Advertisement

Sports Medicine

, Volume 48, Issue 12, pp 2725–2741 | Cite as

Oxidative Stress and Inflammation, Key Targets of Atherosclerotic Plaque Progression and Vulnerability: Potential Impact of Physical Activity

  • Pauline Mury
  • Erica N. Chirico
  • Mathilde Mura
  • Antoine Millon
  • Emmanuelle Canet-Soulas
  • Vincent Pialoux
Review Article

Abstract

Atherosclerosis, a complex cardiovascular disease, is a leading cause of mortality and morbidity worldwide. Oxidative stress and inflammation are both involved in the development of atherosclerotic plaque as they increase the biological processes associated with this pathology, such as endothelial dysfunction and macrophage recruitment and adhesion. Atherosclerotic plaque rupture leading to major ischemic events is the result of vulnerable plaque progression, which is a result of the detrimental effect of oxidative stress and inflammation on risk factors for atherosclerotic plaque rupture, such as intraplaque hemorrhage, neovascularization, and fibrous cap thickness. Thus, both are key targets for primary and secondary interventions. It is well recognized that chronic physical activity attenuates oxidative stress in healthy subjects via the improvement of antioxidant enzyme capacities and inflammation via the enhancement of anti-inflammatory molecules. Moreover, it was recently shown that chronic physical activity could decrease oxidative stress and inflammation in atherosclerotic patients. The aim of this review is to summarize the role of oxidative stress and inflammation in atherosclerosis and the results of therapeutic interventions targeting them in both preclinical and clinical studies. The effects of chronic physical activity on these two key processes are then reviewed in vulnerable atherosclerotic plaques in both coronary and carotid arteries.

Notes

Compliance with Ethical Standards

Funding

No sources of funding were used to conduct this study or prepare this article.

Author contributions

PM, ENC, ECS, and VP participated in the design of the study; PM, ENC and MM participated in the literature survey; PM and ENC contributed to the analysis and wrote the manuscript; PM, ENC, MM, AM, ECS, and VP edited the manuscript.

Conflicts of interest

Pauline Mury, Erica N. Chirico, Mathilde Mura, Antoine Millon, Emmanuelle Canet-Soulas, and Vincent Pialoux have no conflicts of interest that are directly relevant to the content of this article.

