Drug Treatment of Progressive Myoclonic Epilepsy

  • Gregory L. HolmesEmail author
Review Article


The progressive myoclonic epilepsies (PMEs) represent a rare but devastating group of syndromes characterized by epileptic myoclonus, typically action-induced seizures, neurological regression, medically refractory epilepsy, and a variety of other signs and symptoms depending on the specific syndrome. Most of the PMEs begin in children who are developing as expected, with the onset of the disorder heralded by myoclonic and other seizure types. The conditions are considerably heterogenous, but medical intractability to epilepsy, particularly myoclonic seizures, is a core feature. With the increasing use of molecular genetic techniques, mutations and their abnormal protein products are being delineated, providing a basis for disease-based therapy. However, genetic and enzyme replacement or substrate removal are in the nascent stage, and the primary therapy is through antiepileptic drugs. Epilepsy in children with progressive myoclonic seizures is notoriously difficult to treat. The disorder is rare, so few double-blinded, placebo-controlled trials have been conducted in PME, and drugs are chosen based on small open-label trials or extrapolation of data from drug trials of other syndromes with myoclonic seizures. This review discusses the major PME syndromes and their neurogenetic basis, pathophysiological underpinning, electroencephalographic features, and currently available treatments.


Compliance with Ethical Standards


This work was supported by National Institutes of Health grants NS108765 and NS1089296.

Conflict of interest

Gregory L. Holmes has no conflicts of interest that are directly relevant to the content of this article.


  1. 1.
    Malek N, Stewart W, Greene J. The progressive myoclonic epilepsies. Pract Neurol. 2015;15(3):164–71.PubMedCrossRefGoogle Scholar
  2. 2.
    Satishchandra P, Sinha S. Progressive myoclonic epilepsy. Neurol India. 2010;58(4):514–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Dijk JM, Tijssen MA. Management of patients with myoclonus: available therapies and the need for an evidence-based approach. Lancet Neurol. 2010;9(10):1028–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Kalviainen R. Progressive myoclonus epilepsies. Seminars in neurology. 2015;35(3):293–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Franceschetti S, Michelucci R, Canafoglia L, Striano P, Gambardella A, Magaudda A, et al. Progressive myoclonic epilepsies: definitive and still undetermined causes. Neurology. 2014;82(5):405–11.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Genton P, Striano P, Minassian BA. The history of progressive myoclonus epilepsies. Epileptic Disord. 2016;18(S2):3–10.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Minassian BA. Post-modern therapeutic approaches for progressive myoclonus epilepsy. Epileptic Disord. 2016;18(S2):154–8.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Minassian BA, Striano P, Avanzini G. Progressive myoclonus epilepsy: the gene-empowered era. Epileptic Disord. 2016;18(S2):1–2.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Caviness JN. Pathophysiology and treatment of myoclonus. Neurol Clin. 2009 Aug;27(3):757-77, vii.PubMedCrossRefGoogle Scholar
  10. 10.
    Caviness JN, Brown P. Myoclonus: current concepts and recent advances. Lancet Neurol. 2004;3(10):598–607.PubMedCrossRefGoogle Scholar
  11. 11.
    Guerrini R, Takahashi T. Myoclonus and epilepsy. Handb Clin Neurol. 2013;111:667–79.PubMedCrossRefGoogle Scholar
  12. 12.
    Eberhardt O, Topka H. Myoclonic Disorders. Brain Sci. 2017 Aug 14;7(8).Google Scholar
  13. 13.
    Shibasaki H, Hallett M. Electrophysiological studies of myoclonus. Muscle Nerve. 2005;31(2):157–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Avanzini G, Shibasaki H, Rubboli G, Canafoglia L, Panzica F, Franceschetti S, et al. Neurophysiology of myoclonus and progressive myoclonus epilepsies. Epileptic Disord. 2016;18(S2):11–27.PubMedGoogle Scholar
  15. 15.
    Shibasaki H, Yamashita Y, Kuroiwa Y. Electroencephalographic studies myoclonus. Brain. 1978;101(3):447–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Brown P, Farmer SF, Halliday DM, Marsden J, Rosenberg JR. Coherent cortical and muscle discharge in cortical myoclonus. Brain. 1999;122(Pt 3):461–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Brown P, Ridding MC, Werhahn KJ, Rothwell JC, Marsden CD. Abnormalities of the balance between inhibition and excitation in the motor cortex of patients with cortical myoclonus. Brain. 1996;1996(119):309–17.CrossRefGoogle Scholar
  18. 18.
