Quantification of Neuromuscular Fatigue: What Do We Do Wrong and Why?

  • Nicolas Place
  • Guillaume Y MilletEmail author
Current Opinion


Neuromuscular fatigue (NMF) is usually assessed non-invasively in healthy, athletic or clinical populations with the combination of voluntary and evoked contractions. Although it might appear relatively straightforward to magnetically or electrically stimulate at different levels (cortical/spinal/muscle) and to measure mechanical and electromyographic responses to quantify neuromuscular adjustments due to sustained/repeated muscle contractions, there are drawbacks that researchers and clinicians need to bear in mind. The aim of this opinion paper is to highlight the pitfalls inevitably faced when NMF is quantified. The first problem might arise from the definition of fatigue itself and the parameter(s) used to measure it; for instance, measuring power vs. isometric torque may lead to different conclusions. Another potential limitation is the delay between exercise termination and the evaluation of neuromuscular function; the possible underestimation of exercise-induced neural and contractile impairment and misinterpretation of fatigue etiology will be discussed, as well as solutions recently proposed to overcome this problem. Quantification of NMF can also be biased (or not feasible) because of the techniques themselves (e.g. results may depend on stimulation intensity for transcranial magnetic stimulation) or the way data are analyzed (e.g. M wave peak-to-peak vs first phase amplitude). When available, alternatives recently suggested in the literature to overcome these pitfalls are considered and recommendations about the best practices to assess NMF (e.g. paying attention to the delay between exercise and testing, adapting the method to the characteristics of the population to be tested and considering the limitations associated with the techniques) are proposed.



The authors would like to thank Chris Donnelly for editing the English and all co-authors who have worked with them on the topic of the present opinion, in particular S. J. Aboodarda, D. Bachasson, B. Kayser, R. Kruger, V. Martin, D. Neyroud, J. Rodriguez-Falces, T. Rupp, J. Temesi, S. Vergès, H. Westerblad.

Compliance with Ethical Standards


No funding was received for the preparation of this manuscript.

Conflict of Interest

Nicolas Place and Guillaume Millet declare that they have no conflicts of interest.


