Advertisement

Sports Medicine

, Volume 49, Issue 5, pp 647–657 | Cite as

Learned Helplessness After Anterior Cruciate Ligament Reconstruction: An Altered Neurocognitive State?

  • Julie P. Burland
  • Adam S. Lepley
  • Marc Cormier
  • Lindsay J. DiStefano
  • Robert Arciero
  • Lindsey K. LepleyEmail author
Current Opinion

Abstract

Traumatic knee injuries, such as anterior cruciate ligament (ACL) sprains, have detrimental effects on long-term health as they initiate a cycle of chronic pain, physical inactivity, and disability. Alterations in strength and neural activity are factors that contribute to rehabilitation failure after ACL reconstruction (ACLR); however, psychological deficits also hinder rehabilitative success. Neural impairments observed following injury and ACLR may be associated with psychological dysfunction, a phenomenon defined as learned helplessness (LH). The proposed framework establishes the link between depressed neural activity and psychological dysfunction after ACL injury using foundational evidence from neuroscience and psychology to support the integration of LH into recovery.

Notes

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Julie Burland, Adam Lepley, Marc Cormier, Lindsay DiStefano, Robert Arciero, and Lindsey Lepley declare that they have no conflicts of interest relevant to the content of this article.

Supplementary material

40279_2019_1054_MOESM1_ESM.pdf (262 kb)
Supplementary material 1 (PDF 261 kb)
40279_2019_1054_MOESM2_ESM.pdf (344 kb)
Supplementary material 2 (PDF 344 kb)

