdt380.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Frew SE, Sammut SM, Shore AF, Ramjist JK, Al-Bader S, Rezaie R, et al. Chinese health biotech and the billion-patient market. Nat Biotechnol. 2008;26:37–53.  https://doi.org/10.1038/nbt0108-37.CrossRefPubMedGoogle Scholar
  13. 13.
    Han D, Huang Z, Zhang W, Yu Z, Wang Q, Ni X, et al. Phase I clinical trial and follow-up observation of recombinant human p53 adenovirus injection in the treatment of laryngeal cancer. Natl Med J China. 2003;83(23):2029–32.Google Scholar
  14. 14.
    Zhang S, Xiao S, Liu C, Sun Y, Su X, Li D. Phase II clinical trial of recombinant human p53 adenovirus injection combined with radiation therapy for head and neck squamous cell carcinoma. Natl Med J China. 2003;83(23):2023–8.Google Scholar
  15. 15.
    Zhang S, Xiao S, Liu C, et al. Clinical study of gene therapy for head and neck squamous cell carcinoma combined with radiotherapy. Chin J Oncol. 2005;27(7):426–8.Google Scholar
  16. 16.
    Pan J, Zhang S, Chen C, Xiao S, Sun Y, Liu C, et al. Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J Clin Oncol. 2009;27:799–804.  https://doi.org/10.1200/JCO.2008.18.9670.CrossRefPubMedGoogle Scholar
  17. 17.
    Liu S, Chen P, Hu M, Tao Y, Chen L, Liu H, et al. Randomized, controlled phase II study of post-surgery radiotherapy combined with recombinant adenoviral human p53 gene therapy in treatment of oral cancer. Cancer Gene Ther. 2013;20:375–8.  https://doi.org/10.1038/cgt.2013.30.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang W-W, Li L, Li D, Liu J, Li X, Li W, et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum Gene Ther. 2018;29:160–79.  https://doi.org/10.1089/hum.2017.218.CrossRefPubMedGoogle Scholar
  19. 19.
    Clayman GL, el-Naggar AK, Lippman SM, Henderson YC, Frederick M, Merritt JA, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol. 1998;16:2221–32.  https://doi.org/10.1200/JCO.1998.16.6.2221.CrossRefPubMedGoogle Scholar
  20. 20.
    Nemunaitis J, Clayman G, Agarwala SS, Hrushesky W, Wells JR, Moore C, et al. Biomarkers predict p53 gene therapy efficacy in recurrent squamous cell carcinoma of the head and neck. Clin Cancer Res. 2009;15:7719–25.  https://doi.org/10.1158/1078-0432.CCR-09-1044.CrossRefPubMedGoogle Scholar
  21. 21.
    Yoo GH, Moon J, Leblanc M, Lonardo F, Urba S, Kim H, et al. A phase 2 trial of surgery with perioperative INGN 201 [Ad5CMV-p53] gene therapy followed by chemoradiotherapy for advanced, resectable squamous cell carcinoma of the oral cavity, oropharynx, hypopharynx, and larynx: report of the Southwest Oncology Group. Arch Otolaryngol Head Neck Surg. 2009;135:869–74.  https://doi.org/10.1001/archoto.2009.122.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Imai Y, Ohnishi K, Yasumoto J, Kajiwara A, Yamakawa N, Takahashi A, et al. Glycerol enhances radiosensitivity in a human oral squamous cell carcinoma cell line [Ca9-22] bearing a mutant p53 gene via Bax-mediated induction of apoptosis. Oral Oncol. 2005;41:631–6.  https://doi.org/10.1016/j.oraloncology.2005.02.006.CrossRefPubMedGoogle Scholar
  23. 23.
    Roh J-L, Kang SK, Minn I, Califano JA, Sidransky D, Koch WM. p53-Reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol. 2011;47:8–15.  https://doi.org/10.1016/j.oraloncology.2010.10.011.CrossRefPubMedGoogle Scholar
  24. 24.
    Lambert JMR, Gorzov P, Veprintsev DB, Söderqvist M, Segerbäck D, Bergman J, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 2009;15:376–88.  https://doi.org/10.1016/j.ccr.2009.03.003.CrossRefPubMedGoogle Scholar
  25. 25.
    Chuang H-C, Yang LP, Fitzgerald AL, Osman A, Woo SH, Myers JN, et al. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells. PLoS One. 2014;9:e104821.  https://doi.org/10.1371/journal.pone.0104821.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shin D, Kim EH, Lee J, Roh J-L. RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems. Redox Biol. 2017;13:219–27.  https://doi.org/10.1016/j.redox.2017.05.025.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Westra WH, Taube JM, Poeta ML, Begum S, Sidransky D, Koch WM. Inverse relationship between human papillomavirus-16 infection and disruptive p53 gene mutations in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2008;14:366–9.  https://doi.org/10.1158/1078-0432.CCR-07-1402.CrossRefPubMedGoogle Scholar
  28. 28.
    Caicedo-Granados E, Lin R, Fujisawa C, Yueh B, Sangwan V, Saluja A. Wild-type p53 reactivation by small-molecule Minnelide™ in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma. Oral Oncol. 2014;50:1149–56.  https://doi.org/10.1016/j.oraloncology.2014.09.013.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li C, Johnson DE. Liberation of functional p53 by proteasome inhibition in human papilloma virus-positive head and neck squamous cell carcinoma cells promotes apoptosis and cell cycle arrest. Cell Cycle. 2013;12:923–34.  https://doi.org/10.4161/cc.23882.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nemunaitis J, Khuri F, Ganly I, Arseneau J, Posner M, Vokes E, et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol. 2001;19:289–98.  https://doi.org/10.1200/JCO.2001.19.2.289.CrossRefPubMedGoogle Scholar
  31. 31.
    Tassone P, Old M, Teknos TN, Pan Q. p53-based therapeutics for head and neck squamous cell carcinoma. Oral Oncol. 2013;49:733–7.  https://doi.org/10.1016/j.oraloncology.2013.03.447.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bossi G, Sacchi A. Restoration of wild-type p53 function in human cancer: relevance for tumor therapy. Head Neck. 2007;29:272–84.  https://doi.org/10.1002/hed.20529.CrossRefPubMedGoogle Scholar
  33. 33.
    Garber K. China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 2006;98:298–300.  https://doi.org/10.1093/jnci/djj111.CrossRefPubMedGoogle Scholar
  34. 34.
    Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L, et al. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000;6:879–85.  https://doi.org/10.1038/78638.CrossRefPubMedGoogle Scholar
  35. 35.
