Sports Medicine

, Volume 48, Issue 11, pp 2463–2477 | Cite as

Athlete’s Heart: Diagnostic Challenges and Future Perspectives

  • Carlo De Innocentiis
  • Fabrizio RicciEmail author
  • Mohammed Y. Khanji
  • Nay Aung
  • Claudio Tana
  • Elvira Verrengia
  • Steffen E. Petersen
  • Sabina Gallina
Review Article


Distinguishing between adaptive and maladaptive cardiovascular response to exercise is crucial to prevent the unnecessary termination of an athlete’s career and to minimize the risk of sudden death. This is a challenging task essentially due to the substantial phenotypic overlap between electrical and structural changes seen in the physiological athletic heart remodeling and pathological changes seen in inherited or acquired cardiomyopathies. Stress testing is an ideal tool to discriminate normal from abnormal cardiovascular response by unmasking subtle pathologic responses otherwise undetectable at rest. Treadmill or bicycle electrocardiography, transthoracic echocardiography, and cardiopulmonary exercise testing are common clinical investigations used in sports cardiology, specifically among participants presenting with resting electrocardiographic abnormalities, frequent premature ventricular beats, or non-sustained ventricular arrhythmias. In this setting, as well as in cases of left ventricular hypertrophy or asymptomatic left ventricular dysfunction, stress imaging and myocardial tissue characterization by cardiovascular magnetic resonance show promise. In this review, we aimed to reappraise current diagnostic schemes, screening strategies and novel approaches that may be used to distinguish adaptive remodeling patterns to physical exercise from early phenotypes of inherited or acquired pathological conditions commanding prompt intervention.


Compliance with Ethical Standards

Conflict of interest

Carlo De Innocentiis, Fabrizio Ricci, Mohammed Y Khanji, Nay Aung, Claudio Tana, Elvira Verrengia, Steffen E Petersen, and Sabina Gallina declare that they have no conflicts of interest.


No financial support was received for the conduct of this study or preparation of this manuscript.


  1. 1.
    Atteya G, Lampert R. Controversies surrounding exercise in genetic cardiomyopathies. Heart Fail Clin. 2018;14(2):189–200.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Khanji MY, van Waardhuizen CN, Bicalho VVS, Ferket BS, Hunink MGM, Petersen SE. Lifestyle advice and interventions for cardiovascular risk reduction: a systematic review of guidelines. Int J Cardiol. 2018;15(263):142–51.CrossRefGoogle Scholar
  3. 3.
    Baggish AL. Exercise-induced cardiac remodeling: competitive athletes are just the tip of the iceberg. Circ Cardiovasc Imaging. 2016;9(8):e005321. Scholar
  4. 4.
    Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International recommendations for electrocardiographic interpretation in athletes. J Am Coll Cardiol. 2017;69(8):1057–75.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Galderisi M, Cardim N, D’Andrea A, Bruder O, Cosyns B, Davin L, et al. The multi-modality cardiac imaging approach to the Athlete’s heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(4):353.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Maron BJ, Zipes DP, Kovacs RJ. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: preamble, principles, and general considerations: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2343–9.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    La Gerche A, Burns AT, Mooney DJ, Inder WJ, Taylor AJ, Bogaert J, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 2012;33(8):998–1006.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    La Gerche A, Rakhit DJ, Claessen G. Exercise and the right ventricle: a potential Achilles’ heel. Cardiovasc Res. 2017;113(12):1499–508.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82(4):521–4.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    D’Andrea A, Riegler L, Golia E, Cocchia R, Scarafile R, Salerno G, et al. Range of right heart measurements in top-level athletes: the training impact. Int J Cardiol. 2013;164(1):48–57.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kooreman Z, Giraldeau G, Finocchiaro G, Kobayashi Y, Wheeler M, Perez M, et al. Athletic remodeling in female college athletes, the “Morganroth hypothesis” revisited. Clin J Sport Med. 2018. Scholar
  12. 12.