References

  1. 1.
    Mather RC 3rd, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ, et al. Societal and economic impact of anterior cruciate ligament tears. J Bone Joint Surg Am. 2013;95(19):1751–9.  https://doi.org/10.2106/JBJS.L.01705.Google Scholar
  2. 2.
    Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):1512–32.  https://doi.org/10.1177/0363546506286866.Google Scholar
  3. 3.
    Ardern CL. Anterior cruciate ligament reconstruction-not exactly a one-way ticket back to the preinjury level: a review of contextual factors affecting return to sport after surgery. Sports Health. 2015;7(3):224–30.  https://doi.org/10.1177/1941738115578131.Google Scholar
  4. 4.
    Logerstedt D, Di Stasi S, Grindem H, Lynch A, Eitzen I, Engebretsen L, et al. Self-reported knee function can identify athletes who fail return-to-activity criteria up to 1 year after anterior cruciate ligament reconstruction: a Delaware-Oslo ACL cohort study. J Orthop Sports Phys Ther. 2014;44(12):914–23.  https://doi.org/10.2519/jospt.2014.4852.Google Scholar
  5. 5.
    Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48(21):1543–52.  https://doi.org/10.1136/bjsports-2013-093398.Google Scholar
  6. 6.
    Lentz TA, Zeppieri G Jr, Tillman SM, Indelicato PA, Moser MW, George SZ, et al. Return to preinjury sports participation following anterior cruciate ligament reconstruction: contributions of demographic, knee impairment, and self-report measures. J Orthop Sports Phys Ther. 2012;42(11):893–901.  https://doi.org/10.2519/jospt.2012.4077.Google Scholar
  7. 7.
    Lepley LK. Deficits in quadriceps strength and patient-oriented outcomes at return to activity after ACL reconstruction: a review of the current literature. Sports Health. 2015;7(3):231–8.  https://doi.org/10.1177/1941738115578112.Google Scholar
  8. 8.
    Yabroudi MA, Bjornsson H, Lynch AD, Muller B, Samuelsson K, Tarabichi M, et al. Predictors of revision surgery after primary anterior cruciate ligament reconstruction. Orthop J Sports Med. 2016;4(9):2325967116666039.  https://doi.org/10.1177/2325967116666039.Google Scholar
  9. 9.
    Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy. 2005;21(8):948–57.  https://doi.org/10.1016/j.arthro.2005.04.110.Google Scholar
  10. 10.
    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76.  https://doi.org/10.1177/0363546515621554.Google Scholar
  11. 11.
    Cinque ME, Dornan GJ, Chahla J, Moatshe G, LaPrade RF. High rates of osteoarthritis develop after anterior cruciate ligament surgery: an analysis of 4108 patients. Am J Sports Med. 2017;5:6.  https://doi.org/10.1177/0363546517730072.Google Scholar
  12. 12.
    Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Sports participation 2 years after anterior cruciate ligament reconstruction in athletes who had not returned to sport at 1 year: a prospective follow-up of physical function and psychological factors in 122 athletes. Am J Sports Med. 2015;43(4):848–56.  https://doi.org/10.1177/0363546514563282.Google Scholar
  13. 13.
    Bauer M, Feeley BT, Wawrzyniak JR, Pinkowsky G, Gallo RA. Factors affecting return to play after anterior cruciate ligament reconstruction: a review of the current literature. Phys Sportsmed. 2014;42(4):71–9.  https://doi.org/10.3810/psm.2014.11.2093.Google Scholar
  14. 14.
    Dingenen B, Gokeler A. Optimization of the return-to-sport paradigm after anterior cruciate ligament reconstruction: a critical step back to move forward. Sports Med. 2017.  https://doi.org/10.1007/s40279-017-0674-6.Google Scholar
  15. 15.
    Harkey MS, Luc BA, Golightly YM, Thomas AC, Driban JB, Hackney AC, et al. Osteoarthritis-related biomarkers following anterior cruciate ligament injury and reconstruction: a systematic review. Osteoarthr Cartil. 2015;23(1):1–12.  https://doi.org/10.1016/j.joca.2014.09.004.Google Scholar
  16. 16.
    Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock MI, Keays AC. Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med. 2010;38(3):455–63.  https://doi.org/10.1177/0363546509350914.Google Scholar
  17. 17.
    Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train. 2014;49(6):806–19.  https://doi.org/10.4085/1062-6050-49.3.35.Google Scholar
  18. 18.
    Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. Res Rev. 2000;9(2):25.Google Scholar
  19. 19.