  1. 1.
    Lou JS. Techniques in assessing fatigue in neuromuscular diseases. Phys Med Rehabil Clin N Am. 2012;23(1):11–22 (ix).PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Twomey R, Aboodarda SJ, Kruger R, Culos-Reed SN, Temesi J, Millet GY. Neuromuscular fatigue during exercise: methodological considerations, etiology and potential role in chronic fatigue. Neurophysiol Clin. 2017;47(2):95–110.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology. 2013;80(4):409–16.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):2228–38.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Millet GY, Bachasson D, Temesi J, Wuyam B, Feasson L, Verges S, et al. Potential interests and limits of magnetic and electrical stimulation techniques to assess neuromuscular fatigue. Neuromuscul Disord. 2012;22(Suppl 3):S181–6.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Millet GY, Martin V, Martin A, Verges S. Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol. 2011;111(10):2489–500.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Place N, Yamada T, Bruton JD, Westerblad H. Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres. Eur J Appl Physiol. 2010;110(1):1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Asmussen E. Muscle fatigue. Med Sci Sports. 1979;11(4):313–21.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Neyroud D, Maffiuletti NA, Kayser B, Place N. Mechanisms of fatigue and task failure induced by sustained submaximal contractions. Med Sci Sports Exerc. 2012;44(7):1243–51.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Place N, Lepers R, Deley G, Millet GY. Time course of neuromuscular alterations during a prolonged running exercise. Med Sci Sports Exerc. 2004;36(8):1347–56.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Temesi J, Arnal PJ, Rupp T, Feasson L, Cartier R, Gergele L, et al. Are females more resistant to extreme neuromuscular fatigue? Med Sci Sports Exerc. 2015;47(7):1372–82.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve. 1984;7(9):691–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sogaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol. 2006;573(Pt 2):511–23.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Simonson E, Weiser PC. Psychological aspects and physiological correlates of work and fatigue. Springfield, IL: CC Thomas; 1976. p. 336–405.Google Scholar
  15. 15.
    Bigland-Ritchie B, Johansson R, Lippold OC, Woods JJ. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. J Neurophysiol. 1983;50(1):313–24.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Edwards RH, Hill DK, Jones DA, Merton PA. Fatigue of long duration in human skeletal muscle after exercise. J Physiol. 1977;272(3):769–78.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bruton JD, Place N, Yamada T, Silva JP, Andrade FH, Dahlstedt AJ, et al. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol. 2008;586(1):175–84.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    MacIntosh BR, Rassier DE. What is fatigue? Can J Appl Physiol. 2002;27(1):42–55.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bachasson D, Millet GY, Decorte N, Wuyam B, Levy P, Verges S. Quadriceps function assessment using an incremental test and magnetic neurostimulation: a reliability study. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol. 2013;23(3):649–58.CrossRefGoogle Scholar
  20. 20.
    Bachasson D, Guinot M, Wuyam B, Favre-Juvin A, Millet GY, Levy P, et al. Neuromuscular fatigue and exercise capacity in fibromyalgia syndrome. Arthritis Care Res (Hoboken). 2013;65(3):432–40.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Bankole LC, Millet GY, Temesi J, Bachasson D, Ravelojaona M, Wuyam B, et al. Safety and efficacy of a 6-month home-based exercise program in patients with facioscapulohumeral muscular dystrophy: a randomized controlled trial. Medicine (Baltimore). 2016;95(31):e4497.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cheng AJ, Rice CL. Fatigue and recovery of power and isometric torque following isotonic knee extensions. J Appl Physiol. 2005;99(4):1446–52.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kruger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY. Fatigue and recovery measured with dynamic properties vs isometric force: effects of exercise intensity. J Exp Biol. 2019;222:jeb197483 (in press).PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kruger RL, Aboodarda SJ, Samozino P, Rice CL, Millet GY. Isometric versus dynamic measurements of fatigue: does age matter? A meta-analysis. Med Sci Sports Exerc. 2018;50(10):2132–44.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, et al. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS One. 2011;6(2):e17059.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol. 1992;72(5):1631–48.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Enoka RM, Baudry S, Rudroff T, Farina D, Klass M, Duchateau J. Unraveling the neurophysiology of muscle fatigue. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol. 2011;21(2):208–19.CrossRefGoogle Scholar
  28. 28.
    Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161–73.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol. 2009;587(1):271–83.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jubeau M, Rupp T, Perrey S, Temesi J, Wuyam B, Levy P, et al. Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise. PLoS One. 2014;9(2):e89157.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Thomas K, Elmeua M, Howatson G, Goodall S. Intensity-dependent contribution of neuromuscular fatigue after constant-load cycling. Med Sci Sports Exerc. 2016;48(9):1751–60.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Mira J, Lapole T, Souron R, Messonnier L, Millet GY, Rupp T. Cortical voluntary activation testing methodology impacts central fatigue. Eur J Appl Physiol. 2017;117:1845–57.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Taylor JL, Allen GM, Butler JE, Gandevia SC. Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. J Appl Physiol. 2000;89(1):305–13.CrossRefGoogle Scholar
  34. 34.
    Vernillo G, Temesi J, Martin M, Millet GY. Mechanisms of fatigue and recovery in upper versus lower limbs in men. Med Sci Sports Exerc. 2018;50(2):334–43.CrossRefGoogle Scholar
  35. 35.
    Levenez M, Kotzamanidis C, Carpentier A, Duchateau J. Spinal reflexes and coactivation of ankle muscles during a submaximal fatiguing contraction. J Appl Physiol. 2005;99(3):1182–8.CrossRefGoogle Scholar
  36. 36.
    Froyd C, Millet GY, Noakes TD. The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise. J Physiol. 2013;591(Pt 5):1339–46.CrossRefGoogle Scholar
  37. 37.
    Neyroud D, Kayser B, Place N. Are there critical fatigue thresholds? Aggregated vs. individual data. Front Physiol. 2016;7:376.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ducrocq GP, Hureau TJ, Meste O, Blain GM. Increased fatigue response to augmented deceptive feedback during cycling time trial. Med Sci Sports Exerc. 2017;49(8):1541–51.CrossRefGoogle Scholar
  39. 39.
    Monks MR, Compton CT, Yetman JD, Power KE, Button DC. Repeated sprint ability but not neuromuscular fatigue is dependent on short versus long duration recovery time between sprints in healthy males. J Sci Med Sport. 2017;20(6):600–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Doyle-Baker D, Temesi J, Medysky ME, Holash RJ, Millet GY. An innovative ergometer to measure neuromuscular fatigue immediately after cycling. Med Sci Sports Exerc. 2017;50:375–87.CrossRefGoogle Scholar
  41. 41.
    Aboodarda SJ, Mira J, Floreani M, Jaswal R, Moon SJ, Amery K, et al. Effects of endurance cycling training on neuromuscular fatigue in healthy active men. Part II: corticospinal excitability and voluntary activation. Eur J Appl Physiol. 2018;118(11):2295–305.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mira J, Aboodarda SJ, Floreani M, Jaswal R, Moon SJ, Amery K, et al. Effects of endurance training on neuromuscular fatigue in healthy active men. Part I: strength loss and muscle fatigue. Eur J Appl Physiol. 2018;118(11):2281–93.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Temesi J, Mattioni Maturana F, Peyrard A, Piucco T, Murias JM, Millet GY. The relationship between oxygen uptake kinetics and neuromuscular fatigue in high-intensity cycling exercise. Eur J Appl Physiol. 2017;117(5):969–78.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dekerle J, Ansdell P, Schäfer L, Greenhouse-Tucknott A, Wrightson J. Methodological issues with the assessment of voluntary activation using transcranial magnetic stimulation in the knee extensors. Eur J Appl Physiol. 2019;119(4):991–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Button DC, Behm DG. The effect of stimulus anticipation on the interpolated twitch technique. J Sports Sci Med. 2008;7(4):520–4.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Peyrard A, Sawh P, Fan S, Temesi J, Millet GY. Anticipation of magnetic and electrical stimuli does not impair maximal voluntary force production. Neurosci Lett. 2016;15(628):128–31.CrossRefGoogle Scholar
  47. 47.
    Bampouras TM, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Is maximum stimulation intensity required in the assessment of muscle activation capacity? J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol. 2012;22(6):873–7.CrossRefGoogle Scholar
  48. 48.
    Martin V, Millet GY, Martin A, Deley G, Lattier G. Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol. 2004;97(5):1923–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Rodriguez-Falces J, Maffiuletti NA, Place N. Spatial distribution of motor units recruited during electrical stimulation of the quadriceps muscle versus the femoral nerve. Muscle Nerve. 2013;48(5):752–61.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Giroux C, Roduit B, Rodriguez-Falces J, Duchateau J, Maffiuletti NA, Place N. Short vs. long pulses for testing knee extensor neuromuscular properties: does it matter? Eur J Appl Physiol. 2018;118(2):361–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Neyroud D, Temesi J, Millet GY, Verges S, Maffiuletti NA, Kayser B, et al. Comparison of electrical nerve stimulation, electrical muscle stimulation and magnetic nerve stimulation to assess the neuromuscular function of the plantar flexor muscles. Eur J Appl Physiol. 2015;115(7):1429–39.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Verges S, Maffiuletti NA, Kerherve H, Decorte N, Wuyam B, Millet GY. Comparison of electrical and magnetic stimulations to assess quadriceps muscle function. J Appl Physiol. 2009;106(2):701–10.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Tomazin K, Verges S, Decorte N, Oulerich A, Maffiuletti NA, Millet GY. Fat tissue alters quadriceps response to femoral nerve magnetic stimulation. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2011;122(4):842–7.CrossRefGoogle Scholar
  54. 54.
