Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Association Between Muscular Strength and Bone Health from Children to Young Adults: A Systematic Review and Meta-analysis



Osteoporosis is a major worldwide health concern. The acquisition of bone mass during growth decreases the risk of osteoporosis later in life. Muscular strength is an important and modifiable factor to improve bone development in this period.


The aim of this review was to summarize the relationship between muscular strength and bone health.


Cross-sectional data from studies addressing this association from childhood to young adulthood were systematically searched. The DerSimonian and Laird method was used to compute pooled estimates of effect size and respective 95% CI. The meta-analyses were conducted separately for upper limbs or lower limbs muscular strength and for bone regions. Additionally, a regression model was used to estimate the influence of determinants such as age, lean mass, fat mass, height, weight and cardiorespiratory fitness in this association.


Thirty-nine published studies were included in the systematic review. The pooled effect size for the association of upper limbs muscular strength with upper limbs, spine and total body BMD ranged from 0.70 to 1.07 and with upper limbs, spine and total body BMC ranged from 1.84 to 1.30. The pooled effect size for the association of lower limbs muscular strength with lower limbs, spine and total body BMD ranged from 0.54 to 0.88 and with lower limbs, spine and total body BMC ranged between 0.81 and 0.71. All reported pooled effect size estimates were statistically significant.


This systematic review and meta-analysis supports that muscular strength should be considered as a useful skeletal health marker during development and a target outcome for interventions aimed at improving bone health.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability Statement

The data that support the findings of this review are available on reasonable request from the corresponding author (Vicente Martínez-Vizcaíno).


  1. 1.

    Rizzoli R, Bonjour JP, Ferrari SL. Osteoporosis, genetics and hormones. J Mol Endocrinol. 2001;26(2):79–94.

  2. 2.

    Leboime A, Confavreux CB, Mehsen N, Paccou J, David C, Roux C. Osteoporosis and mortality. Joint Bone Spine. 2010;77:S107–12.

  3. 3.

    Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294–305.

  4. 4.

    Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–39.

  5. 5.

    Henry YM, Fatayerji D, Eastell R. Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int. 2004;15(4):263–73.

  6. 6.

    Zemel B. Bone mineral accretion and its relationship to growth, sexual maturation and body composition during childhood and adolescence. World Rev Nutr Diet. 2013;106:39–45.

  7. 7.

    Reid IR. Relationships among body mass, its components, and bone. Bone. 2002;31(5):547–55.

  8. 8.

    Crabtree NJ, Kibirige MS, Fordham JN, Banks LM, Muntoni F, Chinn D, et al. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone. 2004;35(4):965–72.

  9. 9.

    Frost HM. Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc. 2000;32(5):911–7.

  10. 10.

    Rauch F, Schoenau E. The developing bone: slave or master of its cells and molecules? Pediatr Res. 2001;50(3):309–14.

  11. 11.

    Ruiz JR, Castro-Piñero J, España-Romero V, Artero EG, Ortega FB, Cuenca MM, et al. Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med. 2011;45(6):518–24.

  12. 12.

    Smith JJ, Eather N, Morgan PJ, Plotnikoff RC, Faigenbaum AD, Lubans DR. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. 2014;44(9):1209–23.

  13. 13.

    Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond). 2008;32(1):1–11.

  14. 14.

    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.

  15. 15.

    Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;01(4):1.

  16. 16.

    Higgins JPT GS. Selecting studies and collecting data. Cochrane Handbook of Systematic Reviews of Interventions, Version 5.1.0. Cochrane Collaboration. 2011;www.cochrane-handbook.org. Accessed Mar 2011.

  17. 17.

    Teegarden D, Proulx WR, Martin BR, Zhao J, McCabe GP, Lyle RM, et al. Peak bone mass in young women. J Bone Miner Res. 1995;10(5):711–5.

  18. 18.

    Maksud FAN, Kakehasi AM, Guimaraes M, Machado CJ, Barbosa AJA. Ghrelin plasma levels, gastric ghrelin cell density and bone mineral density in women with rheumatoid arthritis. Braz J Med Biol Res. 2017;50(6):e5977.

  19. 19.

    DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28(2):105–14.

  20. 20.

    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

  21. 21.

    Sterne JA, Egger M, Smith GD. Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. BMJ. 2001;323(7304):101–5.

  22. 22.

    Afghani A, Xie B, Wiswell RA, Gong J, Li Y, Anderson Johnson C. Bone mass of asian adolescents in China: influence of physical activity and smoking. Med Sci Sports Exerc. 2003;35(5):720–9.