    Delay BS, Smolinski RJ, Wind WM, Bowman DS. Current practices and opinions in ACL reconstruction and rehabilitation: results of a survey of the American Orthopaedic Society for Sports Medicine. Am J Knee Surg. 2001;14(2):85–91.Google Scholar
  20. 20.
    Failla MJ, Arundale AJ, Logerstedt DS, Snyder-Mackler L. Controversies in knee rehabilitation: anterior cruciate ligament injury. Clin Sports Med. 2015;34(2):301–12.  https://doi.org/10.1016/j.csm.2014.12.008.Google Scholar
  21. 21.
    Heijne A, Axelsson K, Werner S, Biguet G. Rehabilitation and recovery after anterior cruciate ligament reconstruction: patients’ experiences. Scand J Med Sci Sports. 2008;18(3):325–35.Google Scholar
  22. 22.
    Van Grinsven S, Van Cingel REH, Holla CJM, Van Loon CJM. Evidence-based rehabilitation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2010;18(8):1128–44.Google Scholar
  23. 23.
    Ardern CL, Kvist J, Webster KE. Psychological aspects of anterior cruciate ligament injuries. Oper Tech Sports Med. 2015;24(1):77–83.Google Scholar
  24. 24.
    Ross MD. The relationship between functional levels and fear-avoidance beliefs following anterior cruciate ligament reconstruction. J Orthop Traumatol. 2010;11(4):237–43.  https://doi.org/10.1007/s10195-010-0118-7.Google Scholar
  25. 25.
    Waddell G, Newton M, Henderson I, Somerville D, Main CJ. A fear-avoidance beliefs questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain. 1993;52(2):157–68.Google Scholar
  26. 26.
    Langford JL, Webster KE, Feller JA. A prospective longitudinal study to assess psychological changes following anterior cruciate ligament reconstruction surgery. Br J Sports Med. 2009;43(5):377–8.Google Scholar
  27. 27.
    Tjong VK, Murnaghan ML, Nyhof-Young JM, Ogilvie-Harris DJ. A qualitative investigation of the decision to return to sport after anterior cruciate ligament reconstruction: to play or not to play. Am J Sports Med. 2014;42(2):336–42.  https://doi.org/10.1177/0363546513508762.Google Scholar
  28. 28.
    Kori S, Miller R, Todd D. Kineisiophobia: a new view of chronic pain behavior. Pain Manag. 1990;3(1):35–43.Google Scholar
  29. 29.
    Burland JP, Toonstra J, Werner JL, Mattacola CG, Howell DM, Howard JS. Decision to return to sport after anterior cruciate ligament reconstruction, part I: a qualitative investigation of psychosocial factors. J Athl Train. 2018.  https://doi.org/10.4085/1062-6050-313-16.Google Scholar
  30. 30.
    Salomons TV, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, et al. Perceived helplessness is associated with individual differences in the central motor output system. Eur J Neurosci. 2012;35(9):1481–7.  https://doi.org/10.1111/j.1460-9568.2012.08048.x.Google Scholar
  31. 31.
    Maier SFS. Learned helplessness: theory and evidence. J Exp Psych. 1976;105:3–46.Google Scholar
  32. 32.
    Maier SF, Seligman ME. Learned helplessness at fifty: insights from neuroscience. Psychol Rev. 2016;123(4):349–67.  https://doi.org/10.1037/rev0000033.Google Scholar
  33. 33.
    Taub E, Crago JE, Burgio LD, Groomes TE, Cook EW 3rd, DeLuca SC, et al. An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav. 1994;61(2):281–93.  https://doi.org/10.1901/jeab.1994.61-281.Google Scholar
  34. 34.
    Nakling AE, Aarsland D, Naess H, Wollschlaeger D, Fladby T, Hofstad H, et al. Cognitive deficits in chronic stroke patients: neuropsychological assessment, depression, and self-reports. Dement Geriatr Cogn Dis Extra. 2017;7(2):283–96.  https://doi.org/10.1159/000478851.Google Scholar
  35. 35.
    Taub E, Uswatte G, Morris DM. Improved motor recovery after stroke and massive cortical reorganization following Constraint-Induced Movement therapy. Phys Med Rehabil Clin N Am. 2003;77–91:ix.Google Scholar
  36. 36.
    Klein DC, Fencil-Morse E, Seligman ME. Learned helplessness, depression, and the attribution of failure. J Pers Soc Psychol. 1976;33(5):508–16.Google Scholar
  37. 37.
    Samwel HJ, Evers AW, Crul BJ, Kraaimaat FW. The role of helplessness, fear of pain, and passive pain-coping in chronic pain patients. Clin J Pain. 2006;22(3):245–51.  https://doi.org/10.1097/01.ajp.0000173019.72365.f5.Google Scholar
  38. 38.
    Kim Y, Perova Z, Mirrione MM, Pradhan K, Henn FA, Shea S, et al. Whole-brain mapping of neuronal activity in the learned helplessness model of depression. Front Neural Circ. 2016;10:3.  https://doi.org/10.3389/fncir.2016.00003.Google Scholar