    Ganly I, Kirn D, Eckhardt G, Rodriguez GI, Soutar DS, Otto R, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000;6:798–806.PubMedGoogle Scholar
  36. 36.
    Lu W, Zheng S, Li X-F, Huang J-J, Zheng X, Li Z. Intra-tumor injection of H101, a recombinant adenovirus, in combination with chemotherapy in patients with advanced cancers: a pilot phase II clinical trial. World J Gastroenterol. 2004;10:3634–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Xia Z-J, Chang J-H, Zhang L, Jiang W-Q, Guan Z-Z, Liu J-W, et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus [in Chinese]. Ai Zheng. 2004;23:1666–70.PubMedGoogle Scholar
  38. 38.
    Ye W, Liu R, Pan C, Jiang W, Zhang L, Guan Z, et al. Multicenter randomized phase 2 clinical trial of a recombinant human endostatin adenovirus in patients with advanced head and neck carcinoma. Mol Ther. 2014;22:1221–9.  https://doi.org/10.1038/mt.2014.53.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Harrington KJ, Hingorani M, Tanay MA, Hickey J, Bhide SA, Clarke PM, et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res. 2010;16:4005–15.  https://doi.org/10.1158/1078-0432.CCR-10-0196.CrossRefPubMedGoogle Scholar
  40. 40.
    Mace ATM, Ganly I, Soutar DS, Brown SM. Potential for efficacy of the oncolytic Herpes simplex virus 1716 in patients with oral squamous cell carcinoma. Head Neck. 2008;30:1045–51.  https://doi.org/10.1002/hed.20840.CrossRefPubMedGoogle Scholar
  41. 41.
    Li H, Peng K-W, Russell SJ. Oncolytic measles virus encoding thyroidal sodium iodide symporter for squamous cell cancer of the head and neck radiovirotherapy. Hum Gene Ther. 2012;23:295–301.  https://doi.org/10.1089/hum.2011.128.CrossRefPubMedGoogle Scholar
  42. 42.
    Cetuximab approved by FDA for treatment of head and neck squamous cell cancer. Cancer Biol Ther. 2006;5:340–2.  https://doi.org/10.4161/cbt.5.4.2666.
  43. 43.
    Baselga J, Pfister D, Cooper MR, Cohen R, Burtness B, Bos M, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol. 2000;18:904–14.  https://doi.org/10.1200/JCO.2000.18.4.904.CrossRefPubMedGoogle Scholar
  44. 44.
    Robert F, Ezekiel MP, Spencer SA, Meredith RF, Bonner JA, Khazaeli MB, et al. Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol. 2001;19:3234–43.  https://doi.org/10.1200/JCO.2001.19.13.3234.CrossRefPubMedGoogle Scholar
  45. 45.
    Vermorken JB, Trigo J, Hitt R, Koralewski P, Diaz-Rubio E, Rolland F, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25:2171–7.  https://doi.org/10.1200/JCO.2006.06.7447.CrossRefPubMedGoogle Scholar
  46. 46.
    Baselga J, Trigo JM, Bourhis J, Tortochaux J, Cortés-Funes H, Hitt R, et al. Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23:5568–77.  https://doi.org/10.1200/JCO.2005.07.119.CrossRefPubMedGoogle Scholar
  47. 47.
    Herbst RS, Arquette M, Shin DM, Dicke K, Vokes EE, Azarnia N, et al. Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23:5578–87.  https://doi.org/10.1200/JCO.2005.07.120.CrossRefPubMedGoogle Scholar
  48. 48.
    Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA, Eastern Cooperative Oncology Group. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol. 2005;23:8646–54.  https://doi.org/10.1200/JCO.2005.02.4646.CrossRefPubMedGoogle Scholar
  49. 49.
    Bourhis J, Rivera F, Mesia R, Awada A, Geoffrois L, Borel C, et al. Phase I/II study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol. 2006;24:2866–72.  https://doi.org/10.1200/JCO.2005.04.3547.CrossRefPubMedGoogle Scholar
  50. 50.
    Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567–78.  https://doi.org/10.1056/NEJMoa053422.CrossRefPubMedGoogle Scholar
  51. 51.
    Curran D, Giralt J, Harari PM, Ang KK, Cohen RB, Kies MS, et al. Quality of life in head and neck cancer patients after treatment with high-dose radiotherapy alone or in combination with cetuximab. J Clin Oncol. 2007;25:2191–7.  https://doi.org/10.1200/JCO.2006.08.8005.CrossRefPubMedGoogle Scholar
  52. 52.
    Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11:21–8.  https://doi.org/10.1016/S1470-2045(09)70311-0.CrossRefPubMedGoogle Scholar
  53. 53.
    Koutcher L, Sherman E, Fury M, Wolden S, Zhang Z, Mo Q, et al. Concurrent cisplatin and radiation versus cetuximab and radiation for locally advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2011;81:915–22.  https://doi.org/10.1016/j.ijrobp.2010.07.008.CrossRefPubMedGoogle Scholar
  54. 54.
    Ley J, Mehan P, Wildes TM, Thorstad W, Gay HA, Michel L, et al. Cisplatin versus cetuximab given concurrently with definitive radiation therapy for locally advanced head and neck squamous cell carcinoma. Oncology. 2013;85:290–6.  https://doi.org/10.1159/000355194.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Riaz N, Sherman E, Koutcher L, Shapiro L, Katabi N, Zhang Z, et al. Concurrent chemoradiotherapy with cisplatin versus cetuximab for squamous cell carcinoma of the head and neck. Am J Clin Oncol. 2016;39:27–31.  https://doi.org/10.1097/COC.0000000000000006.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Walsh L, Gillham C, Dunne M, Fraser I, Hollywood D, Armstrong J, et al. Toxicity of cetuximab versus cisplatin concurrent with radiotherapy in locally advanced head and neck squamous cell cancer (LAHNSCC). Radiother Oncol. 2011;98:38–41.  https://doi.org/10.1016/j.radonc.2010.11.009.CrossRefPubMedGoogle Scholar
  57. 57.
    Ang KK, Zhang Q, Rosenthal DI, Nguyen-Tan PF, Sherman EJ, Weber RS, et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol. 2014;32:2940–50.  https://doi.org/10.1200/JCO.2013.53.5633.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Magrini SM, Buglione M, Corvò R, Pirtoli L, Paiar F, Ponticelli P, et al. Cetuximab and radiotherapy versus cisplatin and radiotherapy for locally advanced head and neck cancer: a randomized phase II trial. J Clin Oncol. 2016;34:427–35.  https://doi.org/10.1200/JCO.2015.63.1671.CrossRefPubMedGoogle Scholar
  59. 59.