  23. 23.

    Alfredson H, Nordstrom P, Lorentzon R. Total and regional bone mass in female soccer players. Calcif Tissue Int. 1996;59(6):438–42.

  24. 24.

    Alfredson H, Nordstrom P, Lorentzon R. Bone mass in female volleyball players: a comparison of total and regional bone mass in female volleyball players and nonactive females. Calcif Tissue Int. 1997;60(4):338–42.

  25. 25.

    Al Rassy N, Bakouny Z, Matta J, Frenn F, Maalouf G, Rizkallah M, et al. The relationships between bone variables and physical fitness across the BMI spectrum in young adult women. J Bone Miner Metab. 2019;37(3):520–8.

  26. 26.

    Chan DC, Lee WT, Lo DH, Leung JC, Kwok AW, Leung PC. Relationship between grip strength and bone mineral density in healthy Hong Kong adolescents. Osteoporos Int. 2008;19(10):1485–95.

  27. 27.

    Cheng JC, Leung SS, Lee WT, Lau JT, Maffulli N, Cheung AY, et al. Determinants of axial and peripheral bone mass in Chinese adolescents. Arch Dis Child. 1998;78(6):524–30.

  28. 28.

    Duncan CS, Blimkie CJ, Cowell CT, Burke S, Briody JN, Giles-Howman R. Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength. Med Sci Sports Exerc. 2002;34(2):286–94.

  29. 29.

    Eickhoff JA, Molczyk L, Gallagher JC, De Jong S. Influence of isotonic, isometric and isokinetic muscle strength on bone mineral density of the spine and femur in young women. Bone Miner. 1993;20(3):201–9.

  30. 30.

    Emslander HC, Sinaki M, Muhs JM, Chao EY, Wahner HW, Bryant SC, et al. Bone mass and muscle strength in female college athletes (runners and swimmers). In: Mayo clinic proceedings. Elsevier, Amsterdam; 1998. p 1151–60.

  31. 31.

    Ginty F, Rennie KL, Mills L, Stear S, Jones S, Prentice A. Positive, site-specific associations between bone mineral status, fitness, and time spent at high-impact activities in 16- to 18-year-old boys. Bone. 2005;36(1):101–10.

  32. 32.

    Gracia-Marco L, Vicente-Rodriguez G, Casajus JA, Molnar D, Castillo MJ, Moreno LA. Effect of fitness and physical activity on bone mass in adolescents: the HELENA Study. Eur J Appl Physiol. 2011;111(11):2671–80.

  33. 33.

    Gruodyte R, Jurimae J, Saar M, Maasalu M, Jurimae T. Relationships between areal bone mineral density and jumping height in pubertal girls with different physical activity patterns. J Sports Med Phys Fitness. 2009;49(4):474–9.

  34. 34.

    Gruodytė R, Jürimäe T. Bone mineral density and jumping height in pre-menarcheal and post-menarcheal physically active girls. Balt J Sport Health Sci. 2011;3(82):3–8.

  35. 35.

    Guimaraes BR, Pimenta LD, Massini DA, Dos Santos D, Siqueira L, Simionato AR, et al. Muscle strength and regional lean body mass influence on mineral bone health in young male adults. PLoS One. 2018;13(1):e0191769.

  36. 36.

    Guimarães BR, Pimenta LD, Massini DA, Santos DD, Siqueira LODC, Simionato AR, et al. Muscular strength and regional lean mass influence bone mineral health among young females. Rev Bras Med Esporte. 2018;24(3):186–91.

  37. 37.

    Kardinaal AF, Hoorneman G, Vaananen K, Charles P, Ando S, Maggiolini M, et al. Determinants of bone mass and bone geometry in adolescent and young adult women. Calcif Tissue Int. 2000;66(2):81–9.

  38. 38.

    Khawaja A, Sabbagh P, Prioux J, Zunquin G, Baquet G, Maalouf G, et al. Does muscular power predict bone mineral density in young adults? J Clin Densitom. 2019;22(3):311–20.

  39. 39.

    Madsen KL, Adams WC, Van ML. Effects of physical activity, body weight and composition, and muscular strength on bone density in young women. Med Sci Sports Exerc. 1998;30(1):114–20.

  40. 40.