  39. 39.
    Taub E, Uswatte G, Mark VW, Morris DM. The learned nonuse phenomenon: implications for rehabilitation. Eura Medicophys. 2006;42(3):241–56.Google Scholar
  40. 40.
    Bien DP, Dubuque TJ. Considerations for late stage ACL rehabilitation and return to sport to limit re-injury risk and maximize athletic performance. Int J Sports Phys Ther. 2015;10(2):256–71.Google Scholar
  41. 41.
    Gobbi A, Francisco R. Factors affecting return to sports after anterior cruciate ligament reconstruction with patellar tendon and hamstring graft: a prospective clinical investigation. Knee Surg Sports Traumatol Arthrosc. 2006;14(10):1021–8.  https://doi.org/10.1007/s00167-006-0050-9.Google Scholar
  42. 42.
    Christino MA, Fantry AJ, Vopat BG. Psychological aspects of recovery following anterior cruciate ligament reconstruction. J Am Acad Orthop Surg. 2015;23(8):501–9.  https://doi.org/10.5435/JAAOS-D-14-00173.Google Scholar
  43. 43.
    Kvist J, Ek A, Sporrstedt K, Good L. Fear of re-injury: a hindrance for returning to sports after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2005;13(5):393–7.Google Scholar
  44. 44.
    Lentz TA, Zeppieri G Jr, George SZ, Tillman SM, Moser MW, Farmer KW, et al. Comparison of physical impairment, functional, and psychosocial measures based on fear of reinjury/lack of confidence and return-to-sport status after ACL reconstruction. Am J Sports Med. 2015;43(2):345–53.  https://doi.org/10.1177/0363546514559707.Google Scholar
  45. 45.
    Pietrosimone BG, Lepley AS, Ericksen HM, Gribble PA, Levine J. Quadriceps strength and corticospinal excitability as predictors of disability after anterior cruciate ligament reconstruction. J Sport Rehabil. 2013;22(1):1–6.Google Scholar
  46. 46.
    Morrey MA, Stuart MJ, Smith AM, Wiese-Bjornstal DM. A longitudinal examination of athletes’ emotional and cognitive responses to anterior cruciate ligament injury. Clin J Sport Med. 1999;9(2):63–9.Google Scholar
  47. 47.
    Everhart JS, Best TM, Flanigan DC. Psychological predictors of anterior cruciate ligament reconstruction outcomes: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2013;5:6.  https://doi.org/10.1007/s00167-013-2699-1.Google Scholar
  48. 48.
    Feller J, Webster KE. Return to sport following anterior cruciate ligament reconstruction. Int Orthop. 2013;37(2):285–90.  https://doi.org/10.1007/s00264-012-1690-7.Google Scholar
  49. 49.
    te Wierike SC, van der Sluis A, van den Akker-Scheek I, Elferink-Gemser MT, Visscher C. Psychosocial factors influencing the recovery of athletes with anterior cruciate ligament injury: a systematic review. Scand J Med Sci Sports. 2013;23(5):527–40.  https://doi.org/10.1111/sms.12010.Google Scholar
  50. 50.
    Podlog L, Eklund RC. Return to sport after serious injury: a retrospective examination of motivation and psychological outcomes. J Sport Rehabil. 2005;14(1):20–34.Google Scholar
  51. 51.
    Leeuw M, Goossens ME, Linton SJ, Crombez G, Boersma K, Vlaeyen JW. The fear-avoidance model of musculoskeletal pain: current state of scientific evidence. J Behav Med. 2007;30(1):77–94.  https://doi.org/10.1007/s10865-006-9085-0.Google Scholar
  52. 52.
    Vlaeyen JW, Linton SJ. Fear-avoidance and its consequences in chronic musculoskeletal pain: a state of the art. Pain. 2000;85(3):317–32.Google Scholar
  53. 53.
    Chmielewski TL, Jones D, Day T, Tillman SM, Lentz TA, George SZ. The association of pain and fear of movement/reinjury with function during anterior cruciate ligament reconstruction rehabilitation. J Orthop Sports Phys Ther. 2008;38(12):746–53.Google Scholar
  54. 54.
    Wiese-Bjornstal DM. Psychology and socioculture affect injury risk, response, and recovery in high-intensity athletes: a consensus statement. Scand J Med Sci Sports. 2010;20(Suppl 2):103–11.  https://doi.org/10.1111/j.1600-0838.2010.01195.x.Google Scholar
  55. 55.
    Flanigan DC, Everhart JS, Pedroza A, Smith T, Kaeding CC. Fear of reinjury (kinesiophobia) and persistent knee symptoms are common factors for lack of return to sport after anterior cruciate ligament reconstruction. Arthroscopy. 2013;29(8):1322–9.  https://doi.org/10.1016/j.arthro.2013.05.015.Google Scholar
  56. 56.