    Ringash J, Waldron JN, Siu LL, Martino R, Winquist E, Wright JR, et al. Quality of life and swallowing with standard chemoradiotherapy versus accelerated radiotherapy and panitumumab in locoregionally advanced carcinoma of the head and neck: a phase III randomised trial from the Canadian Cancer Trials Group (HN.6). Eur J Cancer. 2017;72:192–9.  https://doi.org/10.1016/j.ejca.2016.11.008.CrossRefPubMedGoogle Scholar
  60. 60.
    Truong MT, Zhang Q, Rosenthal DI, List M, Axelrod R, Sherman E, et al. Quality of life and performance status from a substudy conducted within a prospective phase 3 randomized trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for locally advanced head and neck carcinoma: NRG Oncology Radiation Therapy Oncology Group 0522. Int J Radiat Oncol Biol Phys. 2017;97:687–99.  https://doi.org/10.1016/j.ijrobp.2016.08.003.CrossRefPubMedGoogle Scholar
  61. 61.
    Gillison ML, Trotti AM, Harris J, Eisbruch A, Harari PM, Adelstein DJ, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet. 2019;393:40–50.  https://doi.org/10.1016/S0140-6736(18)32779-X.CrossRefPubMedGoogle Scholar
  62. 62.
    Mehanna H, Robinson M, Hartley A, Kong A, Foran B, Fulton-Lieuw T, et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet. 2019;393:51–60.  https://doi.org/10.1016/S0140-6736(18)32752-1.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Buglione M, Maddalo M, Corvò R, Pirtoli L, Paiar F, Lastrucci L, et al. Subgroup analysis according to human papillomavirus status and tumor site of a randomized phase II trial comparing cetuximab and cisplatin combined with radiation therapy for locally advanced head and neck cancer. Int J Radiat Oncol Biol Phys. 2017;97:462–72.  https://doi.org/10.1016/j.ijrobp.2016.10.011.CrossRefPubMedGoogle Scholar
  64. 64.
    Petrelli F, Coinu A, Riboldi V, Borgonovo K, Ghilardi M, Cabiddu M, et al. Concomitant platinum-based chemotherapy or cetuximab with radiotherapy for locally advanced head and neck cancer: a systematic review and meta-analysis of published studies. Oral Oncol. 2014;50:1041–8.  https://doi.org/10.1016/j.oraloncology.2014.08.005.CrossRefPubMedGoogle Scholar
  65. 65.
    Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359:1116–27.  https://doi.org/10.1056/NEJMoa0802656.CrossRefPubMedGoogle Scholar
  66. 66.
    Noronha V, Patil VM, Joshi A, Bhattacharjee A, Paul D, Dhumal S, et al. A tertiary care experience with paclitaxel and cetuximab as palliative chemotherapy in platinum sensitive and nonsensitive in head and neck cancers. South Asian J Cancer. 2017;6:11–4.  https://doi.org/10.4103/2278-330X.202558.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hitt R, Irigoyen A, Cortes-Funes H, Grau JJ, García-Sáenz JA, Cruz-Hernandez JJ, et al. Phase II study of the combination of cetuximab and weekly paclitaxel in the first-line treatment of patients with recurrent and/or metastatic squamous cell carcinoma of head and neck. Ann Oncol. 2012;23:1016–22.  https://doi.org/10.1093/annonc/mdr367.CrossRefPubMedGoogle Scholar
  68. 68.
    Péron J, Ceruse P, Lavergne E, Buiret G, Pham B-N, Chabaud S, et al. Paclitaxel and cetuximab combination efficiency after the failure of a platinum-based chemotherapy in recurrent/metastatic head and neck squamous cell carcinoma. Anticancer Drugs. 2012;23:996–1001.  https://doi.org/10.1097/CAD.0b013e32835507e5.CrossRefPubMedGoogle Scholar
  69. 69.
    Jiménez B, Trigo JM, Pajares BI, Sáez MI, Quero C, Navarro V, et al. Efficacy and safety of weekly paclitaxel combined with cetuximab in the treatment of pretreated recurrent/metastatic head and neck cancer patients. Oral Oncol. 2013;49:182–5.  https://doi.org/10.1016/j.oraloncology.2012.09.003.CrossRefPubMedGoogle Scholar
  70. 70.
    Harari PM, Harris J, Kies MS, Myers JN, Jordan RC, Gillison ML, et al. Postoperative chemoradiotherapy and cetuximab for high-risk squamous cell carcinoma of the head and neck: Radiation Therapy Oncology Group RTOG-0234. J Clin Oncol. 2014;32:2486–95.  https://doi.org/10.1200/JCO.2013.53.9163.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Uozumi S, Enokida T, Suzuki S, Nishizawa A, Kamata H, Okano T, et al. Predictive value of cetuximab-induced skin toxicity in recurrent or metastatic squamous cell carcinoma of the head and neck. Front Oncol. 2018;8:616.  https://doi.org/10.3389/fonc.2018.00616.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    van der Linden N, Buter J, Pescott CP, Lalisang RI, de Boer JP, de Graeff A, et al. Treatments and costs for recurrent and/or metastatic squamous cell carcinoma of the head and neck in the Netherlands. Eur Arch Otorhinolaryngol. 2016;273:455–64.  https://doi.org/10.1007/s00405-015-3495-y.CrossRefPubMedGoogle Scholar
  73. 73.
    Cooper JB, Cohen EEW. Mechanisms of resistance to EGFR inhibitors in head and neck cancer. Head Neck. 2009;31:1086–94.  https://doi.org/10.1002/hed.21109.CrossRefPubMedGoogle Scholar
  74. 74.
    Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24:2666–72.  https://doi.org/10.1200/JCO.2005.04.8306.CrossRefPubMedGoogle Scholar
  75. 75.
    Horn D, Hess J, Freier K, Hoffmann J, Freudlsperger C. Targeting EGFR-PI3K-AKT-mTOR signaling enhances radiosensitivity in head and neck squamous cell carcinoma. Expert Opin Ther Targets. 2015;19:795–805.  https://doi.org/10.1517/14728222.2015.1012157.CrossRefPubMedGoogle Scholar
  76. 76.
    Grünwald V, Keilholz U, Boehm A, Guntinas-Lichius O, Hennemann B, Schmoll HJ, et al. TEMHEAD: a single-arm multicentre phase II study of temsirolimus in platin- and cetuximab refractory recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) of the German SCCHN Group (AIO). Ann Oncol. 2015;26:561–7.  https://doi.org/10.1093/annonc/mdu571.CrossRefPubMedGoogle Scholar
  77. 77.