    Haykowsky MJ. Left ventricular remodelling and the athlete’s heart: time to revisit the Morganroth hypothesis. J Physiol. 2011;589(Pt 24):5915.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lewis EJ, McKillop A, Banks L. The Morganroth hypothesis revisited: endurance exercise elicits eccentric hypertrophy of the heart. J Physiol. 2012;590(12):2833–4.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Caselli S, Di Paolo FM, Pisicchio C, Di Pietro R, Quattrini FM, Di Giacinto B, et al. Three-dimensional echocardiographic characterization of left ventricular remodeling in Olympic athletes. Am J Cardiol. 2011;108(1):141–7.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Turkbey EB, Jorgensen NW, Johnson WC, Bertoni AG, Polak JF, Diez Roux AV, et al. Physical activity and physiological cardiac remodelling in a community setting: the Multi-Ethnic Study of Atherosclerosis (MESA). Heart. 2010;96(1):42–8.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Haykowsky MJ, Samuel TJ, Nelson MD, La Gerche A. Athlete’s heart: is the morganroth hypothesis obsolete? Heart Lung Circ. 2018;27(9):1037–41.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Luijkx T, Velthuis BK, Backx FJ, Buckens CF, Prakken NH, Rienks R, et al. Anabolic androgenic steroid use is associated with ventricular dysfunction on cardiac MRI in strength trained athletes. Int J Cardiol. 2013;167(3):664–8.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Arbab-Zadeh A, Perhonen M, Howden E, Peshock RM, Zhang R, Adams-Huet B, et al. Cardiac remodeling in response to 1 year of intensive endurance training. Circulation. 2014;130(24):2152–61.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    La Gerche A. Can intense endurance exercise cause myocardial damage and fibrosis? Curr Sports Med Rep. 2013;12(2):63–9.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Landry CH, Allan KS, Connelly KA, Cunningham K, Morrison LJ, Dorian P, et al. Sudden cardiac arrest during participation in competitive sports. N Engl J Med. 2017;377(20):1943–53.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lampert R, Olshansky B, Heidbuchel H, Lawless C, Saarel E, Ackerman M, et al. Safety of sports for athletes with implantable cardioverter-defibrillators: results of a prospective, multinational registry. Circulation. 2013;127(20):2021–30.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Risgaard B, Winkel BG, Jabbari R, Glinge C, Ingemann-Hansen O, Thomsen JL, et al. Sports-related sudden cardiac death in a competitive and a noncompetitive athlete population aged 12 to 49 years: data from an unselected nationwide study in Denmark. Heart Rhythm. 2014;11(10):1673–81.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Winkel BG, Risgaard B, Sadjadieh G, Bundgaard H, Haunso S, Tfelt-Hansen J. Sudden cardiac death in children (1–18 years): symptoms and causes of death in a nationwide setting. Eur Heart J. 2014;35(13):868–75.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Risgaard B, Winkel BG, Jabbari R, Behr ER, Ingemann-Hansen O, Thomsen JL, et al. Burden of sudden cardiac death in persons aged 1 to 49 years: nationwide study in Denmark. Circ Arrhythm Electrophysiol. 2014;7(2):205–11.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Winkel BG, Holst AG, Theilade J, Kristensen IB, Thomsen JL, Ottesen GL, et al. Nationwide study of sudden cardiac death in persons aged 1–35 years. Eur Heart J. 2011;32(8):983–90.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Risgaard B, Tfelt-Hansen J, Winkel BG. Sports-related sudden cardiac death: how to prove an effect of preparticipation screening? Heart Rhythm. 2016;13(7):1560–2.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Corrado D, Basso C, Schiavon M, Thiene G. Screening for hypertrophic cardiomyopathy in young athletes. N Engl J Med. 1998;339(6):364–9.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Corrado D, Basso C, Pavei A, Michieli P, Schiavon M, Thiene G. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA. 2006;296(13):1593–601.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wheeler MT, Heidenreich PA, Froelicher VF, Hlatky MA, Ashley EA. Cost-effectiveness of preparticipation screening for prevention of sudden cardiac death in young athletes. Ann Intern Med. 2010;152(5):276–86.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Corrado D, Schmied C, Basso C, Borjesson M, Schiavon M, Pelliccia A, et al. Risk of sports: do we need a pre-participation screening for competitive and leisure athletes? Eur Heart J. 2011;32(8):934–44.