References

  1. 1.
    Semple R. Diabetes and peripheral arterial disease; a clinical study. Lancet. 1953;1:1064–8.PubMedGoogle Scholar
  2. 2.
    Kampmeier RH. Atherosclerosis–its pathogenesis and clinical aspects. South Med J. 1969;62:1023–4.PubMedGoogle Scholar
  3. 3.
    Montezano AC, Touyz RM. Reactive oxygen species and endothelial function–role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol. 2012;110:87–94.PubMedGoogle Scholar
  4. 4.
    Anderson C, Milne GL, Sandler DP, Nichols HB. Oxidative stress in relation to diet and physical activity among premenopausal women. Br J Nutr. 2016;116:1416–24.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Shah PK. Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol. 2003;41:15S–22S.PubMedGoogle Scholar
  6. 6.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.PubMedGoogle Scholar
  7. 7.
    He F, Li J, Liu Z, Chuang C-C, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016;7:486.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43.PubMedGoogle Scholar
  9. 9.
    Taleb S. Inflammation in atherosclerosis. Arch Cardiovasc Dis. 2016;109:708–15.PubMedGoogle Scholar
  10. 10.
    Guzik TJ, West NEJ, Black E, McDonald D, Ratnatunga C, Pillai R, et al. Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res. 2000;86:e85–90.PubMedGoogle Scholar
  11. 11.
    Li Y, Pagano PJ. Microvascular NADPH oxidase in health and disease. Free Radic Biol Med. 2017;109:33–47.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986;250:H1145–9.PubMedGoogle Scholar
  13. 13.
    Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986;320:454–6.PubMedGoogle Scholar
  14. 14.
    Steven S, Daiber A, Dopheide JF, Münzel T, Espinola-Klein C. Peripheral artery disease, redox signaling, oxidative stress—basic and clinical aspects. Redox Biol. 2017;12:787–97.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Mihm MJ, Jing L, Bauer JA. Nitrotyrosine causes selective vascular endothelial dysfunction and DNA damage. J Cardiovasc Pharmacol. 2000;36:182–7.PubMedGoogle Scholar
  16. 16.
    Dickhout JG, Hossain GS, Pozza LM, Zhou J, Lhoták Š, Austin RC. Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular endothelium implications in atherogenesis. Arterioscler Thromb Vasc Biol. 2005;25:2623–9.PubMedGoogle Scholar
  17. 17.
    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sigala F, Kotsinas A, Savari P, Filis K, Markantonis S, Iliodromitis EK, et al. Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J Vasc Surg. 2010;52:704–13.PubMedGoogle Scholar
  19. 19.
    Go Y-M, Patel RP, Maland MC, Park H, Beckman JS, Darley-Usmar VM, et al. Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH2-terminal kinase. Am J Physiol Heart Circ Physiol. 1999;277:H1647–53.Google Scholar
  20. 20.
    Ewart M-A, Kennedy S, Macmillan D, Raja ALN, Watt IM, Currie S. Altered vascular smooth muscle function in the ApoE knockout mouse during the progression of atherosclerosis. Atherosclerosis. 2014;234:154–61.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Vendrov AE, Hakim ZS, Madamanchi NR, Rojas M, Madamanchi C, Runge MS. Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler Thromb Vasc Biol. 2007;27:2714–21.PubMedGoogle Scholar
  22. 22.
    Cosentino F, Hürlimann D, Delli Gatti C, Chenevard R, Blau N, Alp NJ, et al. Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart. 2008;94:487–92.PubMedGoogle Scholar
  23. 23.
    Chuaiphichai S, Crabtree MJ, Mcneill E, Hale AB, Trelfa L, Channon KM, et al. A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice. Br J Pharmacol. 2017;174:657–71.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Investig. 1998;101:731–6.PubMedGoogle Scholar
  25. 25.
    Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation. 2001;104:448–54.PubMedGoogle Scholar
  26. 26.
    Li H, Förstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol. 2013;13:161–7.PubMedGoogle Scholar
  27. 27.
    Costa ED, Rezende BA, Cortes SF, Lemos VS. Neuronal nitric oxide synthase in vascular physiology and diseases. Front Physiol [Internet]. 2016 [cited 2018 Jun 1];7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889596/.
  28. 28.
    Vita JA, Brennan M-L, Gokce N, Mann SA, Goormastic M, Shishehbor MH, et al. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation. 2004;110:1134–9.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Tian R, Ding Y, Peng Y-Y, Lu N. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: role of NADPH oxidase and hypochlorous acid. Biochem Biophys Res Commun. 2017;484:572–8.PubMedGoogle Scholar
  30. 30.
    Spiekermann S, Landmesser U, Dikalov S, Bredt M, Gamez G, Tatge H, et al. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation. 2003;107:1383–9.PubMedGoogle Scholar
  31. 31.
    Cardillo C, Kilcoyne CM, Cannon RO 3rd, Quyyumi AA, Panza JA. Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension. 1997;30:57–63.PubMedGoogle Scholar
  32. 32.
    Okafor ON, Farrington K, Gorog DA. Allopurinol as a therapeutic option in cardiovascular disease. Pharmacol Ther. 2017;172:139–50.PubMedGoogle Scholar
  33. 33.
    Baldus S, Köster R, Chumley P, Heitzer T, Rudolph V, Ostad MA, et al. Oxypurinol improves coronary and peripheral endothelial function in patients with coronary artery disease. Free Radic Biol Med. 2005;39:1184–90.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Farquharson CAJ, Butler R, Hill A, Belch JJF, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation. 2002;106:221–6.PubMedGoogle Scholar
  35. 35.
    George J, Carr E, Davies J, Belch JJF, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 2006;114:2508–16.PubMedGoogle Scholar
  36. 36.
    Lu H-H, Sheng Z-Q, Wang Y, Zhang L. Levels of soluble adhesion molecules in patients with various clinical presentations of coronary atherosclerosis. Chin Med J. 2010;123:3123–6.PubMedGoogle Scholar
  37. 37.
    Sadowski M, Ząbczyk M, Undas A. Coronary thrombus composition: links with inflammation, platelet and endothelial markers. Atherosclerosis. 2014;237:555–61.PubMedGoogle Scholar
  38. 38.
    Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest. 1998;102:145–52.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med. 2003;9:61–7.PubMedGoogle Scholar
  40. 40.
    Iiyama K, Hajra L, Iiyama M, Li H, DiChiara M, Medoff BD, et al. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res. 1999;85:199–207.PubMedGoogle Scholar
  41. 41.
    Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol. 1998;18:842–51.PubMedGoogle Scholar
  42. 42.
    Srivastava RAK, Mistry S, Sharma S. A novel anti-inflammatory natural product from Sphaeranthus indicus inhibits expression of VCAM1 and ICAM1, and slows atherosclerosis progression independent of lipid changes. Nutr Metab (Lond). 2015;12:20.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Dansky HM, Barlow CB, Lominska C, Sikes JL, Kao C, Weinsaft J, et al. Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol. 2001;21:1662–7.PubMedGoogle Scholar
  44. 44.
    Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest. 2001;107:1255–62.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Bourdillon MC, Poston RN, Covacho C, Chignier E, Bricca G, McGregor JL. ICAM-1 deficiency reduces atherosclerotic lesions in double-knockout mice (ApoE(−/−)/ICAM-1(−/−)) fed a fat or a chow diet. Arterioscler Thromb Vasc Biol. 2000;20:2630–5.PubMedGoogle Scholar
  46. 46.
    Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000;191:189–94.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Rubio-Guerra AF, Vargas-Robles H, Serrano AM, Vargas-Ayala G, Rodriguez-Lopez L, Escalante-Acosta BA. Correlation between the levels of circulating adhesion molecules and atherosclerosis in hypertensive type-2 diabetic patients. Clin Exp Hypertens. 2010;32:308–10.PubMedGoogle Scholar
  48. 48.
    Gross MD, Bielinski SJ, Suarez-Lopez JR, Reiner AP, Bailey K, Thyagarajan B, et al. Circulating soluble intercellular adhesion molecule 1 and subclinical atherosclerosis: the coronary artery risk development in young adults study. Clin Chem. 2012;58:411–20.PubMedGoogle Scholar
  49. 49.
    Widlansky ME, Gutterman DD. Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal. 2011;15:1517–30.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Sanmarco LM, Eberhardt N, Ponce NE, Cano RC, Bonacci G, Aoki MP. New insights into the immunobiology of mononuclear phagocytic cells and their relevance to the pathogenesis of cardiovascular diseases. Front Immunol. 2017;8:1921.PubMedGoogle Scholar
  51. 51.
    Beloqui O, Moreno MU, San José G, Pejenaute Á, Cortés A, Landecho MF, et al. Increased phagocytic NADPH oxidase activity associates with coronary artery calcification in asymptomatic men. Free Radic Res. 2017;51:389–96.PubMedGoogle Scholar
  52. 52.
    Sorescu D, Weiss D, Lassègue B, Clempus RE, Szöcs K, Sorescu GP, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation. 2002;105:1429–35.PubMedGoogle Scholar
  53. 53.
    Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118:653–67.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.PubMedGoogle Scholar
  56. 56.
    Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 2005;175:342–9.PubMedGoogle Scholar
  57. 57.
    Kawanishi N, Yano H, Yokogawa Y, Suzuki K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev. 2010;16:105–18.PubMedGoogle Scholar
  58. 58.
    Laufs U, Wassmann S, Czech T, Münzel T, Eisenhauer M, Böhm M, et al. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25:809–14.PubMedGoogle Scholar
  59. 59.
    Kilic-Erkek O, Kilic-Toprak E, Caliskan S, Ekbic Y, Akbudak IH, Kucukatay V, et al. Detraining reverses exercise-induced improvement in blood pressure associated with decrements of oxidative stress in various tissues in spontaneously hypertensive rats. Mol Cell Biochem. 2016;412:209–19.PubMedGoogle Scholar
  60. 60.
    Khanna AK, Xu J, Mehra MR. Antioxidant N-acetyl cysteine reverses cigarette smoke-induced myocardial infarction by inhibiting inflammation and oxidative stress in a rat model. Lab Invest. 2011;92:224–35.PubMedGoogle Scholar
  61. 61.
    Ghiadoni L, Sudano I, Versari D, Virdis A, Magagna A, Salvetti G, et al. P-506: correlation between oxidative stress and arterial blood pressure. Am J Hypertens. 2002;15:216A–216A.Google Scholar
  62. 62.
    Kim M, Yoo HJ, Kim M, Ahn HY, Park J, Lee S-H, et al. Associations among oxidative stress, Lp-PLA2 activity and arterial stiffness according to blood pressure status at a 3.5-year follow-up in subjects with prehypertension. Atherosclerosis. 2017;257:179–85.PubMedGoogle Scholar
  63. 63.
    Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston A-T, Clement M, et al. Macrophage plasticity in experimental atherosclerosis. PLoS One. 2010;5:e8852.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40:274–88.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Brüne B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, et al. Redox control of inflammation in macrophages. Antioxid Redox Signal. 2013;19:595–637.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Geeraerts X, Bolli E, Fendt S-M, Van Ginderachter JA. Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front Immunol. 2017;8:289.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol. 1995;15:1512–31.PubMedGoogle Scholar
  68. 68.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.PubMedGoogle Scholar
  69. 69.
    Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276:618–32.PubMedGoogle Scholar
  70. 70.
    Redgrave JN, Gallagher P, Lovett JK, Rothwell PM. Critical cap thickness and rupture in symptomatic carotid plaques: the oxford plaque study. Stroke. 2008;39:1722–9.PubMedGoogle Scholar
  71. 71.
    Pelisek J, Eckstein H-H, Zernecke A. Pathophysiological mechanisms of carotid plaque vulnerability: impact on ischemic stroke. Arch Immunol Ther Exp (Warsz). 2012;60:431–42.Google Scholar
  72. 72.
    Mughal MM, Khan MK, DeMarco JK, Majid A, Shamoun F, Abela GS. Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther. 2011;9:1315–30.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Saba L, Potters F, van der Lugt A, Mallarini G. Imaging of the fibrous cap in atherosclerotic carotid plaque. Cardiovasc Intervent Radiol. 2010;33:681–9.PubMedGoogle Scholar
  74. 74.