    Grosse P, Cassidy MJ, Brown P. EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clin Neurophysiol. 2002;113(10):1523–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Shibasaki H, Yamashita Y, Kuroiwa Y. Electroencephalographic studies of myoclonus: myoclonus related cortical spike and high amplitude somatosensory evoked potential. Brain. 1978;1978(101):447–60.CrossRefGoogle Scholar
  20. 20.
    Reutens DC, Puce A, Berkovic SF. Cortical hyperexcitability in progressive myoclonus epilepsy: a study with transcranial magnetic stimulation. Neurology. 1993;43(1):186–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Khazipov R. GABAergic synchronization in epilepsy. Cold Spring Harb Perspect Med. 2016;6(2):a022764.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fan D, Liu S, Wang Q. Stimulus-induced epileptic spike-wave discharges in thalamocortical model with disinhibition. Sci Rep. 2016;23(6):37703.CrossRefGoogle Scholar
  23. 23.
    Snead OC III. Basic mechanisms of generalized absence seizures. Ann Neurol. 1995;1995(37):146–57.CrossRefGoogle Scholar
  24. 24.
    Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci. 2002;3(5):371–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Crunelli V, Leresche N. A role for GABAB receptors in excitation and inhibition of thalamocortical cells. TINS. 1991;1991(14):16–21.Google Scholar
  26. 26.
    Caviness JN. Treatment of myoclonus. Neurotherapeutics. 2014;11(1):188–200.PubMedCrossRefGoogle Scholar
  27. 27.
    Oguni H, Fukuyama Y, Tanaka T, Hayashi K, Funatsuka M, Sakauchi M, et al. Myoclonic-astatic epilepsy of early childhood–clinical and EEG analysis of myoclonic-astatic seizures, and discussions on the nosology of the syndrome. Brain Dev. 2001;23(7):757–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Nardocci N. Myoclonus-dystonia syndrome. Handb Clin Neurol. 2011;100:563–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Panzica F, Canafoglia L, Franceschetti S, Binelli S, Ciano C, Visani E, et al. Movement-activated myoclonus in genetically defined progressive myoclonic epilepsies: EEG-EMG relationship estimated using autoregressive models. Clin Neurophysiol. 2003;114(6):1041–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Kalviainen R, Khyuppenen J, Koskenkorva P, Eriksson K, Vanninen R, Mervaala E. Clinical picture of EPM1-Unverricht-Lundborg disease. Epilepsia. 2008;49(4):549–56.PubMedCrossRefGoogle Scholar
  31. 31.
    Sinha S, Satishchandra P, Gayathri N, Yasha TC, Shankar SK. Progressive myoclonic epilepsy: A clinical, electrophysiological and pathological study from South India. J Neurol Sci. 2007;252(1):16–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Specchio N, Bellusci M, Pietrafusa N, Trivisano M, de Palma L, Vigevano F. Photosensitivity is an early marker of neuronal ceroid lipofuscinosis type 2 disease. Epilepsia. 2017;58(8):1380–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Devinsky O, Cross JH, Laux L, Marsh E, Miller I, Nabbout R, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376(21):2011–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Parihar R, Rai A, Ganesh S. Lafora disease: from genotype to phenotype. J Genet. 2018;97(3):611–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Turnbull J, Tiberia E, Striano P, Genton P, Carpenter S, Ackerley CA, et al. Lafora disease. Epileptic Disord. 2016;18(S2):38–62.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Minassian BA. Lafora’s disease: towards a clinical, pathologic, and molecular synthesis. Pediatr Neurol. 2001;25(1):21–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Striano P, Zara F, Turnbull J, Girard JM, Ackerley CA, Cervasio M, et al. Typical progression of myoclonic epilepsy of the Lafora type: a case report. Nat Clin Pract Neurol. 2008;4(2):106–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Ganesh S, Agarwala KL, Ueda K, Akagi T, Shoda K, Usui T, et al. Laforin, defective in the progressive myoclonus epilepsy of Lafora type, is a dual-specificity phosphatase associated with polyribosomes. Hum Mol Genet. 2000;9(15):2251–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Minassian BA, Lee JR, Herbrick JA, Huizenga J, Soder S, Mungall AJ, et al. Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet. 1998;20(2):171–4.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Chan EM, Bulman DE, Paterson AD, Turnbull J, Andermann E, Andermann F, et al. Genetic mapping of a new Lafora progressive myoclonus epilepsy locus (EPM2B) on 6p22. J Med Genet. 2003;40(9):671–5.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Minassian BA, Andrade DM, Ianzano L, Young EJ, Chan E, Ackerley CA, et al. Laforin is a cell membrane and endoplasmic reticulum-associated protein tyrosine phosphatase. Ann Neurol. 2001;49(2):271–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Turnbull J, Girard JM, Lohi H, Chan EM, Wang P, Tiberia E, et al. Early-onset Lafora body disease. Brain. 2012;135(Pt 9):2684–98.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Nitschke F, Ahonen SJ, Nitschke S, Mitra S, Minassian BA. Lafora disease—from pathogenesis to treatment strategies. Nat Rev Neurol. 2018;14(10):606–17.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hypponen J, Aikia M, Joensuu T, Julkunen P, Danner N, Koskenkorva P, et al. Refining the phenotype of Unverricht–Lundborg disease (EPM1): a population-wide Finnish study. Neurology. 2015;84(15):1529–36.PubMedCrossRefGoogle Scholar
  45. 45.