    Miller LE, Nickols-Richardson SM, Wootten DF, Ramp WK, Herbert WG. Relationships among bone mineral density, body composition, and isokinetic strength in young women. Calcif Tissue Int. 2004;74(3):229–35.

  41. 41.

    Naka H, Iki M, Morita A, Ikeda Y. Effects of pubertal development, height, weight, and grip strength on the bone mineral density of the lumbar spine and hip in peripubertal Japanese children: Kyoto kids increase density in the skeleton study (Kyoto KIDS study). J Bone Miner Metab. 2005;23(6):463–9.

  42. 42.

    Nordstrom P, Thorsen K, Nordstrom G, Bergstrom E, Lorentzon R. Bone mass, muscle strength, and different body constitutional parameters in adolescent boys with a low or moderate exercise level. Bone. 1995;17(4):351–6.

  43. 43.

    Nordström P, Nordström G, Thorsen K, Lorentzon R. Local bone mineral density, muscle strength, and exercise in adolescent boys: a comparative study of two groups with different muscle strength and exercise levels. Calcif Tissue Int. 1996;58(6):402–8.

  44. 44.

    Nordstrom P, Nordstrom G, Lorentzon R. Correlation of bone density to strength and physical activity in young men with a low or moderate level of physical activity. Calcif Tissue Int. 1997;60(4):332–7.

  45. 45.

    Pettersson U, Nordstrom P, Lorentzon R. A comparison of bone mineral density and muscle strength in young male adults with different exercise level. Calcif Tissue Int. 1999;64(6):490–8.

  46. 46.

    Pettersson U, Alfredson H, Nordström P, Henriksson-Larsén K, Lorentzon R. Bone mass in female cross-country skiers: relationship between muscle strength and different BMD sites. Calcif Tissue Int. 2000;67(3):199–206.

  47. 47.

    Rebai H, Zarrouk N, Ghroubi S, Sellami M, Ayedi F, Baklouti S, et al. Long-term basketball playing enhances bone mass and isokinetic muscle strength. Isokinet Exerc Sci. 2012;20(3):221–7.

  48. 48.

    Ribom E, Ljunggren O, Piehl-Aulin K, Ljunghall S, Bratteby LE, Samuelson G, et al. Muscle strength correlates with total body bone mineral density in young women but not in men. Scand J Med Sci Sports. 2004;14(1):24–9.

  49. 49.

    Sandstrom P, Jonsson P, Lorentzon R, Thorsen K. Bone mineral density and muscle strength in female ice hockey players. Int J Sports Med. 2000;21(7):524–8.

  50. 50.

    Seabra A, Marques E, Brito J, Krustrup P, Abreu S, Oliveira J, et al. Muscle strength and soccer practice as major determinants of bone mineral density in adolescents. Joint Bone Spine. 2012;79(4):403–8.

  51. 51.

    Snow-Harter C, Bouxsein M, Lewis B, Charette S, Weinstein P, Marcus R. Muscle strength as a predictor of bone mineral density in young women. J Bone Miner Res. 1990;5(6):589–95.

  52. 52.

    Soderman K, Bergstrom E, Lorentzon R, Alfredson H. Bone mass and muscle strength in young female soccer players. Calcif Tissue Int. 2000;67(4):297–303.

  53. 53.

    Sutter T, Toumi H, Valery A, El Hage R, Pinti A, Lespessailles E. Relationships between muscle mass, strength and regional bone mineral density in young men. PLoS One. 2019;14(3):e0213681.

  54. 54.

    Taaffe DR, Marcus R. The muscle strength and bone density relationship in young women: dependence on exercise status. J Sports Med Phys Fitness. 2004;44(1):98–103.

  55. 55.

    Torres-Costoso A, Gracia-Marco L, Sanchez-Lopez M, Garcia-Prieto JC, Garcia-Hermoso A, Diez-Fernandez A, et al. Lean mass as a total mediator of the influence of muscular fitness on bone health in schoolchildren: a mediation analysis. J Sports Sci. 2015;33(8):817–30.

  56. 56.

    Ubago-Guisado E, Vlachopoulos D, Ferreira de Moraes AC, Torres-Costoso A, Wilkinson K, Metcalf B, et al. Lean mass explains the association between muscular fitness and bone outcomes in 13-year-old boys. Acta Paediatr. 2017;106(10):1658–65.

  57. 57.

    Valdimarsson O, Kristinsson JO, Stefansson SO, Valdimarsson S, Sigurdsson G. Lean mass and physical activity as predictors of bone mineral density in 16-20-year old women. J Intern Med. 1999;245(5):489–96.