    Marnane M, Prendeville S, McDonnell C, Noone I, Barry M, Crowe M, et al. Plaque inflammation and unstable morphology are associated with early stroke recurrence in symptomatic carotid stenosis. Stroke. 2014;45:801–6.PubMedGoogle Scholar
  75. 75.
    Takaya N, Yuan C, Chu B, Saam T, Underhill H, Cai J, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI–initial results. Stroke. 2006;37:818–23.PubMedGoogle Scholar
  76. 76.
    Mono M-L, Karameshev A, Slotboom J, Remonda L, Galimanis A, Jung S, et al. Plaque characteristics of asymptomatic carotid stenosis and risk of stroke. Cerebrovasc Dis. 2012;34:343–50.PubMedGoogle Scholar
  77. 77.
    Michel J-B, Virmani R, Arbustini E, Pasterkamp G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J. 2011;32:1977–85, 1985a, 1985b, 1985c.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Gao P, Chen Z, Bao Y, Jiao L, Ling F. Correlation between carotid intraplaque hemorrhage and clinical symptoms: systematic review of observational studies. Stroke. 2007;38:2382–90.PubMedGoogle Scholar
  79. 79.
    Turc G, Oppenheim C, Naggara O, Eker OF, Calvet D, Lacour J-C, et al. Relationships between recent intraplaque hemorrhage and stroke risk factors in patients with carotid stenosis: the HIRISC study. Arterioscler Thromb Vasc Biol. 2012;32:492–9.PubMedGoogle Scholar
  80. 80.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.PubMedGoogle Scholar
  81. 81.
    Dunmore BJ, McCarthy MJ, Naylor AR, Brindle NPJ. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg. 2007;45:155–9.PubMedGoogle Scholar
  82. 82.
    Sluimer JC, Kolodgie FD, Bijnens APJJ, Maxfield K, Pacheco E, Kutys B, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol. 2009;53:1517–27.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Fleiner M, Kummer M, Mirlacher M, Sauter G, Cathomas G, Krapf R, et al. Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation. 2004;110:2843–50.PubMedGoogle Scholar
  84. 84.
    Saito K, Nagatsuka K, Ishibashi-Ueda H, Watanabe A, Kannki H, Iihara K. Contrast-enhanced ultrasound for the evaluation of neovascularization in atherosclerotic carotid artery plaques. Stroke. 2014;45:3073–5.PubMedGoogle Scholar
  85. 85.
    Millon A, Canet-Soulas E, Boussel L, Fayad Z, Douek P. Animal models of atherosclerosis and magnetic resonance imaging for monitoring plaque progression. Vascular. 2014;22:221–37.PubMedGoogle Scholar
  86. 86.
    Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y, Ali F. Atherosclerotic cardiovascular disease: a review of initiators and protective factors. Inflammopharmacology. 2016;24:1–10.PubMedGoogle Scholar
  87. 87.
    Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11:117.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Shah PK. Molecular mechanisms of plaque instability. Curr Opin Lipidol. 2007;18:492–9.PubMedGoogle Scholar
  89. 89.
    Sluimer JC, Gasc J-M, van Wanroij JL, Kisters N, Groeneweg M, Sollewijn Gelpke MD, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol. 2008;51:1258–65.PubMedGoogle Scholar
  90. 90.
    Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability. Acta Physiol (Oxf). 2015;213:539–53.Google Scholar
  91. 91.
    Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 2005;1:409–14.PubMedGoogle Scholar
  92. 92.
    Hutter R, Speidl WS, Valdiviezo C, Sauter B, Corti R, Fuster V, et al. Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1α activation: a novel aspect of angiogenesis in atherosclerosis. J Cardiovasc Transl Res. 2013;6:558–69.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604–13.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.PubMedGoogle Scholar
  95. 95.
    Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol. 2009;9:609–17.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453:807–11.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Takaya N, Yuan C, Chu B, Saam T, Polissar NL, Jarvik GP, et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation. 2005;111:2768–75.PubMedGoogle Scholar
  98. 98.
    Martinet W, Schrijvers DM, De Meyer GRY. Necrotic cell death in atherosclerosis. Basic Res Cardiol. 2011;106:749–60.PubMedGoogle Scholar
  99. 99.
    Golledge J, Greenhalgh RM, Davies AH. The symptomatic carotid plaque. Stroke. 2000;31:774–81.PubMedGoogle Scholar
  100. 100.
    Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Silvestre-Roig C, de Winther MP, Weber C, Daemen MJ, Lutgens E, Soehnlein O. Atherosclerotic plaque destabilization mechanisms, models, and therapeutic strategies. Circ Res. 2014;114:214–26.PubMedGoogle Scholar
  102. 102.
    Gough PJ, Gomez IG, Wille PT, Raines EW. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest. 2006;116:59–69.PubMedGoogle Scholar
  103. 103.
    Dasu MR, Devaraj S, Jialal I. High glucose induces IL-1beta expression in human monocytes: mechanistic insights. Am J Physiol Endocrinol Metab. 2007;293:E337–46.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Bloomer RJ, Fisher-Wellman KH. Blood oxidative stress biomarkers: influence of sex, exercise training status, and dietary intake. Gend Med. 2008;5:218–28.PubMedGoogle Scholar
  105. 105.
    Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol. 2001;84:1–6.PubMedGoogle Scholar
  106. 106.
    Elosua R, Molina L, Fito M, Arquer A, Sanchez-Quesada JL, Covas MI, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis. 2003;167:327–34.PubMedGoogle Scholar
  107. 107.
    Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44:153–9.PubMedGoogle Scholar
  108. 108.
    Gardner AW, Montgomery PS, Casanegra AI, Silva-Palacios F, Ungvari Z, Csiszar A. Association between gait characteristics and endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. Age (Dordr). 2016;38:64.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Gardner AW, Montgomery PS, Zhao YD, Silva-Palacios F, Ungvari Z, Csiszar A, et al. Association between daily walking and antioxidant capacity in patients with symptomatic peripheral artery disease. J Vasc Surg. 2017;65:1762–8.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Toledo-Arruda AC, Vieira RP, Guarnier FA, Suehiro CL, Caleman-Neto A, Olivo CR, et al. Time-course effects of aerobic physical training in the prevention of cigarette smoke-induced COPD. J Appl Physiol. 2017;123:674–83.PubMedGoogle Scholar