    Lehesjoki AE, Gardiner M. Progressive myoclonus epilepsy: Unverricht–Lundborg disease and neuronal ceroid lipofuscinoses. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. Bethesda (MD); 2012.Google Scholar
  46. 46.
    Berkovic SF, Andermann F, Carpenter S, Wolfe LS. Progressive myoclonus epilepsies: specific causes and diagnosis. N Engl J Med. 1986;315(5):296–305.PubMedCrossRefGoogle Scholar
  47. 47.
    Berkovic SF, Andermann F. The progressive myoclonus epilepsies. In: Pedley TA, Meldrum BS, editors. Recent advances in epilepsy, vol. 3. Edinburgh: Churchill Livingstone; 1986. p. 157–87.Google Scholar
  48. 48.
    Classification of progressive myoclonus epilepsies and related disorders. Marseille consensus group. Ann Neurol. 1990;28(1):113–6.CrossRefGoogle Scholar
  49. 49.
    Pennacchio LA, Lehesjoki AE, Stone NE, Willour VL, Virtaneva K, Miao J, et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science. 1996;271(5256):1731–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Pennacchio LA, Myers RM. Isolation and characterization of the mouse cystatin B gene. Genome Res. 1996;6(11):1103–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Lalioti MD, Scott HS, Buresi C, Rossier C, Bottani A, Morris MA, et al. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature. 1997;386(6627):847–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Lalioti MD, Scott HS, Genton P, Grid D, Ouazzani R, M’Rhabet A, et al. A PCR amplification method reveals instability of the dodecamer repeat in progressive myoclonus epilepsy (EPM1) and no correlation between the size of the repeat and age at onset. Am J Hum Genet. 1998;1998(62):842–7.CrossRefGoogle Scholar
  53. 53.
    Lafreniere RG, Rochefort DL, Chretien N, Rommens JM, Cochius JI, Kalviainen R, et al. Unstable insertion in the 5’ flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPM1. Nat Genet. 1997;15(3):298–302.PubMedCrossRefGoogle Scholar
  54. 54.
    Michelucci R, Pasini E, Riguzzi P, Andermann E, Kalviainen R, Genton P. Myoclonus and seizures in progressive myoclonus epilepsies: pharmacology and therapeutic trials. Epileptic Disord. 2016;18(S2):145–53.PubMedGoogle Scholar
  55. 55.
    Mole SE, Williams RE. Neuronal ceroid-lipofuscinoses. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA); 1993.Google Scholar
  56. 56.
    Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, Zhang Z, et al. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. Mol Neurodegener. 2019;14(1):4.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sun A. Lysosomal storage disease overview. Ann Transl Med. 2018;6(24):476.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Fietz M, AlSayed M, Burke D, Cohen-Pfeffer J, Cooper JD, Dvorakova L, et al. Diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2 disease): expert recommendations for early detection and laboratory diagnosis. Mol Genet Metab. 2016;119(1–2):160–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Williams RE, Mole SE. New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses. Neurology. 2012;79(2):183–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Alcalde-Cabero E, Almazan-Isla J, Garcia Lopez FJ, Ara-Callizo JR, Avellanal F, Casasnovas C, et al. Guillain–Barre syndrome following the 2009 pandemic monovalent and seasonal trivalent influenza vaccination campaigns in Spain from 2009 to 2011: outcomes from active surveillance by a neurologist network, and records from a country-wide hospital discharge database. BMC Neurol. 2016;16(1):75.Google Scholar
  61. 61.
    Schulz A, Kohlschutter A, Mink J, Simonati A, Williams R. NCL diseases—clinical perspectives. Biochim Biophys Acta. 2013;1832(11):1801–6.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ostergaard JR, Rasmussen TB, Molgaard H. Cardiac involvement in juvenile neuronal ceroid lipofuscinosis (Batten disease). Neurology. 2011;76(14):1245–51.PubMedCrossRefGoogle Scholar
  63. 63.