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Maron BJ, Friedman RA, Kligfield P, Levine BD, Viskin S, Chaitman BR, et al. Assessment of the 12-lead electrocardiogram as a screening test for detection of cardiovascular disease in healthy general populations of young people (12–25 years of age): a scientific statement from the American Heart Association and the American College of Cardiology. J Am Coll Cardiol. 2014;64(14):1479–514.CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Steinvil A, Chundadze T, Zeltser D, Rogowski O, Halkin A, Galily Y, et al. Mandatory electrocardiographic screening of athletes to reduce their risk for sudden death proven fact or wishful thinking? J Am Coll Cardiol. 2011;57(11):1291–6.CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Maron BJ, Haas TS, Doerer JJ, Thompson PD, Hodges JS. Comparison of U.S. and Italian experiences with sudden cardiac deaths in young competitive athletes and implications for preparticipation screening strategies. Am J Cardiol. 2009;104(2):276–80.CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Malhotra A, Dhutia H, Finocchiaro G, Gati S, Beasley I, Clift P, et al. Outcomes of cardiac screening in adolescent soccer players. N Engl J Med. 2018;379(6):524–34.CrossRefPubMedCentralGoogle Scholar
  35. 35.
    James CA, Bhonsale A, Tichnell C, Murray B, Russell SD, Tandri H, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013;62(14):1290–7.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Mayor S. Sudden cardiac deaths: one-off screening misses cardiomyopathies in young footballers. BMJ. 2018;9(362):k3474.CrossRefGoogle Scholar
  37. 37.
    Harmon KG, Asif IM, Maleszewski JJ, Owens DS, Prutkin JM, Salerno JC, et al. Incidence, cause, and comparative frequency of sudden cardiac death in national collegiate athletic association athletes: a decade in review. Circulation. 2015;132(1):10–9.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Corrado D, Pelliccia A, Bjornstad HH, Vanhees L, Biffi A, Borjesson M, et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26(5):516–24.CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chaitman BR. An electrocardiogram should not be included in routine preparticipation screening of young athletes. Circulation. 2007;116(22):2610–4 (discussion 5).CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Maron BJ, Levine BD, Washington RL, Baggish AL, Kovacs RJ, Maron MS. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 2: preparticipation screening for cardiovascular disease in competitive athletes: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2356–61.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Halkin A, Steinvil A, Rosso R, Adler A, Rozovski U, Viskin S. Preventing sudden death of athletes with electrocardiographic screening: what is the absolute benefit and how much will it cost? J Am Coll Cardiol. 2012;60(22):2271–6.CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dhutia H, Malhotra A, Gabus V, Merghani A, Finocchiaro G, Millar L, et al. Cost implications of using different ECG criteria for screening young athletes in the United Kingdom. J Am Coll Cardiol. 2016;68(7):702–11.CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lampert R, Myerburg RJ. The true incremental cost of ECG screening: the price is not right, but the cost appears effective. J Am Coll Cardiol. 2013;61(14):1553–4.CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hainline B, Drezner JA, Baggish A, Harmon KG, Emery MS, Myerburg RJ, et al. Interassociation consensus statement on cardiovascular care of college student-athletes. J Am Coll Cardiol. 2016;67(25):2981–95.CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Mandrola JM. Should mandatory screening of young athletes end? 2018 [cited 10 Sep 2018]. Accessed 9 Aug 2018.
  46. 46.
    Pelliccia A, Maron BJ, Culasso F, Di Paolo FM, Spataro A, Biffi A, et al. Clinical significance of abnormal electrocardiographic patterns in trained athletes. Circulation. 2000;102(3):278–84.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Drezner JA, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, et al. Electrocardiographic interpretation in athletes: the ‘Seattle criteria’. Br J Sports Med. 2013;47(3):122–4.CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Corrado D, Pelliccia A, Heidbuchel H, Sharma S, Link M, Basso C, et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur Heart J. 2010;31(2):243–59.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114(15):1633–44.CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;14(15):92.CrossRefGoogle Scholar
  51. 51.
    Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation. 2009;119(8):1085–92.CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Dejgaard LA, Haland TF, Lie OH, Ribe M, Bjune T, Leren IS, et al. Vigorous exercise in patients with hypertrophic cardiomyopathy. Int J Cardiol. 2018;1(250):157–63.CrossRefGoogle Scholar
  53. 53.
    Konhilas JP, Watson PA, Maass A, Boucek DM, Horn T, Stauffer BL, et al. Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circ Res. 2006;98(4):540–8.CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Saberi S, Wheeler M, Bragg-Gresham J, Hornsby W, Agarwal PP, Attili A, et al. Effect of moderate-intensity exercise training on peak oxygen consumption in patients with hypertrophic cardiomyopathy: a randomized clinical trial. JAMA. 2017;317(13):1349–57.CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Maron BJ. Distinguishing hypertrophic cardiomyopathy from athlete’s heart: a clinical problem of increasing magnitude and significance. Heart. 2005;91(11):1380–2.CrossRefPubMedCentralGoogle Scholar
  56. 56.
    D’Andrea A, Cocchia R, Riegler L, Scarafile R, Salerno G, Gravino R, et al. Left ventricular myocardial velocities and deformation indexes in top-level athletes. J Am Soc Echocardiogr. 2010;23(12):1281–8.CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Sharma S, Elliott PM, Whyte G, Mahon N, Virdee MS, Mist B, et al. Utility of metabolic exercise testing in distinguishing hypertrophic cardiomyopathy from physiologic left ventricular hypertrophy in athletes. J Am Coll Cardiol. 2000;36(3):864–70.CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Claessen G, Schnell F, Bogaert J, Claeys M, Pattyn N, De Buck F, et al. Exercise cardiac magnetic resonance to differentiate athlete’s heart from structural heart disease. Eur Heart J Cardiovasc Imaging. 2018;19:1062–1070.CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Aquaro GD, Camastra G, Monti L, Lombardi M, Pepe A, Castelletti S, et al. Reference values of cardiac volumes, dimensions, and new functional parameters by MR: a multicenter, multivendor study. J Magn Reson Imaging. 2017;45(4):1055–67.CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Petersen SE, Selvanayagam JB, Francis JM, Myerson SG, Wiesmann F, Robson MD, et al. Differentiation of athlete’s heart from pathological forms of cardiac hypertrophy by means of geometric indices derived from cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2005;7(3):551–8.CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Treibel TA, Kozor R, Menacho K, Castelletti S, Bulluck H, Rosmini S, et al. Left ventricular hypertrophy revisited: cell and matrix expansion have disease-specific relationships. Circulation. 2017;136(25):2519–21.CrossRefPubMedCentralGoogle Scholar
  62. 62.
    Abergel E, Chatellier G, Hagege AA, Oblak A, Linhart A, Ducardonnet A, et al. Serial left ventricular adaptations in world-class professional cyclists: implications for disease screening and follow-up. J Am Coll Cardiol. 2004;44(1):144–9.CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Pelliccia A, Culasso F, Di Paolo FM, Maron BJ. Physiologic left ventricular cavity dilatation in elite athletes. Ann Intern Med. 1999;130(1):23–31.CrossRefPubMedCentralGoogle Scholar
  64. 64.
    La Gerche A, Claessen G, Van de Bruaene A, Pattyn N, Van Cleemput J, Gewillig M, et al. Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ Cardiovasc Imaging. 2013;6(2):329–38.CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121(13):1533–41.CrossRefPubMedCentralGoogle Scholar
  66. 66.
    La Gerche A, Burns AT, D’Hooge J, Macisaac AI, Heidbuchel H, Prior DL. Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiogr. 2012;25(3):253–262e1.CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Aung N, Zemrak F, Petersen SE. Left ventricular noncompaction, or is it? J Am Coll Cardiol. 2016;68(20):2182–4.CrossRefPubMedCentralGoogle Scholar
  68. 68.