  111. 111.
    Rowiński R, Kozakiewicz M, Kędziora-Kornatowska K, Hübner-Woźniak E, Kędziora J. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity. Exp Gerontol. 2013;48:1141–6.PubMedGoogle Scholar
  112. 112.
    Fraile-Bermúdez AB, Kortajarena M, Zarrazquin I, Maquibar A, Yanguas JJ, Sánchez-Fernández CE, et al. Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals. Exp Gerontol. 2015;70:26–31.PubMedGoogle Scholar
  113. 113.
    Zucker IH, Schultz HD, Patel KP, Wang H. Modulation of angiotensin II signaling following exercise training in heart failure. Am J Physiol Heart Circ Physiol. 2015;308:H781–91.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Ford ES. Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults. Epidemiology. 2002;13:561–8.PubMedGoogle Scholar
  115. 115.
    Mora S, Lee I-M, Buring JE, Ridker PM. Association of physical activity and body mass index with novel and traditional cardiovascular biomarkers in women. JAMA. 2006;295:1412–9.PubMedGoogle Scholar
  116. 116.
    Yu Z, Ye X, Wang J, Qi Q, Franco OH, Rennie KL, et al. Associations of physical activity with inflammatory factors, adipocytokines, and metabolic syndrome in middle-aged and older chinese people. Circulation. 2009;119:2969–77.PubMedGoogle Scholar
  117. 117.
    Palmefors H, DuttaRoy S, Rundqvist B, Börjesson M. The effect of physical activity or exercise on key biomarkers in atherosclerosis—a systematic review. Atherosclerosis. 2014;235:150–61.PubMedGoogle Scholar
  118. 118.
    Pischon T, Hankinson SE, Hotamisligil GS, Rifai N, Rimm EB. Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers. Obes Res. 2003;11:1055–64.PubMedGoogle Scholar
  119. 119.
    Hamer M, Sabia S, Batty GD, Shipley MJ, Tabák AG, Singh-Manoux A, et al. Physical activity and inflammatory markers over 10 years: follow-up in men and women from the Whitehall II cohort study. Circulation. 2012;126:928–33.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Valentine RJ, Vieira VJ, Woods JA, Evans EM. Stronger relationship between central adiposity and C-reactive protein in older women than men. Menopause. 2009;16:84–9.PubMedGoogle Scholar
  121. 121.
    Mattusch F, Dufaux B, Heine O, Mertens I, Rost R. Reduction of the plasma concentration of C-reactive protein following nine months of endurance training. Int J Sports Med. 2000;21:21–4.PubMedGoogle Scholar
  122. 122.
    LaMonte MJ, Durstine JL, Yanowitz FG, Lim T, DuBose KD, Davis P, et al. Cardiorespiratory fitness and C-reactive protein among a tri-ethnic sample of women. Circulation. 2002;106:403–6.PubMedGoogle Scholar
  123. 123.
    Giallauria F, Palomba S, De Sio I, Maresca L, Vuolo L, Savastano S, et al. Inflammatory markers and visceral fat are inversely associated with maximal oxygen consumption in women with polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf). 2009;70:394–400.Google Scholar
  124. 124.
    Cesari F, Marcucci R, Gori AM, Burgisser C, Francini S, Sofi F, et al. Impact of a cardiac rehabilitation program and inflammatory state on endothelial progenitor cells in acute coronary syndrome patients. Int J Cardiol. 2013;167:1854–9.PubMedGoogle Scholar
  125. 125.
    Stein RA, Rockman CB, Guo Y, Adelman MA, Riles T, Hiatt WR, et al. Association between physical activity and peripheral artery disease and carotid artery stenosis in a self-referred population of 3 million adults. Arterioscler Thromb Vasc Biol. 2015;35:206–12.PubMedGoogle Scholar
  126. 126.
    Breneman CB, Polinski K, Sarzynski MA, Lavie CJ, Kokkinos PF, Ahmed A, et al. The impact of cardiorespiratory fitness levels on the risk of developing atherogenic dyslipidemia. Am J Med. 2016;129:1060–6.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Pigłowska M, Kostka T, Drygas W, Jegier A, Leszczyńska J, Bill-Bielecka M, et al. Body composition, nutritional status, and endothelial function in physically active men without metabolic syndrome—a 25 year cohort study. Lipids Health Dis. 2016;15:84.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Crouse SF, O’Brien BC, Grandjean PW, Lowe RC, Rohack JJ, Green JS. Effects of training and a single session of exercise on lipids and apolipoproteins in hypercholesterolemic men. J Appl Physiol. 1997;83:2019–28.PubMedGoogle Scholar
  129. 129.
    Greene NP, Martin SE, Crouse SF. Acute exercise and training alter blood lipid and lipoprotein profiles differently in overweight and obese men and women. Obesity (Silver Spring). 2012;20(8):1618–27.  https://doi.org/10.1038/oby.2012.65.CrossRefGoogle Scholar
  130. 130.
    Zorba E, Cengiz T, Karacabey K. Exercise training improves body composition, blood lipid profile and serum insulin levels in obese children. J Sports Med Phys Fitness. 2011;51:664–9.PubMedGoogle Scholar
  131. 131.
    Herbert PN, Bernier DN, Cullinane EM, Edelstein L, Kantor MA, Thompson PD. High-density lipoprotein metabolism in runners and sedentary men. JAMA. 1984;252:1034–7.PubMedGoogle Scholar
  132. 132.
    Brenes G, Dearwater S, Shapera R, LaPorte RE, Collins E. High density lipoprotein cholesterol concentrations in physically active and sedentary spinal cord injured patients. Arch Phys Med Rehabil. 1986;67:445–50.PubMedGoogle Scholar
  133. 133.
    Ahn N, Kim K. High-density lipoprotein cholesterol (HDL-C) in cardiovascular disease: effect of exercise training. Integr Med Res. 2016;5:212–5.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Nikkilä EA, Kuusi T, Myllynen P. High density lipoprotein and apolipoprotein A-I during physical inactivity: demonstration of low levels in patients with spine fracture. Atherosclerosis. 1980;37:457–62.PubMedGoogle Scholar
  135. 135.
    Slentz CA, Houmard JA, Johnson JL, Bateman LA, Tanner CJ, McCartney JS, et al. Inactivity, exercise training and detraining, and plasma lipoproteins. STRRIDE: a randomized, controlled study of exercise intensity and amount. J Appl Physiol. 2007;103:432–42.PubMedGoogle Scholar
  136. 136.