    Machiels J-PH, Haddad RI, Fayette J, Licitra LF, Tahara M, Vermorken JB, LUX-H&N1 investigators, et al. Afatinib versus methotrexate as second-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 1): an open-label, randomised phase 3 trial. Lancet Oncol. 2015;16:583–94.  https://doi.org/10.1016/S1470-2045(15)70124-5.CrossRefPubMedGoogle Scholar
  78. 78.
    Machiels J-P, Subramanian S, Ruzsa A, Repassy G, Lifirenko I, Flygare A, et al. Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy: an open-label, randomised phase 3 trial. Lancet Oncol. 2011;12:333–43.  https://doi.org/10.1016/S1470-2045(11)70034-1.CrossRefPubMedGoogle Scholar
  79. 79.
    Vermorken JB, Stöhlmacher-Williams J, Davidenko I, Licitra L, Winquist E, Villanueva C, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol. 2013;14:697–710.  https://doi.org/10.1016/S1470-2045(13)70181-5.CrossRefPubMedGoogle Scholar
  80. 80.
    Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004;22:77–85.  https://doi.org/10.1200/JCO.2004.06.075.CrossRefPubMedGoogle Scholar
  81. 81.
    Siu LL, Soulieres D, Chen EX, Pond GR, Chin SF, Francis P, et al. Phase I/II trial of erlotinib and cisplatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a Princess Margaret Hospital phase II consortium and National Cancer Institute of Canada Clinical Trials Group Study. J Clin Oncol. 2007;25:2178–83.  https://doi.org/10.1200/JCO.2006.07.6547.CrossRefPubMedGoogle Scholar
  82. 82.
    Argiris A, Ghebremichael M, Gilbert J, Lee J-W, Sachidanandam K, Kolesar JM, et al. Phase III randomized, placebo-controlled trial of docetaxel with or without gefitinib in recurrent or metastatic head and neck cancer: an eastern cooperative oncology group trial. J Clin Oncol. 2013;31:1405–14.  https://doi.org/10.1200/JCO.2012.45.4272.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    de Souza JA, Davis DW, Zhang Y, Khattri A, Seiwert TY, Aktolga S, et al. A phase II study of lapatinib in recurrent/metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2012;18:2336–43.  https://doi.org/10.1158/1078-0432.CCR-11-2825.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Limaye S, Riley S, Zhao S, O’Neill A, Posner M, Adkins D, et al. A randomized phase II study of docetaxel with or without vandetanib in recurrent or metastatic squamous cell carcinoma of head and neck (SCCHN). Oral Oncol. 2013;49:835–41.  https://doi.org/10.1016/j.oraloncology.2013.04.010.CrossRefPubMedGoogle Scholar
  85. 85.
    Kim HS, Kwon HJ, Jung I, Yun MR, Ahn M-J, Kang BW, et al. Phase II clinical and exploratory biomarker study of dacomitinib in patients with recurrent and/or metastatic squamous cell carcinoma of head and neck. Clin Cancer Res. 2015;21:544–52.  https://doi.org/10.1158/1078-0432.CCR-14-1756.CrossRefPubMedGoogle Scholar
  86. 86.
    Abdul Razak AR, Soulières D, Laurie SA, Hotte SJ, Singh S, Winquist E, et al. A phase II trial of dacomitinib, an oral pan-human EGF receptor (HER) inhibitor, as first-line treatment in recurrent and/or metastatic squamous-cell carcinoma of the head and neck. Ann Oncol. 2013;24:761–9.  https://doi.org/10.1093/annonc/mds503.CrossRefPubMedGoogle Scholar
  87. 87.
    Prawira A, Brana-Garcia I, Spreafico A, Hope A, Waldron J, Razak ARA, et al. Phase I trial of dacomitinib, a pan-human epidermal growth factor receptor (HER) inhibitor, with concurrent radiotherapy and cisplatin in patients with locoregionally advanced squamous cell carcinoma of the head and neck (XDC-001). Investig New Drugs. 2016;34:575–83.  https://doi.org/10.1007/s10637-016-0367-2.CrossRefGoogle Scholar
  88. 88.
    Aggarwal S, Devaraja K, Sharma SC, Das SN. Expression of vascular endothelial growth factor (VEGF) in patients with oral squamous cell carcinoma and its clinical significance. Clin Chim Acta. 2014;436:35–40.  https://doi.org/10.1016/j.cca.2014.04.027.CrossRefPubMedGoogle Scholar
  89. 89.
    Argiris A, Kotsakis AP, Hoang T, Worden FP, Savvides P, Gibson MK, et al. Cetuximab and bevacizumab: preclinical data and phase II trial in recurrent or metastatic squamous cell carcinoma of the head and neck. Ann Oncol. 2013;24:220–5.  https://doi.org/10.1093/annonc/mds245.CrossRefPubMedGoogle Scholar
  90. 90.
    Argiris A, Karamouzis MV, Gooding WE, Branstetter BF, Zhong S, Raez LE, et al. Phase II trial of pemetrexed and bevacizumab in patients with recurrent or metastatic head and neck cancer. J Clin Oncol. 2011;29:1140–5.  https://doi.org/10.1200/JCO.2010.33.3591.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Liao Y-M, Kim C, Yen Y. Mammalian target of rapamycin and head and neck squamous cell carcinoma. Head Neck Oncol. 2011;3:22.  https://doi.org/10.1186/1758-3284-3-22.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Saba NF, Hurwitz SJ, Magliocca K, Kim S, Owonikoko TK, Harvey D, et al. Phase 1 and pharmacokinetic study of everolimus in combination with cetuximab and carboplatin for recurrent/metastatic squamous cell carcinoma of the head and neck. Cancer. 2014;120:3940–51.  https://doi.org/10.1002/cncr.28965.CrossRefPubMedGoogle Scholar
  93. 93.
    Day TA, Shirai K, O’Brien PE, Matheus MG, Godwin K, Sood AJ, et al. Inhibition of mTOR signaling and clinical activity of rapamycin in head and neck cancer in a window of opportunity trial. Clin Cancer Res. 2019;25(4):1156–64.  https://doi.org/10.1158/1078-0432.CCR-18-2024.CrossRefPubMedGoogle Scholar
  94. 94.