    Dilaveris P, Koutagiar I, Aggeli C, Sideris S, Gatzoulis K, Stefanadis C. Severe sinus node dysfunction in a patient with juvenile neuronal ceroid lipofuscinosis. Int J Cardiol. 2014;174(1):143–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Lebrun AH, Moll-Khosrawi P, Pohl S, Makrypidi G, Storch S, Kilian D, et al. Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease. Mol Med. 2011;17(11–12):1253–61.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Mole SE, Cotman SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta. 2015;1852(10 Pt B):2237-41.CrossRefGoogle Scholar
  66. 66.
    Nickel M, Simonati A, Jacoby D, Lezius S, Kilian D, Van de Graaf B, et al. Disease characteristics and progression in patients with late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease: an observational cohort study. Lancet Child Adolesc Health. 2018;2(8):582–90.PubMedCrossRefGoogle Scholar
  67. 67.
    Williams RE, Adams HR, Blohm M, Cohen-Pfeffer JL, de Los Reyes E, Denecke J, et al. Management strategies for CLN2 disease. Pediatr Neurol. 2017;69:102–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Perez-Poyato MS, Marfa MP, Abizanda IF, Rodriguez-Revenga L, Sanchez VC, Gonzalez MJ, et al. Late infantile neuronal ceroid lipofuscinosis: mutations in the CLN2 gene and clinical course in Spanish patients. J Child Neurol. 2013;28(4):470–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Worgall S, Kekatpure MV, Heier L, Ballon D, Dyke JP, Shungu D, et al. Neurological deterioration in late infantile neuronal ceroid lipofuscinosis. Neurology. 2007;69(6):521–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Sleat DE, Gin RM, Sohar I, Wisniewski K, Sklower-Brooks S, Pullarkat RK, et al. Mutational analysis of the defective protease in classic late-infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. Am J Hum Genet. 1999;64(6):1511–23.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Golabek AA, Kida E, Walus M, Wujek P, Mehta P, Wisniewski KE. Biosynthesis, glycosylation, and enzymatic processing in vivo of human tripeptidyl-peptidase I. J Biol Chem. 2003;278(9):7135–45.PubMedCrossRefGoogle Scholar
  72. 72.
    Vines DJ, Warburton MJ. Classical late infantile neuronal ceroid lipofuscinosis fibroblasts are deficient in lysosomal tripeptidyl peptidase I. FEBS Lett. 1999;443(2):131–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Markham A. Cerliponase alfa: first global approval. Drugs. 2017;77(11):1247–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Nita DA, Mole SE, Minassian BA. Neuronal ceroid lipofuscinoses. Epileptic Disord. 2016;18(S2):73–88.PubMedGoogle Scholar
  75. 75.
    Augustine EF, Adams HR, Beck CA, Vierhile A, Kwon J, Rothberg PG, et al. Standardized assessment of seizures in patients with juvenile neuronal ceroid lipofuscinosis. Dev Med Child Neurol. 2015;57(4):366–71.PubMedCrossRefGoogle Scholar
  76. 76.
    Johannsen J, Nickel M, Schulz A, Denecke J. Considering valproate as a risk factor for rapid exacerbation of complex movement disorder in progressed stages of late-infantile CLN2 disease. Neuropediatrics. 2016;47(3):194–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Isolation of a novel gene underlying Batten disease, CLN3. The International Batten Disease Consortium. Cell. 1995;82(6):949–57.CrossRefGoogle Scholar
  78. 78.
    Chan CH, Mitchison HM, Pearce DA. Transcript and in silico analysis of CLN3 in juvenile neuronal ceroid lipofuscinosis and associated mouse models. Hum Mol Genet. 2008;17(21):3332–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nagral A. Gaucher disease. J Clin Exp Hepatol. 2014;4(1):37–50.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mignot C, Doummar D, Maire I, De Villemeur TB, French Type 2 Gaucher Disease Study G. Type 2 Gaucher disease: 15 new cases and review of the literature. Brain Dev. 2006;28(1):39–48.PubMedCrossRefGoogle Scholar
  81. 81.
    Harris CM, Taylor DS, Vellodi A. Ocular motor abnormalities in Gaucher disease. Neuropediatrics. 1999;30(6):289–93.PubMedCrossRefGoogle Scholar
  82. 82.
    Blom S, Erikson A. Gaucher disease–Norrbottnian type. Neurodevelopmental, neurological, and neurophysiological aspects. Eur J Pediatr. 1983;140(4):316–22.Google Scholar
  83. 83.
    Messner MC, Cabot MC. Glucosylceramide in humans. Adv Exp Med Biol. 2010;688:156–64.PubMedCrossRefGoogle Scholar
  84. 84.