  58. 58.

    Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez JA, Dorado C, Calbet J. High femoral bone mineral density accretion in prepubertal soccer players. J Med Sci Sports. 2004;36(10):1789–95.

  59. 59.

    Whittington J, Schoen E, Labounty L, Hamdy R, Ramsey M, Stone M, et al. Bone mineral density and content of collegiate throwers: Influence of maximum strength. J Sports Med Phys Fitness. 2009;49(4):464.

  60. 60.

    Witzke KA, Snow CM. Lean body mass and leg power best predict bone mineral density in adolescent girls. Med Sci Sports Exerc. 1999;31(11):1558–63.

  61. 61.

    Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):225–42.

  62. 62.

    Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(1):45–9.

  63. 63.

    Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308.

  64. 64.

    Artero EG, Espana-Romero V, Castro-Pinero J, Ruiz J, Jimenez-Pavon D, Aparicio V, et al. Criterion-related validity of field-based muscular fitness tests in youth. J Sports Med Phys Fitness. 2012;52(3):263–72.

  65. 65.

    Saint-Maurice PF, Laurson K, Welk GJ, Eisenmann J, Gracia-Marco L, Artero EG, et al. Grip strength cutpoints for youth based on a clinically relevant bone health outcome. Arch Osteoporos. 2018;13(1):92.

  66. 66.

    Croix MBDS, Deighan MA, Armstrong N. Assessment and interpretation of isokinetic muscle strength during growth and maturation. Sports Med. 2003;33(10):727–43.

  67. 67.

    Loomba-Albrecht LA, Styne DM. Effect of puberty on body composition. Curr Opin Endocrinol Diabetes Obes. 2009;16(1):10–5.

  68. 68.

    Jackowski SA, Erlandson MC, Mirwald RL, Faulkner RA, Bailey DA, Kontulainen SA, et al. Effect of maturational timing on bone mineral content accrual from childhood to adulthood: evidence from 15 years of longitudinal data. Bone. 2011;48(5):1178–85.

  69. 69.

    Menkes A, Mazel S, Redmond RA, Koffler K, Libanati CR, Gundemberg CM, et al. Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men. J Appl Physiol. 1993;74:2478–84.

  70. 70.

    Ploegmakers JJ, Hepping AM, Geertzen JH, Bulstra SK, Stevens M. Grip strength is strongly associated with height, weight and gender in childhood: a cross sectional study of 2241 children and adolescents providing reference values. J Physiother. 2013;59(4):255–61.

  71. 71.

    Hetherington-Rauth M, Bea JW, Blew RM, Funk JL, Hingle MD, Lee VR, et al. Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls. Bone. 2018;113:144–50.

  72. 72.

    Harvey N, Dennison E, Cooper C. Osteoporosis: impact on health and economics. Nat Rev Rheumatol. 2010;6(2):99.

  73. 73.

    Mueller D, Gandjour A. Cost effectiveness of ultrasound and bone densitometry for osteoporosis screening in post-menopausal women. Appl Health Econ Health Pol. 2008;6(2–3):113–35.

  74. 74.

    Nayak S, Greenspan SL. Cost-effectiveness of osteoporosis screening strategies for men. J Bone Miner Res. 2016;31(6):1189–99.

  75. 75.

    Si L, Winzenberg T, Chen M, Jiang Q, Neil A, Palmer A. Screening for osteoporosis in Chinese post-menopausal women: a health economic modelling study. Osteoporos Int. 2016;27(7):2259–69.

  76. 76.

    Taylor A, Konrad PT, Norman ME, Harcke HT. Total body bone mineral density in young children: influence of head bone mineral density. J Bone Miner Res. 1997;12(4):652–5.

  77. 77.

    Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386.

Download references

Author information

Correspondence to Vicente Martínez-Vizcaíno.

Ethics declarations

Conflict of interest

Ana Torres-Costoso, Purificación López-Muñoz, Celia Alvarez-Bueno, Iván Cavero-Redondo and Vicente Martínez-Vizcaíno declare that they have no conflict of interest.


The authors received no financial support for this research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torres-Costoso, A., López-Muñoz, P., Martínez-Vizcaíno, V. et al. Association Between Muscular Strength and Bone Health from Children to Young Adults: A Systematic Review and Meta-analysis. Sports Med (2020). https://doi.org/10.1007/s40279-020-01267-y

Download citation