    Tomazin K, Verges S, Decorte N, Oulerich A, Millet GY. Effects of coil characteristics for femoral nerve magnetic stimulation. Muscle Nerve. 2010;41(3):406–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Jason LA, Evans M, Brown M, Porter N. What is fatigue? Pathological and nonpathological fatigue. PMR. 2010;2(5):327–31.CrossRefGoogle Scholar
  56. 56.
    Eldadah BA. Fatigue and fatigability in older adults. PMR. 2010;2(5):406–13.CrossRefGoogle Scholar
  57. 57.
    Behm DG, St-Pierre DM, Perez D. Muscle inactivation: assessment of interpolated twitch technique. J Appl Physiol. 1996;81(5):2267–73.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111(10):2399–407.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Place N, Casartelli N, Glatthorn JF, Maffiuletti NA. Comparison of quadriceps inactivation between nerve and muscle stimulation. Muscle Nerve. 2010;42(6):894–900.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rodriguez-Falces J, Place N. Recruitment order of quadriceps motor units: femoral nerve vs. direct quadriceps stimulation. Eur J Appl Physiol. 2013;113(12):3069–77.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ruggiero L, Bruce CD, Cotton PD, Dix GU, McNeil CJ. Prolonged low-frequency force depression is underestimated when assessed with doublets compared to tetani in the dorsiflexors. J Appl Physiol. 2019;126(5):1352–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Han TR, Shin HI, Kim IS. Magnetic stimulation of the quadriceps femoris muscle: comparison of pain with electrical stimulation. Am J Phys Med Rehabil. 2006;85(7):593–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Bachasson D, Temesi J, Bankole C, Lagrange E, Boutte C, Millet GY, et al. Assessement of quadriceps strength, endurance and fatigue in FSHD and CMT: benefits and limits of femoral nerve magnetic stimulation. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2014;125(2):396–405.CrossRefGoogle Scholar
  64. 64.
    Harris ML, Luo YM, Watson AC, Rafferty GF, Polkey MI, Green M, et al. Adductor pollicis twitch tension assessed by magnetic stimulation of the ulnar nerve. Am J Respir Crit Care Med. 2000;162(1):240–5.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Temesi J, Gruet M, Rupp T, Verges S, Millet GY. Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris. J Neuroeng Rehabil. 2014;21(11):40.CrossRefGoogle Scholar
  66. 66.
    McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL. Behaviour of the motoneurone pool in a fatiguing submaximal contraction. J Physiol. 2011;589(Pt 14):3533–44.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Temesi J, Rupp T, Martin V, Arnal PJ, Feasson L, Verges S, et al. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running. Med Sci Sports Exerc. 2014;46(6):1166–75.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet GY, et al. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation. Neuroscience. 2016;9(314):125–33.CrossRefGoogle Scholar
  69. 69.
    Rodriguez-Falces J, Place N. Muscle excitability during sustained maximal voluntary contractions by a separate analysis of the M-wave phases. Scand J Med Sci Sports. 2017;27(12):1761–75.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gandevia SC, McNeil CJ, Carroll TJ, Taylor JL. Twitch interpolation: superimposed twitches decline progressively during a tetanic contraction of human adductor pollicis. J Physiol. 2013;591(5):1373–83.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Neyroud D, Cheng AJ, Bourdillon N, Kayser B, Place N, Westerblad H. Muscle fatigue affects the interpolated twitch technique when assessed using electrically-induced contractions in human and rat muscles. Front Physiol. 2016;7:252.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Place N, Yamada T, Bruton JD, Westerblad H. Interpolated twitches in fatiguing single mouse muscle fibres: implications for the assessment of central fatigue. J Physiol. 2008;586(11):2799–805.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rodriguez-Falces J, Place N. Determinants, analysis and interpretation of the muscle compound action potential (M wave) in humans: implications for the study of muscle fatigue. Eur J Appl Physiol. 2018;118(3):501–21.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Rodriguez-Falces J, Place N. Sarcolemmal membrane excitability during repeated intermittent maximal voluntary contractions. Exp Physiol. 2019;104(1):136–48.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Merton PA. Interaction between muscle fibres in a twitch. J Physiol. 1954;124(2):311–24.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Belanger AY, McComas AJ. Extent of motor unit activation during effort. J Appl Physiol Respir Environ Exerc Physiol. 1981;51(5):1131–5.PubMedPubMedCentralGoogle Scholar
  77. 77.
    de Haan A, Gerrits KH, de Ruiter CJ. Counterpoint: the interpolated twitch does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol. 2009;107(1):355–7.CrossRefGoogle Scholar
  78. 78.
    Taylor JL. Point: the interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol. 2009;107(1):354–5.CrossRefGoogle Scholar
  79. 79.
    Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons?: the flush model. Sports Med. 2011;41(6):489–506.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
  2. 2.Univ Lyon, UJM-Saint-Etienne, Inter-University Laboratory of Human Movement Biology, EA 7424Saint-ÉtienneFrance
  3. 3.Faculty of KinesiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations