Advertisement

Sports Medicine

, Volume 48, Issue 9, pp 1993–2000 | Cite as

Handgrip Strength and Health in Aging Adults

  • Ryan P. McGrath
  • William J. Kraemer
  • Soham Al Snih
  • Mark D. Peterson
Leading Article

Abstract

Handgrip strength (HGS) is often used as an indicator of overall muscle strength for aging adults, and low HGS is associated with a variety of poor health outcomes including chronic morbidities, functional disabilities, and all-cause mortality. As public health initiatives and programs target the preservation of muscle strength for aging adults, it is important to understand how HGS factors into the disabling process and the sequence of health events that connect low HGS with premature mortality. Such information will help to inform interventions designed to slow the disabling process and improve health outcomes for those at risk for muscle weakness. Further, unraveling the disabling process and identifying the role of weakness throughout the life course will help to facilitate the adoption of HGS measurements into clinical practice for healthcare providers and their patients. The purposes of this article were to (1) highlight evidence demonstrating the associations between HGS and clinically relevant health outcomes, (2) provide directions for future research in HGS and health, and (3) propose a sequence of health-related events that may better explain the role of muscle weakness in the disabling process.

Abbreviations

ADL

Activities of daily living

HGS

Handgrip strength

IADL

Instrumental activities of daily living

Notes

Compliance with ethical standards

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

McGrath, Kraemer, Al Snih, and Peterson declare no conflicts of interest.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Syddall H, Cooper C, Martin F, Briggs R, Aihie Sayer A. Is grip strength a useful single marker of frailty? Age Ageing. 2003;32(6):650–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Clark BC, Manini TM. What is dynapenia? Nutrition. 2012;28(5):495–503.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. 2011;67(1):28–40.CrossRefPubMedGoogle Scholar
  4. 4.
    Cooper C, Fielding R, Mv Visser, Van Loon L, Rolland Y, Orwoll E, et al. Tools in the assessment of sarcopenia. Calcif Tissue Int. 2013;93(3):201–10.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Al Snih S, Markides KS, Ottenbacher KJ, Raji MA. Hand grip strength and incident ADL disability in elderly Mexican Americans over a seven-year period. Aging Clin Exp Res. 2004;16(6):481–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95(5):1851–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Duchowny KA, Clarke P, Peterson M. Muscle weakness and physical disability in older Americans: longitudinal findings from the U.S. Health and Retirement Study. J Nutr Health Aging. 2018;22(4):501–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Bohannon RW. Muscle strength: clinical and prognostic value of hand-grip dynamometry. Curr Opin Clin Nutr Metab Care. 2015;18(5):465–70.CrossRefPubMedGoogle Scholar
  9. 9.
    Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013;3(4):346–50.PubMedGoogle Scholar
  10. 10.
    Silva AM, Shen W, Heo M, Gallagher D, Wang Z, Sardinha LB, et al. Ethnicity-related skeletal muscle differences across the lifespan. Am J Hum Biol. 2010;22(1):76–82.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Germain CM, Vasquez E, Batsis JA, McQuoid DR. Sex, race and age differences in muscle strength and limitations in community dwelling older adults: Data from the Health and Retirement Survey (HRS). Arch Gerontol Geriatr. 2016;65:98–103.CrossRefPubMedGoogle Scholar
  12. 12.
    Alley DE, Shardell MD, Peters KW, McLean RR, Dam T-TL, Kenny AM, et al. Grip strength cutpoints for the identification of clinically relevant weakness. J Gerontol A Biol Sci Med Sci. 2014;69(5):559–66.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, et al. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. J Gerontol A Biol Sci Med Sci. 2014;69(5):576–83.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Duchowny KA, Peterson MD, Clarke PJ. Cut points for clinical muscle weakness among older Americans. Am J Prev Med. 2017;53(1):63–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    McGrath RP, Ottenbacher KJ, Vincent BM, Kraemer WJ, Peterson MD. Muscle weakness and functional limitations in an ethnically diverse sample of older adults. Ethn Health. 2017.  https://doi.org/10.1080/13557858.2017.1418301.PubMedGoogle Scholar
  16. 16.
    Roland J Jr, Thorpe ES, Alan Zonderman MKE. Association between race, household income and grip strength in middle-and older-aged adults. Ethn Dis. 2016;26(4):493.CrossRefGoogle Scholar
  17. 17.
    Quan S, Jeong J-Y, Kim D-H. The relationship between smoking, socioeconomic status and grip strength among community-dwelling elderly men in Korea: Hallym Aging Study. Epidemiol Health. 2013;35:e2013001.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shaw BA, Spokane LS. Examining the association between education level and physical activity changes during early old age. J Aging Health. 2008;20(7):767–87.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kari JT, Pehkonen J, Hirvensalo M, Yang X, Hutri-Kähönen N, Raitakari OT, et al. Income and physical activity among adults: evidence from self-reported and pedometer-based physical activity measurements. PLoS One. 2015;10(8):e0135651.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sayer AA, Syddall H, Martin H, Patel H, Baylis D, Cooper C. The developmental origins of sarcopenia. J Nutr Health Aging. 2008;12(7):427.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bann D, Hire D, Manini T, Cooper R, Botoseneanu A, McDermott MM, et al. Light intensity physical activity and sedentary behavior in relation to body mass index and grip strength in older adults: cross-sectional findings from the lifestyle interventions and independence for elders (LIFE) study. PLoS One. 2015;10(2):e0116058.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V. Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis. 2008;18(5):388–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Szulc P, Duboeuf F, Marchand F, Delmas PD. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS study. Am J Clin Nutr. 2004;80(2):496–503.CrossRefPubMedGoogle Scholar
  24. 24.
    Matos L, Tavares M, Amaral T. Handgrip strength as a hospital admission nutritional risk screening method. Eur J Clin Nutr. 2007;61(9):1128–35.CrossRefPubMedGoogle Scholar
  25. 25.
    Norman K, Stobäus N, Gonzalez MC, Schulzke J-D, Pirlich M. Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr. 2011;30(2):135–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Robinson SM, Jameson KA, Batelaan SF, Martin HJ, Syddall HE, Dennison EM, et al. Diet and its relationship with grip strength in community-dwelling older men and women: the Hertfordshire cohort study. J Am Geriatr Soc. 2008;56(1):84–90.CrossRefPubMedGoogle Scholar
  27. 27.
    Keevil VL, Luben R, Dalzell N, Hayat S, Sayer AA, Wareham NJ, et al. Cross-sectional associations between different measures of obesity and muscle strength in men and women in a British cohort study. J Nutr Health Aging. 2015;19(1):3–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Jang JY, Kim J. Association between handgrip strength and cognitive impairment in elderly Koreans: a population-based cross-sectional study. J Phys Ther Sci. 2015;27(12):3911–5.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Alfaro-Acha A, Al Snih S, Raji MA, Kuo Y-F, Markides KS, Ottenbacher KJ. Handgrip strength and cognitive decline in older Mexican Americans. J Gerontol A Biol Sci Med Sci. 2006;61(8):859–65.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Buchman AS, Wilson RS, Boyle PA, Bienias JL, Bennett DA. Grip strength and the risk of incident Alzheimer’s disease. Neuroepidemiology. 2007;29(1–2):66–73.CrossRefPubMedGoogle Scholar
  31. 31.
    Fukumori N, Yamamoto Y, Takegami M, Yamazaki S, Onishi Y, Sekiguchi M, et al. Association between hand-grip strength and depressive symptoms: Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS). Age Ageing. 2015;44(4):592–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Hagen EH, Rosenström T. Explaining the sex difference in depression with a unified bargaining model of anger and depression. Evol Med Public Health. 2016;2016(1):117–32.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hamer M, Batty GD, Kivimaki M. Sarcopenic obesity and risk of new onset depressive symptoms in older adults: English longitudinal study of ageing. Int J Obes. 2015;39(12):1717–20.CrossRefGoogle Scholar
  34. 34.
    Cuijpers P, Vogelzangs N, Twisk J, Kleiboer A, Li J, Penninx BW. Comprehensive meta-analysis of excess mortality in depression in the general community versus patients with specific illnesses. Am J Psychiatry. 2014;171(4):453–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Sachs GA, Carter R, Holtz LR, Smith F, Stump TE, Tu W, et al. Cognitive impairment: an independent predictor of excess mortality: a cohort study. Ann Intern Med. 2011;155(5):300–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment—a review of the evidence and causal mechanisms. Ageing Res Rev. 2013;12(4):840–51.CrossRefPubMedGoogle Scholar
  37. 37.
    Weaver J, Huang M-H, Albert M, Harris T, Rowe J, Seeman TE. Interleukin-6 and risk of cognitive decline MacArthur Studies of Successful Aging. Neurology. 2002;59(3):371–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Cesari M, Penninx BW, Pahor M, Lauretani F, Corsi AM, Williams GR, et al. Inflammatory markers and physical performance in older persons: the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2004;59(3):M242–8.CrossRefGoogle Scholar
  39. 39.
    Germain CM, Batsis JA, Vasquez E, McQuoid DR. Muscle strength, physical activity, and functional limitations in older adults with central obesity. J Aging Res. 2016;2016:8387324.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ukegbu U, Maselko J, Malhotra R, Perera B, Østbye T. Correlates of hand grip strength and activities of daily living in elderly Sri Lankans. J Am Geriatr Soc. 2014;62(9):1800–1.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, Le Couteur DG, Creasey H, et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the Concord Health and Ageing in Men Project. J Am Geriatr Soc. 2010;58(11):2055–62.CrossRefPubMedGoogle Scholar
  42. 42.
    McGrath RP, Vincent BM, Snih SA, Markides KS, Dieter BP, Bailey RR, et al. The association between handgrip strength and diabetes on activities of daily living disability in older Mexican Americans. J Aging Health. 2017.  https://doi.org/10.1177/0898264317715544.PubMedGoogle Scholar
  43. 43.
    McGrath R, Robinson-Lane SG, Peterson MD, Bailey RR, Vincent BM. Muscle strength and functional limitations: preserving function in older Mexican Americans. J Am Med Dir Assoc. 2018;19(5):391–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Stevens P, Syddall H, Patel H, Martin H, Cooper C, Sayer AA. Is grip strength a good marker of physical performance among community-dwelling older people? J Nutr Health Aging. 2012;16(9):769–74.CrossRefPubMedGoogle Scholar
  45. 45.
    Peterson MD, Duchowny K, Meng Q, Wang Y, Chen X, Zhao Y. Low normalized grip strength is a biomarker for cardiometabolic disease and physical disabilities among US and Chinese adults. J Gerontol A Biol Sci Med Sci. 2017;72(11):1525–31.CrossRefPubMedGoogle Scholar
  46. 46.
    McGrath R, Vincent BM, Al Snih S, Markides KS, Peterson MD. The association between muscle weakness and incident diabetes in older Mexican Americans. J Am Med Dir Assoc. 2017;18(5):452.e7–12.CrossRefGoogle Scholar
  47. 47.
    Stenholm S, Tiainen K, Rantanen T, Sainio P, Heliövaara M, Impivaara O, et al. Long-term determinants of muscle strength decline: Prospective evidence from the 22-year mini-Finland follow-up survey. J Am Geriatr Soc. 2012;60(1):77–85.CrossRefPubMedGoogle Scholar
  48. 48.
    Mainous AG, Tanner RJ, Anton SD, Jo A. Grip strength as a marker of hypertension and diabetes in healthy weight adults. Am J Prev Med. 2015;49(6):850–8.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Marques-Vidal P, Vollenweider P, Waeber G, Jornayvaz FR. Grip strength is not associated with incident type 2 diabetes mellitus in healthy adults: the CoLaus Study. Diabetes Res Clin Pract. 2017;132:144–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Gubelmann C, Vollenweider P, Marques-Vidal P. Association of grip strength with cardiovascular risk markers. Eur J Prev Cardiol. 2017;24(5):514–21.CrossRefPubMedGoogle Scholar
  51. 51.
    Hall MJ, Levant S, DeFrances CJ. Trends in inpatient hospital deaths: national hospital discharge survey, 2000–2010: NCHS Data Brief. 2013;(118):1–8.Google Scholar
  52. 52.
    Goldberg TH, Botero A. Causes of death in elderly nursing home residents. J Am Med Dir Assoc. 2008;9(8):565–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Roberts HC, Syddall HE, Sparkes J, Ritchie J, Butchart J, Kerr A, et al. Grip strength and its determinants among older people in different healthcare settings. Age Ageing. 2013;43(2):241–6.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hamasaki H, Kawashima Y, Katsuyama H, Sako A, Goto A, Yanai H. Association of handgrip strength with hospitalization, cardiovascular events, and mortality in Japanese patients with type 2 diabetes. Sci Rep. 2017;7(1):7041.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Guerra R, Amaral T, Sousa A, Pichel F, Restivo M, Ferreira S, et al. Handgrip strength measurement as a predictor of hospitalization costs. Eur J Clin Nutr. 2015;69(2):187–92.CrossRefPubMedGoogle Scholar
  56. 56.
    Kim Y, Wijndaele K, Lee DC, Sharp SJ, Wareham N, Brage S. Independent and joint associations of grip strength and adiposity with all-cause and cardiovascular disease mortality in 403,199 adults: the UK Biobank study. Am J Clin Nutr. 2017;106(3):773–82.PubMedGoogle Scholar
  57. 57.
    Arvandi M, Strasser B, Meisinger C, Volaklis K, Gothe RM, Siebert U, et al. Gender differences in the association between grip strength and mortality in older adults: results from the KORA-age study. BMC Geriatr. 2016;16(1):201.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A, Orlandini A, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386(9990):266–73.CrossRefPubMedGoogle Scholar
  59. 59.
    Peterson MD, McGrath R, Zhang P, Markides KS, Al Snih S, Wong R. Muscle weakness is associated with diabetes in older Mexicans: the Mexican Health and Aging Study. J Am Med Dir Assoc. 2016;17(10):933–8.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Perna FM, Coa K, Troiano RP, Lawman HG, Wang C-Y, Li Y, et al. Muscular Grip Strength Estimates of the US Population From the National Health and Nutrition Examination Survey 2011–2012. J Strength Cond Res. 2016;30(3):867–74.CrossRefPubMedGoogle Scholar
  61. 61.
    Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69(5):547–58.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Frontera WR, Bean JF, Damiano D, Ehrlich-Jones L, Fried-Oken M, Jette A, et al. Rehabilitation research at the National Institutes of Health: Moving the field forward (Executive Summary). Neurorehabil Neural Repair. 2017;31(4):304–14.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Frontera WR. Physiologic changes of the musculoskeletal system with aging: a brief review. Phys Med Rehabil Clin N Am. 2017;28(4):705–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ryan P. McGrath
    • 1
  • William J. Kraemer
    • 2
  • Soham Al Snih
    • 3
  • Mark D. Peterson
    • 4
  1. 1.Department of Health, Nutrition, and Exercise SciencesNorth Dakota State UniversityFargoUSA
  2. 2.Department of Human SciencesThe Ohio State UniversityColumbusUSA
  3. 3.Division of Rehabilitation SciencesUniversity of Texas Medical BranchGalvestonUSA
  4. 4.Department of Physical Medicine and RehabilitationUniversity of MichiganAnn ArborUSA

Personalised recommendations