    Zemrak F, Ahlman MA, Captur G, Mohiddin SA, Kawel-Boehm N, Prince MR, et al. The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J Am Coll Cardiol. 2014;64(19):1971–80.CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Petersen SE. Left ventricular noncompaction: a clinically useful diagnostic label? JACC Cardiovasc Imaging. 2015;8(8):947–8.CrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart. 2013;99(6):401–8.CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Gati S, Papadakis M, Papamichael ND, Zaidi A, Sheikh N, Reed M, et al. Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation. 2014;130(6):475–83.CrossRefPubMedCentralGoogle Scholar
  72. 72.
    Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001;86(6):666–71.CrossRefPubMedCentralGoogle Scholar
  73. 73.
    Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46(1):101–5.CrossRefPubMedCentralGoogle Scholar
  74. 74.
    Jacquier A, Thuny F, Jop B, Giorgi R, Cohen F, Gaubert JY, et al. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J. 2010;31(9):1098–104.CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Stacey RB, Andersen MM, St Clair M, Hundley WG, Thohan V. Comparison of systolic and diastolic criteria for isolated LV noncompaction in CMR. JACC Cardiovasc Imaging. 2013;6(9):931–40.CrossRefPubMedCentralGoogle Scholar
  76. 76.
    Captur G, Muthurangu V, Cook C, Flett AS, Wilson R, Barison A, et al. Quantification of left ventricular trabeculae using fractal analysis. J Cardiovasc Magn Reson. 2013;10(15):36.CrossRefGoogle Scholar
  77. 77.
    Zipes DP, Ackerman MJ, Estes NA 3rd, Grant AO, Myerburg RJ, Van Hare G. Task force 7: arrhythmias. J Am Coll Cardiol. 2005;45(8):1354–63.CrossRefPubMedCentralGoogle Scholar
  78. 78.
    La Gerche A, Claessen G, Dymarkowski S, Voigt JU, De Buck F, Vanhees L, et al. Exercise-induced right ventricular dysfunction is associated with ventricular arrhythmias in endurance athletes. Eur Heart J. 2015;36(30):1998–2010.CrossRefPubMedCentralGoogle Scholar
  79. 79.
    von Knobelsdorff-Brenkenhoff F, Dieringer MA, Fuchs K, Hezel F, Niendorf T, Schulz-Menger J. Isometric handgrip exercise during cardiovascular magnetic resonance imaging: set-up and cardiovascular effects. J Magn Reson Imaging. 2013;37(6):1342–50.CrossRefGoogle Scholar
  80. 80.
    Mortensen KH, Jones A, Steeden JA, Taylor AM, Muthurangu V. Isometric stress in cardiovascular magnetic resonance-a simple and easily replicable method of assessing cardiovascular differences not apparent at rest. Eur Radiol. 2016;26(4):1009–17.CrossRefPubMedCentralGoogle Scholar
  81. 81.
    Abernethy WB, Choo JK, Hutter AM Jr. Echocardiographic characteristics of professional football players. J Am Coll Cardiol. 2003;41(2):280–4.CrossRefPubMedCentralGoogle Scholar
  82. 82.
    Adler Y, Fisman EZ, Koren-Morag N, Tanne D, Shemesh J, Lasry E, et al. Left ventricular diastolic function in trained male weight lifters at rest and during isometric exercise. Am J Cardiol. 2008;102(1):97–101.CrossRefPubMedCentralGoogle Scholar
  83. 83.
    Plehn G, Vormbrock J, Perings S, Plehn A, Meissner A, Butz T, et al. Comparison of right ventricular functional response to exercise in hypertrophic versus idiopathic dilated cardiomyopathy. Am J Cardiol. 2010;105(1):116–21.CrossRefPubMedCentralGoogle Scholar
  84. 84.