    Callegari A, Liu Y, White CC, Chait A, Gough P, Raines EW, et al. Gain and loss of function for glutathione synthesis: impact on advanced atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2011;31:2473–82.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Gieseg SP, Amit Z, Yang Y-T, Shchepetkina A, Katouah H. Oxidant production, oxLDL uptake, and CD36 levels in human monocyte-derived macrophages are downregulated by the macrophage-generated antioxidant 7,8-dihydroneopterin. Antioxid Redox Signal. 2010;13:1525–34.PubMedGoogle Scholar
  138. 138.
    Wang J-S, Lee T, Chow S-E. Role of exercise intensities in oxidized low-density lipoprotein-mediated redox status of monocyte in men. J Appl Physiol. 2006;101:740–4.PubMedGoogle Scholar
  139. 139.
    Zoppini G, Targher G, Zamboni C, Venturi C, Cacciatori V, Moghetti P, et al. Effects of moderate-intensity exercise training on plasma biomarkers of inflammation and endothelial dysfunction in older patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2006;16:543–9.PubMedGoogle Scholar
  140. 140.
    Gielen S, Sandri M, Erbs S, Adams V. Exercise-induced modulation of endothelial nitric oxide production. Curr Pharm Biotechnol. 2011;12:1375–84.PubMedGoogle Scholar
  141. 141.
    Laughlin MH, Newcomer SC, Bender SB. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol. 2008;104:588–600.PubMedGoogle Scholar
  142. 142.
    Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342:454–60.PubMedGoogle Scholar
  143. 143.
    Hambrecht R, Adams V, Erbs S, Linke A, Kränkel N, Shu Y, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003;107:3152–8.PubMedGoogle Scholar
  144. 144.
    Wesnigk J, Bruyndonckx L, Hoymans VY, De Guchtenaere A, Fischer T, Schuler G, et al. Impact of lifestyle intervention on HDL-induced eNOS activation and cholesterol efflux capacity in obese adolescent. Cardiol Res Pract. 2016;2016:2820432.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Adams V, Linke A, Kränkel N, Erbs S, Gielen S, Möbius-Winkler S, et al. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation. 2005;111:555–62.PubMedGoogle Scholar
  146. 146.
    La Favor JD, Dubis GS, Yan H, White JD, Nelson MAM, Anderson EJ, et al. Microvascular endothelial dysfunction in sedentary, obese humans is mediated by NADPH oxidase: influence of exercise training. Arterioscler Thromb Vasc Biol. 2016;36:2412–20.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Lee S, Park Y, Dellsperger KC, Zhang C. Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2011;301:H306–14.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Ookawara T, Haga S, Ha S, Oh-Ishi S, Toshinai K, Kizaki T, et al. Effects of endurance training on three superoxide dismutase isoenzymes in human plasma. Free Radic Res. 2003;37:713–9.PubMedGoogle Scholar
  149. 149.
    Inoue N, Ramasamy S, Fukai T, Nerem RM, Harrison DG. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ Res. 1996;79:32–7.PubMedGoogle Scholar
  150. 150.
    Krause M, Rodrigues-Krause J, O’Hagan C, Medlow P, Davison G, Susta D, et al. The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and nitric oxide production. Eur J Appl Physiol. 2014;114:251–60.PubMedGoogle Scholar
  151. 151.
    Yang A-L, Chen H-I. Chronic exercise reduces adhesion molecules/iNOS expression and partially reverses vascular responsiveness in hypercholesterolemic rabbit aortae. Atherosclerosis. 2003;169:11–7.PubMedGoogle Scholar
  152. 152.
    Kargarfard M, Lam ETC, Shariat A, Asle Mohammadi M, Afrasiabi S, Shaw I, et al. Effects of endurance and high intensity training on ICAM-1 and VCAM-1 levels and arterial pressure in obese and normal weight adolescents. Phys Sportsmed. 2016;44:208–16.PubMedGoogle Scholar
  153. 153.
    Mills PJ, Hong S, Redwine L, Carter SM, Chiu A, Ziegler MG, et al. Physical fitness attenuates leukocyte-endothelial adhesion in response to acute exercise. J Appl Physiol. 2006;101:785–8.PubMedGoogle Scholar
  154. 154.
    Swardfager W, Herrmann N, Cornish S, Mazereeuw G, Marzolini S, Sham L, et al. Exercise intervention and inflammatory markers in coronary artery disease: a meta-analysis. Am Heart J. 2012;163:666–676.e1-3.Google Scholar
  155. 155.
    Chiu J-J, Lee P-L, Chen C-N, Lee C-I, Chang S-F, Chen L-J, et al. Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-[alpha] in endothelial cells. Arterioscler Thromb Vasc Biol. 2004;24:73–9.PubMedGoogle Scholar
  156. 156.
    Li L, Fink GD, Watts SW, Northcott CA, Galligan JJ, Pagano PJ, et al. Endothelin-1 increases vascular superoxide via endothelinA–NADPH oxidase pathway in low-renin hypertension. Circulation. 2003;107:1053–8.PubMedGoogle Scholar
  157. 157.
    Vogiatzi G, Tousoulis D, Stefanadis C. The role of oxidative stress in atherosclerosis. Hellenic J Cardiol. 2009;50:402–9.PubMedGoogle Scholar
  158. 158.
    Weber C, Erl W, Pietsch A, Strobel M, Ziegler-Heitbrock H, Weber P. Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-kappa B mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Arterioscler Thromb Vasc Biol. 1994;14:1665–73.Google Scholar
  159. 159.
    Yakeu G, Butcher L, Isa S, Webb R, Roberts AW, Thomas AW, et al. Low-intensity exercise enhances expression of markers of alternative activation in circulating leukocytes: roles of PPAR[gamma] and Th2 cytokines. Atherosclerosis. 2010;212:668–73.PubMedGoogle Scholar
  160. 160.
    Smith JK, Dykes R, Douglas JE, Krishnaswamy G, Berk S. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA. 1999;281:1722–7.PubMedGoogle Scholar
  161. 161.
    Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest. 2017;47(8):600–11.  https://doi.org/10.1111/eci.12781.CrossRefPubMedGoogle Scholar
  162. 162.
    Kizaki T, Takemasa T, Sakurai T, Izawa T, Hanawa T, Kamiya S, et al. Adaptation of macrophages to exercise training improves innate immunity. Biochem Biophys Res Commun. 2008;372:152–6.PubMedGoogle Scholar
  163. 163.
    Silveira LS, Antunes B de MM, Minari ALA, Dos Santos RVT, Neto JCR, Lira FS. Macrophage polarization: implications on metabolic diseases and the role of exercise. Crit Rev Eukaryot Gene Expr. 2016;26:115–32.PubMedGoogle Scholar
  164. 164.