    Curry J, Johnson J, Tassone P, Vidal MD, Menezes DW, Sprandio J, et al. Metformin effects on head and neck squamous carcinoma microenvironment: window of opportunity trial. Laryngoscope. 2017;127:1808–15.  https://doi.org/10.1002/lary.26489.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Lui VWY, Hedberg ML, Li H, Vangara BS, Pendleton K, Zeng Y, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3:761–9.  https://doi.org/10.1158/2159-8290.CD-13-0103.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Chung CH, Guthrie VB, Masica DL, Tokheim C, Kang H, Richmon J, et al. Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann Oncol. 2015;26:1216–23.  https://doi.org/10.1093/annonc/mdv109.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Jimeno A, Bauman JE, Weissman C, Adkins D, Schnadig I, Beauregard P, et al. A randomized, phase 2 trial of docetaxel with or without PX-866, an irreversible oral phosphatidylinositol 3-kinase inhibitor, in patients with relapsed or metastatic head and neck squamous cell cancer. Oral Oncol. 2015;51:383–8.  https://doi.org/10.1016/j.oraloncology.2014.12.013.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Soulières D, Faivre S, Mesía R, Remenár É, Li S-H, Karpenko A, et al. Buparlisib and paclitaxel in patients with platinum-pretreated recurrent or metastatic squamous cell carcinoma of the head and neck (BERIL-1): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol. 2017;18:323–35.  https://doi.org/10.1016/S1470-2045(17)30064-5.CrossRefPubMedGoogle Scholar
  99. 99.
    Jimeno A, Shirai K, Choi M, Laskin J, Kochenderfer M, Spira A, et al. A randomized, phase II trial of cetuximab with or without PX-866, an irreversible oral phosphatidylinositol 3-kinase inhibitor, in patients with relapsed or metastatic head and neck squamous cell cancer. Ann Oncol. 2015;26:556–61.  https://doi.org/10.1093/annonc/mdu574.CrossRefPubMedGoogle Scholar
  100. 100.
    Michel L, Ley J, Wildes TM, Schaffer A, Robinson A, Chun S-E, et al. Phase I trial of palbociclib, a selective cyclin dependent kinase 4/6 inhibitor, in combination with cetuximab in patients with recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol. 2016;58:41–8.  https://doi.org/10.1016/j.oraloncology.2016.05.011.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Adkins D, Oppelt PJ, Ley JC, Trinkaus K, Neupane PC, Sacco AG, et al. Multicenter phase II trial of palbociclib, a selective cyclin dependent kinase (CDK) 4/6 inhibitor, and cetuximab in platinum-resistant HPV unrelated (-) recurrent/metastatic head and neck squamous cell carcinoma (RM HNSCC). J Clin Oncol. 2018;36(15 suppl):6008.  https://doi.org/10.1200/JCO.2018.36.15_suppl.6008.CrossRefGoogle Scholar
  102. 102.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.CrossRefPubMedGoogle Scholar
  103. 103.
    Ferris RL. Immunology and immunotherapy of head and neck cancer. J Clin Oncol. 2015;33:3293–304.  https://doi.org/10.1200/JCO.2015.61.1509.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Tan YS, Sansanaphongpricha K, Prince MEP, Sun D, Wolf GT, Lei YL. Engineering vaccines to reprogram immunity against head and neck cancer. J Dent Res. 2018;97:627–34.  https://doi.org/10.1177/0022034518764416.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Quezada SA, Peggs KS. Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. Br J Cancer. 2013;108:1560–5.  https://doi.org/10.1038/bjc.2013.117.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Research C for DE and pembrolizumab (KEYTRUDA). 2016. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm515627.htm. Accessed 7 Nov 2018.
  107. 107.
    Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17:956–65.  https://doi.org/10.1016/S1470-2045(16)30066-3.CrossRefPubMedGoogle Scholar
  108. 108.
    Chow LQM, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34:3838–45.  https://doi.org/10.1200/JCO.2016.68.1478.CrossRefPubMedGoogle Scholar
  109. 109.
    Tahara M, Muro K, Hasegawa Y, Chung HC, Lin C-C, Keam B, et al. Pembrolizumab in Asia-Pacific patients with advanced head and neck squamous cell carcinoma: analyses from KEYNOTE-012. Cancer Sci. 2018;109:771–6.  https://doi.org/10.1111/cas.13480.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Mehra R, Seiwert TY, Gupta S, Weiss J, Gluck I, Eder JP, et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012. Br J Cancer. 2018;119:153–9.  https://doi.org/10.1038/s41416-018-0131-9.CrossRefPubMedGoogle Scholar
  111. 111.
    Bauml J, Seiwert TY, Pfister DG, Worden F, Liu SV, Gilbert J, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol. 2017;35:1542–9.  https://doi.org/10.1200/JCO.2016.70.1524.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Cohen EEW, Soulières D, Le Tourneau C, Dinis J, Licitra L, Ahn M-J, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet. 2019;393:156–67.  https://doi.org/10.1016/S0140-6736(18)31999-8.CrossRefPubMedGoogle Scholar
  113. 113.
    Sun XS, Sire C, Tao Y, Martin L, Alfonsi M, Prevost JB, et al. A phase II randomized trial of pembrolizumab versus cetuximab, concomitant with radiotherapy (RT) in locally advanced (LA) squamous cell carcinoma of the head and neck (SCCHN): first results of the GORTEC 2015-01 “PembroRad” trial [abstract no. 6018]. J Clin Oncol. 2018;36(15 suppl):6018.  https://doi.org/10.1200/JCO.2018.36.15_suppl.:6018.CrossRefGoogle Scholar
  114. 114.
    KEYNOTE-048: phase 3 study of first-line pembrolizumab (P) for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). OncologyPRO. 2018. https://oncologypro.esmo.org/Meeting-Resources/ESMO-2018-Congress/KEYNOTE-048-Phase-3-study-of-first-line-pembrolizumab-P-for-recurrent-metastatic-head-and-neck-squamous-cell-carcinoma-R-M-HNSCC/. Accessed 9 Feb 2019.
  115. 115.
    Research C for DE and Nivolumab for SCCHN. 2016. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm528920.htm. Accessed 20 Oct 2018.
  116. 116.
    Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.  https://doi.org/10.1056/NEJMoa1602252.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Gillison ML, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. CheckMate 141: 1-year update and subgroup analysis of nivolumab as first-line therapy in patients with recurrent/metastatic head and neck cancer. Oncologist. 2018;23:1079–82.  https://doi.org/10.1634/theoncologist.2017-0674.CrossRefPubMedGoogle Scholar
  118. 118.
    Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 2018;81:45–51.  https://doi.org/10.1016/j.oraloncology.2018.04.008.CrossRefPubMedGoogle Scholar
  119. 119.