    Rerkpattanapipat P, Gandhi SK, Darty SN, Williams RT, Davis AD, Mazur W, et al. Feasibility to detect severe coronary artery stenoses with upright treadmill exercise magnetic resonance imaging. Am J Cardiol. 2003;92(5):603–6.CrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sukpraphrute B, Drafts BC, Rerkpattanapipat P, Morgan TM, Kirkman PM, Ntim WO, et al. Prognostic utility of cardiovascular magnetic resonance upright maximal treadmill exercise testing. J Cardiovasc Magn Reson. 2015;25(17):103.CrossRefGoogle Scholar
  86. 86.
    Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104(14):1694–740.CrossRefPubMedCentralGoogle Scholar
  87. 87.
    Foster EL, Arnold JW, Jekic M, Bender JA, Balasubramanian V, Thavendiranathan P, et al. MR-compatible treadmill for exercise stress cardiac magnetic resonance imaging. Magn Reson Med. 2012;67(3):880–9.CrossRefPubMedCentralGoogle Scholar
  88. 88.
    Raman SV, Dickerson JA, Jekic M, Foster EL, Pennell ML, McCarthy B, et al. Real-time cine and myocardial perfusion with treadmill exercise stress cardiovascular magnetic resonance in patients referred for stress SPECT. J Cardiovasc Magn Reson. 2010;12(12):41.CrossRefPubMedCentralGoogle Scholar
  89. 89.
    Raman SV, Dickerson JA, Mazur W, Wong TC, Schelbert EB, Min JK, et al. Diagnostic performance of treadmill exercise cardiac magnetic resonance: the prospective, multicenter exercise CMR’s accuracy for cardiovascular stress testing (EXACT) trial. J Am Heart Assoc. 2016;5(8):e003811.CrossRefPubMedCentralGoogle Scholar
  90. 90.
    Le TT, Huang W, Bryant JA, Cook SA, Chin CW. Stress cardiovascular magnetic resonance imaging: current and future perspectives. Expert Rev Cardiovasc Ther. 2017;15(3):181–9.CrossRefPubMedCentralGoogle Scholar
  91. 91.
    Jeneson JA, Schmitz JP, Hilbers PA, Nicolay K. An MR-compatible bicycle ergometer for in-magnet whole-body human exercise testing. Magn Reson Med. 2010;63(1):257–61.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Le TT, Bryant JA, Ting AE, Ho PY, Su B, Teo RC, et al. Assessing exercise cardiac reserve using real-time cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2017;19(1):7.CrossRefPubMedCentralGoogle Scholar
  93. 93.
    Heiberg J, Asschenfeldt B, Maagaard M, Ringgaard S. Dynamic bicycle exercise to assess cardiac output at multiple exercise levels during magnetic resonance imaging. Clin Imaging. 2017;46:102–7.CrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kirlin PC, Das S, Zijnen P, Wijns W, Domenicucci S, Roelandt J, et al. The exercise response in idiopathic dilated cardiomyopathy. Clin Cardiol. 1984;7(4):205–10.CrossRefPubMedCentralGoogle Scholar
  95. 95.
    Levine BD, Baggish AL, Kovacs RJ, Link MS, Maron MS, Mitchell JH. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 1: classification of sports: dynamic, static, and impact: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol 2015;66:2350–5Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Neuroscience, Imaging and Clinical Sciences, Institute of Cardiology“G. d’Annunzio” UniversityChietiItaly
  2. 2.Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies“G. d’Annunzio” University of Chieti-PescaraChietiItaly
  3. 3.Department of Clinical Sciences, Malmö, Faculty of Medicine, Clinical Research CenterLund UniversityMalmöSweden
  4. 4.William Harvey Research Institute, NIHR Barts Biomedical Research CentreQueen Mary University of LondonLondonUK
  5. 5.Barts Heart CentreSt Bartholomew’s Hospital, Barts Health NHS TrustLondonUK
  6. 6.Internal Medicine and Critical Subacute Care Unit, Medicine and Geriatrics Rehabilitation DepartmentUniversity-Hospital of ParmaParmaItaly

Personalised recommendations