    Lesniewski LA, Durrant JR, Connell ML, Henson GD, Black AD, Donato AJ, et al. Aerobic exercise reverses arterial inflammation with aging in mice. Am J Physiol Heart Circ Physiol. 2011;301:H1025–32.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Nishiguchi T, Tanaka A, Taruya A, Emori H, Ozaki Y, Orii M, et al. Local matrix metalloproteinase 9 level determines early clinical presentation of ST-segment-elevation myocardial infarction. Arterioscler Thromb Vasc Biol. 2016;36:2460–7.PubMedGoogle Scholar
  166. 166.
    Hopps E, Caimi G. Matrix metalloproteases as a pharmacological target in cardiovascular diseases. Eur Rev Med Pharmacol Sci. 2015;19:2583–9.PubMedGoogle Scholar
  167. 167.
    Chan CP, Jiang H, Leung L, Wan W, Cheng N, Ip W, et al. Multiple atherosclerosis-related biomarkers associated with short- and long-term mortality after stroke. Clin Biochem. 2012;45:1308–15.PubMedGoogle Scholar
  168. 168.
    Nascimento D da C, Durigan R de CM, Tibana RA, Durigan JLQ, Navalta JW, Prestes J. The response of matrix metalloproteinase-9 and -2 to exercise. Sports Med. 2015;45:269–78.Google Scholar
  169. 169.
    Moustardas P, Kadoglou NPE, Katsimpoulas M, Kapelouzou A, Kostomitsopoulos N, Karayannacos PE, et al. The complementary effects of atorvastatin and exercise treatment on the composition and stability of the atherosclerotic plaques in ApoE knockout mice. PLoS One. 2014;9:e108240.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Soumyarani VS, Jayakumari N. Oxidatively modified high density lipoprotein promotes inflammatory response in human monocytes-macrophages by enhanced production of ROS, TNF-α, MMP-9, and MMP-2. Mol Cell Biochem. 2012;366:277–85.PubMedGoogle Scholar
  171. 171.
    McCarthy SM, Bove PF, Matthews DE, Akaike T, van der Vliet A. Nitric oxide regulation of MMP-9 activation and its relationship to modifications of the cysteine switch†. Biochemistry. 2008;47:5832–40.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Kadoglou NPE, Kostomitsopoulos N, Kapelouzou A, Moustardas P, Katsimpoulas M, Giagini A, et al. Effects of exercise training on the severity and composition of atherosclerotic plaque in apoE-deficient mice. J Vasc Res. 2011;48:347–56.PubMedGoogle Scholar
  173. 173.
    Shon S-M, Park J-H, Nahrendorf M, Schellingerhout D, Kim J-Y, Kang B-T, et al. Exercise attenuates matrix metalloproteinase activity in preexisting atherosclerotic plaque. Atherosclerosis. 2011;216:67–73.PubMedGoogle Scholar
  174. 174.
    Thompson PD, Buchner D, Piña IL, Balady GJ, Williams MA, Marcus BH, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease A statement from the council on clinical cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107:3109–16.PubMedGoogle Scholar
  175. 175.
    Schnohr P, O'Keefe JH, Lange P, Jensen GB, Marott JL. Impact of persistence and non-persistence in leisure time physical activity on coronary heart disease and all-cause mortality: The Copenhagen City Heart Study. Eur J Prev Cardiol. 2017;24(15):1615–23.  https://doi.org/10.1177/2047487317721021.CrossRefPubMedGoogle Scholar
  176. 176.
    Rush JWE, Denniss SG, Graham DA. Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activity. Can J Appl Physiol. 2005;30:442–74.PubMedGoogle Scholar
  177. 177.
    Pialoux V, Mounier R, Brown AD, Steinback CD, Rawling JM, Poulin MJ. Relationship between oxidative stress and HIF-1 alpha mRNA during sustained hypoxia in humans. Free Radic Biol Med. 2009;46:321–6.PubMedGoogle Scholar
  178. 178.
    Szostak J, Laurant P. The forgotten face of regular physical exercise: a “natural” anti-atherogenic activity. Clin Sci. 2011;121:91–106.PubMedGoogle Scholar
  179. 179.
    Delaney CL, Spark JI. A randomised controlled trial of two supervised exercise regimens and their impact on inflammatory burden in patients with intermittent claudication. Vascular. 2016;24:264–72.PubMedGoogle Scholar
  180. 180.
    Berlin JA, Colditz GA. A meta-analysis of physical activity in the prevention of coronary heart disease. Am J Epidemiol. 1990;132:612–28.PubMedGoogle Scholar
  181. 181.
    Rauramaa R, Rankinen T, Tuomainen P, Väisänen S, Mercuri M. Inverse relationship between cardiorespiratory fitness and carotid atherosclerosis. Atherosclerosis. 1995;112:213–21.PubMedGoogle Scholar
  182. 182.
    Sofi F, Capalbo A, Cesari F, Abbate R, Gensini GF. Physical activity during leisure time and primary prevention of coronary heart disease: an updated meta-analysis of cohort studies. Eur J Cardiovasc Prev Rehabil. 2008;15:247–57.PubMedGoogle Scholar
  183. 183.
    Powell KE, Thompson PD, Caspersen CJ, Kendrick JS. Physical activity and the incidence of coronary heart disease. Annu Rev Public Health. 1987;8:253–87.PubMedGoogle Scholar
  184. 184.
    Stamatakis E, Hamer M, Lawlor DA. Physical activity, mortality, and cardiovascular disease: is domestic physical activity beneficial? The Scottish Health Survey—1995, 1998, and 2003. Am J Epidemiol. 2009;169:1191–200.PubMedGoogle Scholar
  185. 185.
    Bowles DK, Laughlin MH. Mechanism of beneficial effects of physical activity on atherosclerosis and coronary heart disease. J Appl Physiol. 1985;2011(111):308–10.Google Scholar
  186. 186.
    Forbes C, Quek RGW, Deshpande S, Worthy G, Ross J, Kleijnen J, et al. Relationship between changes in coronary atherosclerotic plaque burden measured by intravascular ultrasound and cardiovascular disease outcomes: a systematic literature review. Curr Med Res Opin. 2016;32:1143–50.PubMedGoogle Scholar
  187. 187.
    Nishitani-Yokoyama M, Miyauchi K, Shimada K, Miyazaki T, Ogita M, Okazaki S, et al. Effects of phase II comprehensive cardiac rehabilitation on coronary plaque volume after acute coronary syndrome. Int Heart J. 2015;56:597–604.PubMedGoogle Scholar
  188. 188.
    Lakka TA, Laukkanen JA, Rauramaa R, Salonen R, Lakka HM, Kaplan GA, et al. Cardiorespiratory fitness and the progression of carotid atherosclerosis in middle-aged men. Ann Intern Med. 2001;134:12–20.PubMedGoogle Scholar
  189. 189.
    Desai MY, Nasir K, Rumberger JA, Braunstein JB, Post WS, Budoff MJ, et al. Relation of degree of physical activity to coronary artery calcium score in asymptomatic individuals with multiple metabolic risk factors. Am J Cardiol. 2004;94:729–32.PubMedGoogle Scholar