    Tringale KR, Carroll KT, Zakeri K, Sacco AG, Barnachea L, Murphy JD. Cost-effectiveness analysis of nivolumab for treatment of platinum-resistant recurrent or metastatic squamous cell carcinoma of the head and neck. J Natl Cancer Inst. 2018;110:479–85.  https://doi.org/10.1093/jnci/djx226.CrossRefPubMedGoogle Scholar
  120. 120.
    Commissioner Office Press Announcements—FDA approves first treatment for advanced form of the second most common skin cancer. 2018. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm622044.htm. Accessed 2 Feb 2019.
  121. 121.
    Rosa K. Cemiplimab combo does not show superior ORR to anti-PD-1 monotherapy in advanced HNSCC. Targeted Oncology. 2018. https://www.targetedonc.com/news/cemiplimab-combo-does-not-show-superior-orr-to-antipd1-monotherapy-in-advanced-hnscc. Accessed 2 Feb 2019.
  122. 122.
    Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol. 2017;35:3851–8.  https://doi.org/10.1200/JCO.2016.72.1985.CrossRefPubMedGoogle Scholar
  123. 123.
    André P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 2018;175(1731–43):e13.  https://doi.org/10.1016/j.cell.2018.10.014.CrossRefGoogle Scholar
  124. 124.
    Fayette J, Lefebvre G, Posner MR, Bauman J, Salas S, Even C, et al. Results of a phase II study evaluating monalizumab in combination with cetuximab in previously treated recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN) [abstract no. 1049PD]. Ann Oncol. 2018;29(suppl 8):372–99.  https://doi.org/10.1093/annonc/mdy287.005.CrossRefGoogle Scholar
  125. 125.
    Zandberg DP, Algazi AP, Jimeno A, Good JS, Fayette J, Bouganim N, et al. Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: results from a single-arm, phase II study in patients with ≥ 25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. Eur J Cancer. 2019;107:142–52.  https://doi.org/10.1016/j.ejca.2018.11.015.CrossRefPubMedGoogle Scholar
  126. 126.
    Segal NH, Ou S-HI, Balmanoukian AS, Massarelli E, Brahmer JR, Weiss J, et al. Updated safety and efficacy of durvalumab (MEDI4736), an anti-PD-L 1 antibody, in patients from a squamous cell carcinoma of the head and neck (SCCHN) expansion cohort [abstract]. Ann Oncol. 2016;27(suppl 6):949O.  https://doi.org/10.1093/annonc/mdw376.01.CrossRefGoogle Scholar
  127. 127.
    Siu LL, Even C, Mesía R, Remenar E, Daste A, Delord J-P, et al. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial. JAMA Oncol. 2018.  https://doi.org/10.1001/jamaoncol.2018.4628 (Epub 2018 Nov 1).CrossRefPubMedGoogle Scholar
  128. 128.
    Ferris RL, Even C, Haddad R, Tahara M, Goswami T, Franks A, et al. Phase III, randomized, open-label study of durvalumab (MEDI4736) monotherapy, or durvalumab + tremelimumab, versus standard of care (SoC), in recurrent or metastatic [R/M] squamous cell carcinoma of the head and neck (SCCHN): eagle [poster]. J Immunother Cancer. 2015;3(Suppl 2):P150.  https://doi.org/10.1186/2051-1426-3-S2-P150.CrossRefPubMedCentralGoogle Scholar
  129. 129.
    Update on the phase III EAGLE trial of Imfinzi and tremelimumab in advanced head and neck cancer. 2018. https://www.astrazeneca.com/media-centre/press-releases/2018/update-on-the-phase-iii-eagle-trial-of-imfinzi-and-tremelimumab-in-advanced-head-and-neck-cancer-07122018.html. Accessed 2 Feb 2019.
  130. 130.
    Colevas AD, Bahleda R, Braiteh F, Balmanoukian A, Brana I, Chau NG, et al. Safety and clinical activity of atezolizumab in head and neck cancer: results from a phase I trial. Ann Oncol. 2018;29:2247–53.  https://doi.org/10.1093/annonc/mdy411.CrossRefPubMedGoogle Scholar
  131. 131.
    Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010;115:3520–30.  https://doi.org/10.1182/blood-2009-09-246124.CrossRefPubMedGoogle Scholar
  132. 132.
    Hamid O, Bauer TM, Spira AI, Olszanski AJ, Patel SP, Wasser JS, et al. Epacadostat plus pembrolizumab in patients with SCCHN: preliminary phase I/II results from ECHO-202/KEYNOTE-037. J Clin Oncol. 2017;35(15 suppl):6010.  https://doi.org/10.1200/JCO.2017.35.15_suppl.6010.CrossRefGoogle Scholar
  133. 133.
    Perez RP, Riese MJ, Lewis KD, Saleh MN, Daud A, Berlin J, et al. Epacadostat plus nivolumab in patients with advanced solid tumors: Preliminary phase I/II results of ECHO-204 [abstract]. J Clin Oncol. 2017;35(15_suppl):3003.  https://doi.org/10.1200/JCO.2017.35.15_suppl.3003.CrossRefGoogle Scholar
  134. 134.
    Chow LQM, Morishima C, Eaton KD, Baik CS, Goulart BH, Anderson LN, et al. Phase Ib trial of the Toll-like receptor 8 agonist, motolimod (VTX-2337), combined with cetuximab in patients with recurrent or metastatic SCCHN. Clin Cancer Res. 2017;23:2442–50.  https://doi.org/10.1158/1078-0432.CCR-16-1934.CrossRefPubMedGoogle Scholar
  135. 135.
    Ferris RL, Saba NF, Gitlitz BJ, Haddad R, Sukari A, Neupane P, et al. Effect of adding motolimod to standard combination chemotherapy and cetuximab treatment of patients with squamous cell carcinoma of the head and neck: the Active8 randomized clinical trial. JAMA Oncol. 2018;4:1583–8.  https://doi.org/10.1001/jamaoncol.2018.1888.CrossRefPubMedGoogle Scholar
  136. 136.
    Ruzsa A, Sen M, Evans M, Lee LW, Hideghety K, Rottey S, et al. Phase 2, open-label, 1:1 randomized controlled trial exploring the efficacy of EMD 1201081 in combination with cetuximab in second-line cetuximab-naïve patients with recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). Investig New Drugs. 2014;32:1278–84.  https://doi.org/10.1007/s10637-014-0117-2.CrossRefGoogle Scholar
  137. 137.