    Shemesh E, Deroma L, Bembi B, Deegan P, Hollak C, Weinreb NJ, et al. Enzyme replacement and substrate reduction therapy for Gaucher disease. Cochrane Database Syst Rev. 2015;27(3):CD010324.Google Scholar
  85. 85.
    Pastores GM, Hughes DA. Gaucher Disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA): University of Washington.Google Scholar
  86. 86.
    Tezuka Y, Fukuda M, Watanabe S, Nakano T, Okamoto K, Kuzume K, et al. Histological characterisation of visceral changes in a patient with type 2 Gaucher disease treated with enzyme replacement therapy. Blood Cells Mol Dis. 2018;68:194–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Li M. Enzyme replacement therapy: a review and its role in treating lysosomal storage diseases. Pediatr Ann. 2018;47(5):e191–7.PubMedCrossRefGoogle Scholar
  88. 88.
    DiMauro S, Hirano M. MERRF. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews®. Seattle (WA): University of Washington.Google Scholar
  89. 89.
    Finsterer J, Zarrouk-Mahjoub S. Management of epilepsy in MERRF syndrome. Seizure. 2017;50:166–70.PubMedCrossRefGoogle Scholar
  90. 90.
    Lorenzoni PJ, Scola RH, Kay CS, Silvado CE, Werneck LC. When should MERRF (myoclonus epilepsy associated with ragged-red fibers) be the diagnosis? Arq Neuropsiquiatr. 2014;72(10):803–11.PubMedCrossRefGoogle Scholar
  91. 91.
    DiMauro S, Hirano M, Kaufmann P, Tanji K, Sano M, Shungu DC, et al. Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol. 2002;89:217–29.PubMedGoogle Scholar
  92. 92.
    Fukuhara N. Clinicopathological features of MERRF. Muscle Nerve Suppl. 1995;3:S90–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Lorenzoni PJ, Scola RH, Kay CS, Arndt RC, Silvado CE, Werneck LC. MERRF: clinical features, muscle biopsy and molecular genetics in Brazilian patients. Mitochondrion. 2011;11(3):528–32.PubMedCrossRefGoogle Scholar
  94. 94.
    Finsterer J. Mitochondriopathies. Eur J Neurol. 2004;11(3):163–86.PubMedCrossRefGoogle Scholar
  95. 95.
    Chinnery PF, Howell N, Lightowlers RN, Turnbull DM. Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes. Brain. 1997;120 (Pt 10):1713–21.PubMedCrossRefGoogle Scholar
  96. 96.
    Berkovic SF, Carpenter S, Evans A, Karpati G, Shoubridge EA, Andermann F, et al. Myoclonus epilepsy and ragged-red fibres (MERRF). 1. A clinical, pathological, biochemical, magnetic resonance spectrographic and positron emission tomographic study. Brain. 1989;112 (Pt 5):1231–60.PubMedCrossRefGoogle Scholar
  97. 97.
    Ozawa M, Goto Y, Sakuta R, Tanno Y, Tsuji S, Nonaka I. The 8,344 mutation in mitochondrial DNA: a comparison between the proportion of mutant DNA and clinico-pathologic findings. Neuromuscul Disord. 1995;5(6):483–8.PubMedCrossRefGoogle Scholar
  98. 98.
    DiMauro S. Mitochondrial encephalomyopathies. In: Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL, Kunkel LM, editors. The molecular and genetic basis of neurological disease. Boston: Butterworth-Heinemann; 1993. p. 665–94.Google Scholar
  99. 99.
    Canafoglia L, Franceschetti S, Antozzi C, Carrara F, Farina L, Granata T, et al. Epileptic phenotypes associated with mitochondrial disorders. Neurology. 2001;56(10):1340–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, et al. Phenotypic heterogeneity of the 8344A > G mtDNA “MERRF” mutation. Neurology. 2013;80(22):2049–54.PubMedCrossRefGoogle Scholar
  101. 101.
    Mancuso M, Orsucci D, Angelini C, Bertini E, Catteruccia M, Pegoraro E, et al. Myoclonus in mitochondrial disorders. Mov Disord. 2014;29(6):722–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Cohen BH, Chinnery PF, Copeland WC. POLG-Related Disorders. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews®. Seattle (WA): University of Washington.Google Scholar
  103. 103.
    Rahman S. Mitochondrial disease and epilepsy. Dev Med Child Neurol. 2012;54(5):397–406.PubMedCrossRefGoogle Scholar
  104. 104.
    Jang YH, Lim KI. Recent advances in mitochondria-targeted gene delivery. Molecules. 2018;23(9).PubMedCentralCrossRefPubMedGoogle Scholar
  105. 105.