  190. 190.
    Jae SY, Franklin BA, Schmidt-Trucksass A, Kim DK, Choi Y-H, Park JB. Relation of cardiorespiratory fitness to risk of subclinical atherosclerosis in men with cardiometabolic syndrome. Am J Cardiol. 2016;118:1282–6.PubMedGoogle Scholar
  191. 191.
    Bots ML, Grobbee DE. Intima media thickness as a surrogate marker for generalised atherosclerosis. Cardiovasc Drugs Ther. 2002;16:341–51.PubMedGoogle Scholar
  192. 192.
    de Groot E, Hovingh GK, Wiegman A, Duriez P, Smit AJ, Fruchart J-C, et al. Measurement of arterial wall thickness as a surrogate marker for atherosclerosis. Circulation. 2004;109:III33–III38.Google Scholar
  193. 193.
    Bots ML, Baldassarre D, Simon A, de Groot E, O’Leary DH, Riley W, et al. Carotid intima-media thickness and coronary atherosclerosis: weak or strong relations? Eur Heart J. 2007;28:398–406.PubMedGoogle Scholar
  194. 194.
    Tanaka H, Seals DR, Monahan KD, Clevenger CM, DeSouza CA, Dinenno FA. Regular aerobic exercise and the age-related increase in carotid artery intima-media thickness in healthy men. J Appl Physiol. 2002;92:1458–64.PubMedGoogle Scholar
  195. 195.
    Rauramaa R, Halonen P, Väisänen SB, Lakka TA, Schmidt-Trucksäss A, Berg A, et al. Effects of aerobic physical exercise on inflammation and atherosclerosis in men: the DNASCO Study: a six-year randomized, controlled trial. Ann Intern Med. 2004;140:1007–14.PubMedGoogle Scholar
  196. 196.
    Anderssen SA, Hjelstuen AK, Hjermann I, Bjerkan K, Holme I. Fluvastatin and lifestyle modification for reduction of carotid intima-media thickness and left ventricular mass progression in drug-treated hypertensives. Atherosclerosis. 2005;178:387–97.PubMedGoogle Scholar
  197. 197.
    Chan SY, Mancini GBJ, Burns S, Johnson FF, Brozic AP, Kingsbury K, et al. Dietary measures and exercise training contribute to improvement of endothelial function and atherosclerosis even in patients given intensive pharmacologic therapy. J Cardiopulm Rehabil. 2006;26:288–93.PubMedGoogle Scholar
  198. 198.
    Schmidt-Trucksäss AS, Grathwohl D, Frey I, Schmid A, Boragk R, Upmeier C, et al. Relation of leisure-time physical activity to structural and functional arterial properties of the common carotid artery in male subjects. Atherosclerosis. 1999;145:107–14.PubMedGoogle Scholar
  199. 199.
    Ebrahim S, Papacosta O, Whincup P, Wannamethee G, Walker M, Nicolaides AN, et al. Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women: the British Regional Heart Study. Stroke. 1999;30:841–50.PubMedGoogle Scholar
  200. 200.
    Ferreira I, Twisk JWR, Stehouwer CDA, van Mechelen W, Kemper HCG. Longitudinal changes in.VO2max: associations with carotid IMT and arterial stiffness. Med Sci Sports Exerc. 2003;35:1670–8.Google Scholar
  201. 201.
    Kim ES, Park J-H, Lee MK, Lee DH, Kang ES, Lee HC, et al. Associations between Fatness, Fitness, IGF and IMT among Obese Korean Male Adolescents. Diabetes Metab J. 2011;35:610–8.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Silva LR, Cavaglieri C, Lopes WA, Pizzi J, Coelho-e-Silva MJC, Leite N. Endothelial wall thickness, cardiorespiratory fitness and inflammatory markers in obese and non-obese adolescents. Braz J Phys Ther. 2014;18:47–55.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Tanaka H, DeSouza CA, Seals DR. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol. 1998;18:127–32.PubMedGoogle Scholar
  204. 204.
    Ried-Larsen M, Grøntved A, Froberg K, Ekelund U, Andersen LB. Physical activity intensity and subclinical atherosclerosis in Danish adolescents: the European Youth Heart Study. Scand J Med Sci Sports. 2013;23:e168–77.PubMedGoogle Scholar
  205. 205.
    Pälve KS, Pahkala K, Magnussen CG, Koivistoinen T, Juonala M, Kähönen M, et al. Association of physical activity in childhood and early adulthood with carotid artery elasticity 21 years later: the cardiovascular risk in Young Finns Study. J Am Heart Assoc. 2014;3:e000594.PubMedPubMedCentralGoogle Scholar
  206. 206.
    Horta BL, Schaan BD, Bielemann RM, Vianna CÁ, Gigante DP, Barros FC, et al. Objectively measured physical activity and sedentary-time are associated with arterial stiffness in Brazilian young adults. Atherosclerosis. 2015;243:148–54.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Skrypnik D, Bogdański P, Madry E, Pupek-Musialik D. Walkowiak J [Effect of physical exercise on endothelial function, indicators of inflammation and oxidative stress]. Pol Merkur Lekarski. 2014;36:117–21.PubMedGoogle Scholar
  208. 208.
    Kwaśniewska M, Jegier A, Kostka T, Dziankowska-Zaborszczyk E, Rębowska E, Kozińska J, Drygas W. Long-term effect of different physical activity levels on subclinical atherosclerosis in middle-aged men: a 25-year prospective study. PLoS One. 2014;9(1):e85209.  https://doi.org/10.1371/journal.pone.0085209.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Hambrecht R, Walther C, Möbius-Winkler S, Gielen S, Linke A, Conradi K, et al. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation. 2004;109:1371–8.PubMedGoogle Scholar
  210. 210.
    Sandrock M, Schulze C, Schmitz D, Dickhuth H-H, Schmidt-Trucksaess A. Physical activity throughout life reduces the atherosclerotic wall process in the carotid artery. Br J Sports Med. 2008;42:839–44.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Pauline Mury
    • 1
    • 2
  • Erica N. Chirico
    • 3
  • Mathilde Mura
    • 1
    • 2
  • Antoine Millon
    • 4
    • 5
  • Emmanuelle Canet-Soulas
    • 4
  • Vincent Pialoux
    • 1
    • 2
    • 6
  1. 1.Team Vascular Biology and Red Blood Cell, Interuniversity Laboratory of Human Movement BiologyUniversity Claude Bernard Lyon 1, University of LyonLyonFrance
  2. 2.Laboratory of Excellence GR-ExParisFrance
  3. 3.Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenUSA
  4. 4.University of Lyon, University Claude Bernard Lyon 1, CarMeN Laboratory, INSERM U1060BronFrance
  5. 5.Department of Vascular SurgeryEdouard Herriot HospitalLyonFrance
  6. 6.Institut Universitaire de FranceParisFrance

Personalised recommendations