    Cohen EEW, Algazi A, Laux D, Wong DJ, Amin A, Nabell L, et al. 1050PDPhase Ib/II, open label, multicenter study of intratumoral SD-101 in combination with pembrolizumab in anti-PD-1 treatment naïve patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) [abstract no. 1050PD]. Ann Oncol. 2018;29(suppl_8):372–99.  https://doi.org/10.1093/annonc/mdy287.006.CrossRefGoogle Scholar
  138. 138.
    van Schalkwyk MCI, Papa SE, Jeannon J-P, Guerrero Urbano T, Spicer JF, Maher J. Design of a phase I clinical trial to evaluate intratumoral delivery of ErbB-targeted chimeric antigen receptor T-cells in locally advanced or recurrent head and neck cancer. Hum Gene Ther Clin Dev. 2013;24:134–42.  https://doi.org/10.1089/humc.2013.144.CrossRefPubMedGoogle Scholar
  139. 139.
    Papa S, Adami A, Metoudi M, Achkova D, van Schalkwyk M, Parente Pereira A, et al. A phase I trial of T4 CAR T-cell immunotherapy in head and neck squamous cancer (HNSCC). J Clin Oncol. 2018;36(15_suppl):3046.  https://doi.org/10.1200/JCO.2018.36.15_suppl.3046.CrossRefGoogle Scholar
  140. 140.
    Tímár J, Forster-Horváth C, Lukits J, Döme B, Ladányi A, Remenár E, et al. The effect of leukocyte interleukin injection (Multikine) treatment on the peritumoral and intratumoral subpopulation of mononuclear cells and on tumor epithelia: a possible new approach to augmenting sensitivity to radiation therapy and chemotherapy in oral cancer—a multicenter phase I/II clinical Trial. Laryngoscope. 2003;113:2206–17.  https://doi.org/10.1097/00005537-200312000-00031.CrossRefPubMedGoogle Scholar
  141. 141.
    Research C for DE and Approved drugs—Hematology/Oncology (Cancer) Approvals & Safety Notifications. 2018. https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm279174.htm. Accessed 9 Feb 2019.
  142. 142.
    Voskens CJ, Sewell D, Hertzano R, DeSanto J, Rollins S, Lee M, et al. Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma. Head Neck. 2012;34:1734–46.  https://doi.org/10.1002/hed.22004.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Zandberg DP, Rollins S, Goloubeva O, Morales RE, Tan M, Taylor R, et al. A phase I dose escalation trial of MAGE-A3- and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN). Cancer Immunol Immunother. 2015;64(3):367–79.  https://doi.org/10.1007/s00262-014-1640-x.CrossRefPubMedGoogle Scholar
  144. 144.
    Massarelli E, William W, Johnson F, Kies M, Ferrarotto R, Guo M, et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol. 2019;5(1):67–73.  https://doi.org/10.1001/jamaoncol.2018.4051.CrossRefPubMedGoogle Scholar
  145. 145.
    Gong W, Xiao Y, Wei Z, Yuan Y, Qiu M, Sun C, et al. Toward the use of precision medicine for the treatment of head and neck squamous cell carcinoma. Oncotarget. 2017;8:2141–52.  https://doi.org/10.18632/oncotarget.13798.CrossRefPubMedGoogle Scholar
  146. 146.
    Michmerhuizen NL, Birkeland AC, Bradford CR, Brenner JC. Genetic determinants in head and neck squamous cell carcinoma and their influence on global personalized medicine. Genes Cancer. 2016;7:182–200.  https://doi.org/10.18632/genesandcancer.110.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Perdomo S, Anantharaman D, Foll M, Abedi-Ardekani B, Durand G, Reis Rosa LA, et al. Genomic analysis of head and neck cancer cases from two high incidence regions. PLoS One. 2018;13:e0191701.  https://doi.org/10.1371/journal.pone.0191701.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Chung CH, Parker JS, Karaca G, Wu J, Funkhouser WK, Moore D, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell. 2004;5:489–500.CrossRefPubMedGoogle Scholar
  149. 149.
    Ledgerwood LG, Kumar D, Eterovic AK, Wick J, Chen K, Zhao H, et al. The degree of intratumor mutational heterogeneity varies by primary tumor sub-site. Oncotarget. 2016;7:27185–98.  https://doi.org/10.18632/oncotarget.8448.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Mroz EA, Tward AD, Tward AM, Hammon RJ, Ren Y, Rocco JW. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 2015;12:e1001786.  https://doi.org/10.1371/journal.pmed.1001786.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomed. 2014;9:3719–35.  https://doi.org/10.2147/IJN.S61670.CrossRefGoogle Scholar
  152. 152.
    Hull LC, Farrell D, Grodzinski P. Highlights of recent developments and trends in cancer nanotechnology research-view from NCI Alliance for Nanotechnology in Cancer. Biotechnol Adv. 2014;32:666–78.  https://doi.org/10.1016/j.biotechadv.2013.08.003.CrossRefPubMedGoogle Scholar
  153. 153.
    Wang Z-Q, Liu K, Huo Z-J, Li X-C, Wang M, Liu P, et al. A cell-targeted chemotherapeutic nanomedicine strategy for oral squamous cell carcinoma therapy. J Nanobiotechnol. 2015;13:63.  https://doi.org/10.1186/s12951-015-0116-2.CrossRefGoogle Scholar
  154. 154.
    Ward BB, Dunham T, Majoros IJ, Baker JR. Targeted dendrimer chemotherapy in an animal model for head and neck squamous cell carcinoma. J Oral Maxillofac Surg. 2011;69:2452–9.  https://doi.org/10.1016/j.joms.2010.12.041.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Xu L, Yeudall WA, Yang H. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: its utility for local siRNA delivery. Acta Biomater. 2017;57:251–61.  https://doi.org/10.1016/j.actbio.2017.04.023.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65:5317–24.  https://doi.org/10.1158/0008-5472.CAN-04-3921.CrossRefPubMedGoogle Scholar
  157. 157.