    Badhwar A, Berkovic SF, Dowling JP, Gonzales M, Narayanan S, Brodtmann A, et al. Action myoclonus-renal failure syndrome: characterization of a unique cerebro-renal disorder. Brain. 2004;127(Pt 10):2173–82.PubMedCrossRefGoogle Scholar
  106. 106.
    Dibbens LM, Michelucci R, Gambardella A, Andermann F, Rubboli G, Bayly MA, et al. SCARB2 mutations in progressive myoclonus epilepsy (PME) without renal failure. Ann Neurol. 2009;66(4):532–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Hopfner F, Schormair B, Knauf F, Berthele A, Tolle TR, Baron R, et al. Novel SCARB2 mutation in action myoclonus-renal failure syndrome and evaluation of SCARB2 mutations in isolated AMRF features. BMC Neurol. 2011;27(11):134.CrossRefGoogle Scholar
  108. 108.
    Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M, Vears DF, et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet. 2008;82(3):673–84.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Higashiyama Y, Doi H, Wakabayashi M, Tsurusaki Y, Miyake N, Saitsu H, et al. A novel SCARB2 mutation causing late-onset progressive myoclonus epilepsy. Mov Disord. 2013;28(4):552–3.PubMedCrossRefGoogle Scholar
  110. 110.
    Perandones C, Pellene LA, Micheli F. A new SCARB2 mutation in a patient with progressive myoclonus ataxia without renal failure. Mov Disord. 2014;29(1):158–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Fox MH, Bassuk AG. PRICKLE1-Related Progressive Myoclonus Epilepsy with Ataxia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA): University of Washington.Google Scholar
  112. 112.
    Liu C, Lin C, Whitaker DT, Bakeri H, Bulgakov OV, Liu P, et al. Prickle1 is expressed in distinct cell populations of the central nervous system and contributes to neuronal morphogenesis. Hum Mol Genet. 2013;22(11):2234–46.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Boisse Lomax L, Bayly MA, Hjalgrim H, Moller RS, Vlaar AM, Aaberg KM, et al. ‘North Sea’ progressive myoclonus epilepsy: phenotype of subjects with GOSR2 mutation. Brain. 2013;136(Pt 4):1146–54.PubMedCrossRefGoogle Scholar
  114. 114.
    Corbett MA, Schwake M, Bahlo M, Dibbens LM, Lin M, Gandolfo LC, et al. A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet. 2011;88(5):657–63.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Bonten EJ, Arts WF, Beck M, Covanis A, Donati MA, Parini R, et al. Novel mutations in lysosomal neuraminidase identify functional domains and determine clinical severity in sialidosis. Hum Mol Genet. 2000;9(18):2715–25.PubMedCrossRefGoogle Scholar
  116. 116.
    Caciotti A, Di Rocco M, Filocamo M, Grossi S, Traverso F, d’Azzo A, et al. Type II sialidosis: review of the clinical spectrum and identification of a new splicing defect with chitotriosidase assessment in two patients. J Neurol. 2009;256(11):1911–5.PubMedCrossRefGoogle Scholar
  117. 117.
    d’Azzo A, Machado E, Annunziata I. Pathogenesis, emerging therapeutic targets and Treatment in Sialidosis. Expert Opin Orphan Drugs. 2015;3(5):491–504.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Federico A, Cecio A, Battini GA, Michalski JC, Strecker G, Guazzi GC. Macular cherry-red spot and myoclonus syndrome. Juvenile form of sialidosis. J Neurol Sci. 1980;48(2):157–69.PubMedCrossRefGoogle Scholar
  119. 119.
    Canafoglia L, Franceschetti S, Antozzi C, Carrara F, Farina L, Granata T, et al. Epileptic phenotypes associated with mitochondrial disorders. Neurology. 2001;2001(22):1340–6.CrossRefGoogle Scholar
  120. 120.
    Canafoglia L, Franceschetti S, Uziel G, Ciano C, Scaioli V, Guerrini R, et al. Characterization of severe action myoclonus in sialidoses. Epilepsy Res. 2011;94(1–2):86–93.PubMedCrossRefGoogle Scholar
  121. 121.
    Heroman JW, Rychwalski P, Barr CC. Cherry red spot in sialidosis (mucolipidosis type I). Arch Ophthalmol. 2008;126(2):270–1.PubMedCrossRefGoogle Scholar
  122. 122.
    Bonten EJ, Annunziata I, d’Azzo A. Lysosomal multienzyme complex: pros and cons of working together. Cell Mol Life Sci. 2014;71(11):2017–32.PubMedCrossRefGoogle Scholar
  123. 123.