    Tichonova A, Rimdeikiene I, Petruseviciene D, Lendraitiene E. The relationship between pain catastrophizing, kinesiophobia and subjective knee function during rehabilitation following anterior cruciate ligament reconstruction and meniscectomy: a pilot study. Medicina (Kaunas). 2016;52(4):229–37.  https://doi.org/10.1016/j.medici.2016.07.005.Google Scholar
  57. 57.
    George SZ, Lentz TA, Zeppieri G, Lee D, Chmielewski TL. Analysis of shortened versions of the Tampa scale for kinesiophobia and pain catastrophizing scale for patients after anterior cruciate ligament reconstruction. Clin J Pain. 2012;28(1):73–80.  https://doi.org/10.1097/AJP.0b013e31822363f4.Google Scholar
  58. 58.
    Thomeé P, Währborg P, Börjesson M, Thome R, Eriksson BI, Karlsson J. Self-efficacy, symptoms and physical activity in patients with an anterior cruciate ligament injury: a prospective study. Scand J Med Sci Sports. 2007;17(3):238–45.Google Scholar
  59. 59.
    Chmielewski TL, Zeppieri G Jr, Lentz TA, Tillman SM, Moser MW, Indelicato PA, et al. Longitudinal changes in psychosocial factors and their association with knee pain and function after anterior cruciate ligament reconstruction. Phys Ther. 2011;91(9):1355–66.  https://doi.org/10.2522/ptj.20100277.Google Scholar
  60. 60.
    Brand E, Nyland J. Patient outcomes following anterior cruciate ligament reconstruction: the influence of psychological factors. Orthopedics. 2009;32(5):335.Google Scholar
  61. 61.
    Thomeé P, Währborg P, Börjesson M, Thomeé R, Eriksson B, Karlsson J. Self-efficacy of knee function as a pre-operative predictor of outcome 1 year after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16(2):118–27.Google Scholar
  62. 62.
    Brewer BW, Van Raalte JL, Cornelius AE, Petitpas AJ, Sklar JH, Pohlman MH, et al. Psychological factors, rehabilitation adherence, and rehabilitation outcome after anterior cruciate ligament reconstruction. Rehabil Psychtr. 2000;45(1):20–37.  https://doi.org/10.1037/0090-5550.45.1.20.Google Scholar
  63. 63.
    Scherzer CB, Brewer BW, Cornelius AE, Van Raalte JL, Petitpas AJ, Sklar JH, et al. Psychological skills and adherence to rehabilitation after reconstruction of the anterior cruciate ligament. J Sport Rehabil. 2001;10(3):165–72.Google Scholar
  64. 64.
    Garcia GH, Wu HH, Park MJ, Tjoumakaris FP, Tucker BS, Kelly JD 4th, et al. Depression symptomatology and anterior cruciate ligament injury: incidence and effect on functional outcome–a prospective cohort study. Am J Sports Med. 2016;44(3):572–9.  https://doi.org/10.1177/0363546515612466.Google Scholar
  65. 65.
    Wu HH, Liu M, Dines JS, Kelly JD, Garcia GH. Depression and psychiatric disease associated with outcomes after anterior cruciate ligament reconstruction. World J Orthop. 2016;7(11):709–17.  https://doi.org/10.5312/wjo.v7.i11.709.Google Scholar
  66. 66.
    Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943–8.  https://doi.org/10.1177/0363546507299532.Google Scholar
  67. 67.
    Pietrosimone BG, McLeod MM, Lepley AS. A theoretical framework for understanding neuromuscular response to lower extremity joint injury. Sports Health. 2012;4(1):31–5.  https://doi.org/10.1177/1941738111428251.Google Scholar
  68. 68.
    Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7):1271–88.  https://doi.org/10.1007/s40279-016-0666-y.Google Scholar
  69. 69.
    Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008;27(3):405–24.  https://doi.org/10.1016/j.csm.2008.02.001.Google Scholar
  70. 70.
    Hart JM, Pietrosimone B, Hertel J, Ingersoll CD. Quadriceps activation following knee injuries: a systematic review. J Athl Train. 2010;45(1):87–97.  https://doi.org/10.4085/1062-6050-45.1.87.Google Scholar
  71. 71.
    Stokes M, Young A. The contribution of reflex inhibition to arthrogenous muscle weakness. Clin Sci (Lond). 1984;67(1):7–14.Google Scholar
  72. 72.
    Becker R, Berth A, Nehring M, Awiszus F. Neuromuscular quadriceps dysfunction prior to osteoarthritis of the knee. J Orthop Res. 2004;22(4):768–73.  https://doi.org/10.1016/j.orthres.2003.11.004.Google Scholar
  73. 73.
    Harkey MS, Luc-Harkey BA, Lepley AS, Grindstaff TL, Gribble P, Blackburn JT, et al. Persistent muscle inhibition after acl reconstruction: role of reflex excitability. Med Sci Sports Exerc. 2016.  https://doi.org/10.1249/mss.0000000000001046.Google Scholar
  74. 74.
    Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM. Neuromuscular consequences of anterior cruciate ligament injury. Clin Sports Med. 2008;27(3):383–404.  https://doi.org/10.1016/j.csm.2008.03.004.Google Scholar