    Fury MG, Sherman EJ, Rao SS, Wolden S, Smith-Marrone S, Mueller B, et al. Phase I study of weekly nab-paclitaxel + weekly cetuximab + intensity-modulated radiation therapy (IMRT) in patients with stage III-IVB head and neck squamous cell carcinoma (HNSCC). Ann Oncol. 2014;25:689–94.  https://doi.org/10.1093/annonc/mdt579.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Schell A, Ley J, Wu N, Trinkaus K, Wildes TM, Michel L, et al. Nab-paclitaxel-based compared to docetaxel-based induction chemotherapy regimens for locally advanced squamous cell carcinoma of the head and neck. Cancer Med. 2015;4:481–9.  https://doi.org/10.1002/cam4.382.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Adkins D, Ley J, Michel L, Wildes TM, Thorstad W, Gay HA, et al. nab-Paclitaxel, cisplatin, and 5-fluorouracil followed by concurrent cisplatin and radiation for head and neck squamous cell carcinoma. Oral Oncol. 2016;61:1–7.  https://doi.org/10.1016/j.oraloncology.2016.07.015.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Adkins D, Ley J, Trinkaus K, Thorstad W, Lewis J, Wildes T, et al. A phase 2 trial of induction nab-paclitaxel and cetuximab given with cisplatin and 5-fluorouracil followed by concurrent cisplatin and radiation for locally advanced squamous cell carcinoma of the head and neck. Cancer. 2013;119:766–73.  https://doi.org/10.1002/cncr.27741.CrossRefPubMedGoogle Scholar
  161. 161.
    Chun SG, Hughes R, Sumer BD, Myers LL, Truelson JM, Khan SA, et al. A phase I/II study of nab-Paclitaxel, cisplatin, and cetuximab with concurrent radiation therapy for locally advanced squamous cell cancer of the head and neck. Cancer Investig. 2017;35:23–31.  https://doi.org/10.1080/07357907.2016.1213275.CrossRefGoogle Scholar
  162. 162.
    Renan MJ. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog. 1993;7:139–46.CrossRefPubMedGoogle Scholar
  163. 163.
    Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996;56:2488–92.PubMedGoogle Scholar
  164. 164.
    Ha PK, Benoit NE, Yochem R, Sciubba J, Zahurak M, Sidransky D, et al. A transcriptional progression model for head and neck cancer. Clin Cancer Res. 2003;9:3058–64.PubMedGoogle Scholar
  165. 165.
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6:963–8.CrossRefPubMedGoogle Scholar
  166. 166.
    Chuang S-C, Scelo G, Tonita JM, Tamaro S, Jonasson JG, Kliewer EV, et al. Risk of second primary cancer among patients with head and neck cancers: a pooled analysis of 13 cancer registries. Int J Cancer. 2008;123:2390–6.  https://doi.org/10.1002/ijc.23798.CrossRefPubMedGoogle Scholar
  167. 167.
    Morris LGT, Sikora AG, Patel SG, Hayes RB, Ganly I. Second primary cancers after an index head and neck cancer: subsite-specific trends in the era of human papillomavirus-associated oropharyngeal cancer. J Clin Oncol. 2011;29:739–46.  https://doi.org/10.1200/JCO.2010.31.8311.CrossRefPubMedGoogle Scholar
  168. 168.
    Sheth SH, Johnson DE, Kensler TW, Bauman JE. Chemoprevention targets for tobacco-related head and neck cancer: past lessons and future directions. Oral Oncol. 2015;51:557–64.  https://doi.org/10.1016/j.oraloncology.2015.02.101.CrossRefPubMedGoogle Scholar
  169. 169.
    Siemianowicz K, Likus W, Dorecka M, Wilk R, Dziubdziela W, Markowski J. Chemoprevention of head and neck cancers: does it have only one face? BioMed Res Int. 2018.  https://doi.org/10.1155/2018/9051854.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Surh Y-J. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.  https://doi.org/10.1038/nrc1189.CrossRefPubMedGoogle Scholar
  171. 171.
    Herrero R, Quint W, Hildesheim A, Gonzalez P, Struijk L, Katki HA, et al. Reduced prevalence of oral human papillomavirus (HPV) 4 years after bivalent HPV vaccination in a randomized clinical trial in Costa Rica. PLoS One. 2013;8:e68329.  https://doi.org/10.1371/journal.pone.0068329.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Arbyn M, Xu L, Simoens C, Martin-Hirsch PP. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst Rev. 2018;5:CD009069.  https://doi.org/10.1002/14651858.CD009069.pub3.CrossRefPubMedGoogle Scholar
  173. 173.
    Syrjänen S, Rautava J. Vaccination expectations in HNSCC. In: Golusiński W, Leemans C, Dietz A, editors. HPV infection in head and neck cancer. Recent results in cancer research, vol. 206. Cham: Springer; 2017. pp. 257–67.  https://doi.org/10.1007/978-3-319-43580-0_21.
  174. 174.
    Giuliano AR, Palefsky JM, Goldstone S, Moreira ED, Penny ME, Aranda C, et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med. 2011;364:401–11.  https://doi.org/10.1056/NEJMoa0909537.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Markowitz LE, Dunne EF, Saraiya M, Chesson HW, Curtis CR, Gee J, et al. Human papillomavirus vaccination: recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb Mortal Wkly Rep Recomm Rep. 2014;63:1–30.Google Scholar
  176. 176.
    Fruscalzo A, Londero AP, Bertozzi S, Lellè RJ. Second-generation prophylactic HPV vaccines: current options and future strategies for vaccines development. Minerva Med. 2016;107:26–38.PubMedGoogle Scholar
  177. 177.
    Commissioner office Press Announcement—FDA approves expanded use of Gardasil 9 to include individuals 27 through 45 years old. 2018. http://www.fda.gov/news-events/press-announcements/fda-approves-expanded-use-gardasil-9-include-individuals-27-through-45-years-old. Accessed 13 Jan 2019.
  178. 178.
    Kim JW, Amin ARMR, Shin DM. Chemoprevention of head and neck cancer with green tea polyphenols. Cancer Prev Res (Phila). 2010;3:900–9.  https://doi.org/10.1158/1940-6207.CAPR-09-0131.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Fahey JW, Talalay P, Kensler TW. Notes from the field: “green” chemoprevention as frugal medicine. Cancer Prev Res (Phila). 2012;5:179–88.  https://doi.org/10.1158/1940-6207.CAPR-11-0572.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Eastham LL, Howard CM, Balachandran P, Pasco DS, Claudio PP. Eating green: shining light on the use of dietary phytochemicals as a modern approach in the prevention and treatment of head and neck cancers. Curr Top Med Chem. 2018;18:182–91.  https://doi.org/10.2174/1568026618666180112160713.CrossRefPubMedGoogle Scholar
  181. 181.
    Crooker K, Aliani R, Ananth M, Arnold L, Anant S, Thomas SM. A review of promising natural chemopreventive agents for head and neck cancer. Cancer Prev Res (Phila). 2018;11:441–50.  https://doi.org/10.1158/1940-6207.CAPR-17-0419.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology and Head and Neck Surgery, Kasturba Medical College, ManipalManipal Academy of Higher EducationUdupiIndia

Personalised recommendations