    Lowden JA, O’Brien JS. Sialidosis: a review of human neuraminidase deficiency. Am J Hum Genet. 1979;31(1):1–18.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Seyrantepe V, Poupetova H, Froissart R, Zabot MT, Maire I, Pshezhetsky AV. Molecular pathology of NEU1 gene in sialidosis. Hum Mutat. 2003;22(5):343–52.PubMedCrossRefGoogle Scholar
  125. 125.
    Khan A, Sergi C. Sialidosis. A review of morphology and molecular biology of a rare pediatric disorder. diagnostics (Basel). 2018 25;8(2).Google Scholar
  126. 126.
    Eschbach K, Knupp KG. Stiripentol for the treatment of seizures in Dravet syndrome. Expert Rev Clin Pharmacol. 2019;12(5):379–88.PubMedCrossRefGoogle Scholar
  127. 127.
    Connolly MB. Dravet syndrome: diagnosis and long-term course. Can J Neurol Sci. 2016;43(Suppl 3):S3–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Bender AC, Morse RP, Scott RC, Holmes GL, Lenck-Santini PP. SCN1A mutations in Dravet syndrome: impact of interneuron dysfunction on neural networks and cognitive outcome. Epilepsy Behav. 2012;23(3):177–86.CrossRefGoogle Scholar
  129. 129.
    Dravet C. Dravet syndrome history. Dev Med Child Neurol. 2011;53 Suppl 2:1–6.Google Scholar
  130. 130.
    Dravet C. The core Dravet syndrome phenotype. Epilepsia. 2011;52 Suppl 2:3–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Dravet C. Severe myoclonic epilepsy in infants and its related syndromes. Epilepsia. 2000;2000(41 Suppl 9):7.CrossRefGoogle Scholar
  132. 132.
    Dravet C, Bureau M, Roger J. Severe myoclonic epilepsy in infants. In: Roger J, Dravet C, Bureau M, Dreifuss FE, Wolf P, editors. Epileptic syndromes in infancy, childhood, and adolescence. London: John Libbey Eurotext, Ltd.; 1985. p. 58–67.Google Scholar
  133. 133.
    Canafoglia L, Ragona F, Panzica F, Piazza E, Freri E, Binelli S, et al. Movement-activated cortical myoclonus in Dravet syndrome. Epilepsy Res. 2017;130:47–52.PubMedCrossRefGoogle Scholar
  134. 134.
    Bureau M, Dalla BB. Electroencephalographic characteristics of Dravet syndrome. Epilepsia. 2011;52 Suppl 2:13–23.PubMedCrossRefGoogle Scholar
  135. 135.
    Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O. Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol. 2005;2005(95):71–102.Google Scholar
  136. 136.
    Jansen FE, Sadleir LG, Harkin LA, Vadlamudi L, McMahon JM, Mulley JC, et al. Severe myoclonic epilepsy of infancy (Dravet syndrome): recognition and diagnosis in adults. Neurology. 2006;67(12):2224–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Wallace A, Wirrell E, Kenney-Jung DL. Pharmacotherapy for Dravet syndrome. Paediatr Drugs. 2016;18(3):197–208.PubMedCrossRefGoogle Scholar
  138. 138.
    Perucca P, Perucca E. Identifying mutations in epilepsy genes: impact on treatment selection. Epilepsy Res. 2019;152:18–30.PubMedCrossRefGoogle Scholar
  139. 139.
    Kalviainen R, Genton P, Andermann E, Andermann F, Magaudda A, Frucht SJ, et al. Brivaracetam in Unverricht–Lundborg disease (EPM1): results from two randomized, double-blind, placebo-controlled studies. Epilepsia. 2016;57(2):210–21.PubMedCrossRefGoogle Scholar
  140. 140.
    Nabbout R, Mistry A, Zuberi S, Villeneuve N, Gil-Nagel A, Sanchez-Carpintero R, et al. Fenfluramine for treatment-resistant seizures in patients with Dravet syndrome receiving stiripentol-inclusive regimens: a randomized clinical trial. JAMA Neurol. 2019.Google Scholar
  141. 141.
    Lagae L, Sullivan J, Cross H. Fenfluramine HCl oral solution in Dravet syndrome: results of a phase 3, randomized, double-blind, placebo-controlled trial. Lancet. 2020.Google Scholar
  142. 142.
    Uthman BM, Reichl A. Progressive myoclonic epilepsies. Curr Treat Options Neurol. 2002;4(1):3–17.PubMedCrossRefGoogle Scholar
  143. 143.