  75. 75.
    Palmieri-Smith RM, Thomas AC. A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc Sport Sci Rev. 2009;37(3):147–53.  https://doi.org/10.1097/JES.0b013e3181aa6669.Google Scholar
  76. 76.
    Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA. Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6):665–74.  https://doi.org/10.4085/1062-6050-50.1.11.Google Scholar
  77. 77.
    Heroux ME, Tremblay F. Corticomotor excitability associated with unilateral knee dysfunction secondary to anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2006;14(9):823–33.  https://doi.org/10.1007/s00167-006-0063-4.Google Scholar
  78. 78.
    Lepley AS, Bahhur NO, Murray AM, Pietrosimone BG. Quadriceps corticomotor excitability following an experimental knee joint effusion. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):1010–7.  https://doi.org/10.1007/s00167-013-2816-1.Google Scholar
  79. 79.
    Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee. 2014;21(3):736–42.  https://doi.org/10.1016/j.knee.2014.02.008.Google Scholar
  80. 80.
    Norte GE, Pietrosimone BG, Hart JM, Hertel J, Ingersoll CD. Relationship between transcranial magnetic stimulation and percutaneous electrical stimulation in determining the quadriceps central activation ratio. Am J Phys Med Rehabil. 2010;89(12):986–96.  https://doi.org/10.1097/PHM.0b013e3181f1c00e.Google Scholar
  81. 81.
    Smallheer BA, Vollman M, Dietrich MS. Learned helplessness and depressive symptoms following myocardial infarction. Clin Nurs Res. 2017.  https://doi.org/10.1177/1054773816689752.Google Scholar
  82. 82.
    Sterr A, Freivogel S, Schmalohr D. Neurobehavioral aspects of recovery: assessment of the learned nonuse phenomenon in hemiparetic adolescents. Arch Phys Med Rehabil. 2002;83(12):1726–31.  https://doi.org/10.1053/apmr.2002.35660.Google Scholar
  83. 83.
    Schallert T, Leasure JL, Kolb B. Experience-associated structural events, subependymal cellular proliferative activity, and functional recovery after injury to the central nervous system. J Cereb Blood Flow Metab. 2000;20(11):1513–28.  https://doi.org/10.1097/00004647-200011000-00001.Google Scholar
  84. 84.
    Liepert J, Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E, et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett. 1998;250(1):5–8.Google Scholar
  85. 85.
    Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017;47(3):180–9.  https://doi.org/10.2519/jospt.2017.7003.Google Scholar
  86. 86.
    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828–39.  https://doi.org/10.1111/sms.12435.Google Scholar
  87. 87.
    George SZ, Valencia C, Beneciuk JM. A psychometric investigation of fear-avoidance model measures in patients with chronic low back pain. J Orthop Sports Phys Ther. 2010;40(4):197–205.  https://doi.org/10.2519/jospt.2010.3298.Google Scholar
  88. 88.
    Lepley LK, Palmieri-Smith RM. Quadriceps strength, muscle activation failure, and patient-reported function at the time of return to activity in patients following anterior cruciate ligament reconstruction: a cross-sectional study. J Orthop Sports Phys Ther. 2015;45(12):1017–25.  https://doi.org/10.2519/jospt.2015.5753.Google Scholar
  89. 89.
    Burland JP, Kostyun RO, Kostyun KJ, Solomito M, Nissen C, Milewski MD. Clinical outcome measures and return-to-sport timing in adolescent athletes after anterior cruciate ligament (ACL) reconstruction. J Athl Train. 2018.  https://doi.org/10.4085/1062-6050-302-16.Google Scholar
  90. 90.
    Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med. 2013;41(7):1549–58.  https://doi.org/10.1177/0363546513489284.Google Scholar
  91. 91.
    Lepley AS, Pietrosimone B, Cormier ML. Quadriceps function, knee pain, and self-reported outcomes in patients with anterior cruciate ligament reconstruction. J Athl Train. 2018;5:6.  https://doi.org/10.4085/1062-6050-245-16.Google Scholar
  92. 92.
    Pietrosimone B, Lepley AS, Harkey MS, Luc-Harkey BA, Blackburn JT, Gribble PA, et al. Quadriceps strength predicts self-reported function post-ACL reconstruction. Med Sci Sports Exerc. 2016;48(9):1671–7.  https://doi.org/10.1249/MSS.0000000000000946.Google Scholar
  93. 93.
    Quinless FW, Nelson MA. Development of a measure of learned helplessness. Nurs Res. 1988;37(1):11–5.Google Scholar
  94. 94.
    Nicassio PM, Wallston KA, Callahan LF, Herbert M, Pincus T. The measurement of helplessness in rheumatoid arthritis. The development of the arthritis helplessness index. J Rheumatol. 1985;12(3):462.Google Scholar
  95. 95.
    Kvist J. Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med. 2004;34(4):269–80.Google Scholar
  96. 96.
    Swank KR, DiBartola AC, Everhart JS, Kaeding CC, Magnussen RA, Flanigan DC. T The effect of femoral nerve block on quadriceps strength in anterior cruciate ligament reconstruction: a systematic review. Arthroscopy. 2017;33(5):1082.  https://doi.org/10.1016/j.arthro.2017.01.034.Google Scholar
  97. 97.
    Lepley LK, Grooms DR, Burland JP, Davi SM, Mosher JL, Cormier ML, et al. Eccentric cross-exercise after anterior cruciate ligament reconstruction: novel case series to enhance neuroplasticity. Phys Ther Sport. 2018.  https://doi.org/10.1016/j.ptsp.2018.08.010.Google Scholar
  98. 98.
    Lepley LK, Lepley AS, Onate JA, Grooms DR. Eccentric exercise to enhance neuromuscular control. Sports Health. 2017;9(4):333–40.  https://doi.org/10.1177/1941738117710913.Google Scholar
  99. 99.
    Lepley LK, Palmieri-Smith RM. Cross-education strength and activation after eccentric exercise. J Athl Train. 2014;49(5):582–9.  https://doi.org/10.4085/1062-6050-49.3.24.Google Scholar
  100. 100.
    Lepley LK, Wojtys EM, Palmieri-Smith RM. Combination of eccentric exercise and neuromuscular electrical stimulation to improve quadriceps function post-ACL reconstruction. Knee. 2015;22(3):270–7.  https://doi.org/10.1016/j.knee.2014.11.013.Google Scholar
  101. 101.
    Kidgell DJ, Frazer AK, Daly RM, Rantalainen T, Ruotsalainen I, Ahtiainen J, et al. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience. 2015;300:566–75.  https://doi.org/10.1016/j.neuroscience.2015.05.057.Google Scholar
  102. 102.
    Carr LJ, Harrison LM, Stephens JA. Evidence for bilateral innervation of certain homologous motoneurone pools in man. J Physiol. 1994;475(2):217–27.Google Scholar
  103. 103.
    Harkey MS, Gribble PA, Pietrosimone BG. Disinhibitory interventions and voluntary quadriceps activation: a systematic review. J Athl Train. 2014;49(3):411–21.  https://doi.org/10.4085/1062-6050-49.1.04.Google Scholar
  104. 104.
    Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. Philadelphia: Lippincott Williams & Wilkins; 2012.Google Scholar
  105. 105.
    Chang WJ, Bennell KL, Hodges PW, Hinman RS, Young CL, Buscemi V, et al. Addition of transcranial direct current stimulation to quadriceps strengthening exercise in knee osteoarthritis: a pilot randomised controlled trial. PLoS One. 2017;12(6):e0180328.  https://doi.org/10.1371/journal.pone.0180328.Google Scholar
  106. 106.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.Google Scholar
  107. 107.
    Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol. 2009;219(1):14–9.  https://doi.org/10.1016/j.expneurol.2009.03.038.Google Scholar
  108. 108.
    Stipek DJ, Kowalski PS. Learned helplessness in task orienting versus performance-orienting testing conditions. J Educ Psychol. 1989;81(3):384–91.Google Scholar
  109. 109.
    Elliott ES, Dweck CS. Goals: an approach to motivation and achievement. J Pers Soc Psychol. 1988;54(1):5–12.Google Scholar
  110. 110.
    Diener CI, Dweck CS. An analysis of learned helplessness: II. The processing of success. J Pers Soc Psychol. 1980;39(5):940–52.Google Scholar
  111. 111.
    Cupal DD, Brewer BW. Effects of relaxation and guided imagery on knee strength, reinjury anxiety, and pain following anterior cruciate ligament reconstruction. Rehabil Psychol. 2001;46(1):28–43.Google Scholar
  112. 112.
    Mendonza M, Patel H, Bassett S. Influences of psychological factors and rehabilitation adherence on the outcome post anterior cruciate ligament injury/surgical reconstruction. NZ J Physiother. 2007;35(2):62–71.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Julie P. Burland
    • 1
  • Adam S. Lepley
    • 1
    • 2
  • Marc Cormier
    • 3
  • Lindsay J. DiStefano
    • 1
    • 2
  • Robert Arciero
    • 1
    • 2
  • Lindsey K. Lepley
    • 1
    • 2
    Email author
  1. 1.University of ConnecticutStorrsUSA
  2. 2.University of Connecticut Health CenterFarmingtonUSA
  3. 3.University of KentuckyLexingtonUSA

Personalised recommendations