    Finsterer J. Mitochondrion-toxic drugs given to patients with mitochondrial psychoses. Behav Brain Funct. 2012;29(8):45.CrossRefGoogle Scholar
  144. 144.
    Brodie MJ. Modern management of juvenile myoclonic epilepsy. Expert Rev Neurother. 2016;16(6):681–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Iivanainen M, Himberg JJ. Valproate and clonazepam in the treatment of severe progressive myoclonus epilepsy. Arch Neurol. 1982;39(4):236–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Shahwan A, Farrell M, Delanty N. Progressive myoclonic epilepsies: a review of genetic and therapeutic aspects. Lancet Neurol. 2005;4(4):239–48.PubMedCrossRefGoogle Scholar
  147. 147.
    Fedi M, Reutens D, Dubeau F, Andermann E, D’Agostino D, Andermann F. Long-term efficacy and safety of piracetam in the treatment of progressive myoclonus epilepsy. Arch Neurol. 2001;58(5):781–6.PubMedCrossRefGoogle Scholar
  148. 148.
    Koskiniemi M, Van Vleymen B, Hakamies L, Lamusuo S, Taalas J. Piracetam relieves symptoms in progressive myoclonus epilepsy: a multicentre, randomised, double blind, crossover study comparing the efficacy and safety of three dosages of oral piracetam with placebo. J Neurol Neurosurg Psychiatry. 1998;64(3):344–8.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Roivainen R, Karvonen MK, Puumala T. Seizure control in Unverricht–Lundborg disease: a single-centre study. Epileptic Disord. 2014;16(2):191–5.PubMedGoogle Scholar
  150. 150.
    Magaudda A, Gelisse P, Genton P. Antimyoclonic effect of levetiracetam in 13 patients with Unverricht–Lundborg disease: clinical observations. Epilepsia. 2004;45(6):678–81.PubMedCrossRefGoogle Scholar
  151. 151.
    Aykutlu E, Baykan B, Gurses C, Bebek N, Buyukbabani N, Gokyigit A. Add-on therapy with topiramate in progressive myoclonic epilepsy. Epilepsy Behav. 2005;6(2):260–3.PubMedCrossRefGoogle Scholar
  152. 152.
    Henry TR, Leppik IE, Gumnit RJ, Jacobs M. Progressive myoclonus epilepsy treated with zonisamide. Neurology. 1988;38(6):928–31.PubMedCrossRefGoogle Scholar
  153. 153.
    Italiano D, Pezzella M, Coppola A, Magaudda A, Ferlazzo E, Bramanti P, et al. A pilot open-label trial of zonisamide in Unverricht–Lundborg disease. Mov Disord. 2011;26(2):341–3.PubMedCrossRefGoogle Scholar
  154. 154.
    Ng YT, Collins SD. Clobazam. Neurotherapeutics. 2007;4(1):138–44.PubMedCrossRefGoogle Scholar
  155. 155.
    Myers KA, Lightfoot P, Patil SG, Cross JH, Scheffer IE. Stiripentol efficacy and safety in Dravet syndrome: a 12-year observational study. Dev Med Child Neurol. 2018;60(6):574–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Chiron C, Marchand MC, Tran A, Rey E, d’Athis P, Vincent J, et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet. 2000;356(9242):1638–42.PubMedCrossRefGoogle Scholar
  157. 157.
    Buck ML, Goodkin HP. Stiripentol: a novel antiseizure medication for the management of Dravet syndrome. Ann Pharmacother. 2019;6:1060028019856008.Google Scholar
  158. 158.
    Goldsmith D, Minassian BA. Efficacy and tolerability of perampanel in ten patients with Lafora disease. Epilepsy Behav. 2016;62:132–5.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Crespel A, Gelisse P, Tang NP, Genton P. Perampanel in 12 patients with Unverricht–Lundborg disease. Epilepsia. 2017;58(4):543–7.PubMedCrossRefGoogle Scholar
  160. 160.
    Wheless JW. Nonpharmacologic treatment of the catastrophic epilepsies of childhood. Epilepsia. 2004;45(Suppl 5):17–22.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    van Egmond ME, Weijenberg A, van Rijn ME, Elting JW, Gelauff JM, Zutt R, et al. The efficacy of the modified Atkins diet in North Sea progressive myoclonus epilepsy: an observational prospective open-label study. Orphanet J Rare Dis. 2017;12(1):45.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Vesper J, Steinhoff B, Rona S, Wille C, Bilic S, Nikkhah G, et al. Chronic high-frequency deep brain stimulation of the STN/SNr for progressive myoclonic epilepsy. Epilepsia. 2007;48(10):1984–9.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Inoue Y, Ohtsuka Y. Effectiveness of add-on stiripentol to clobazam and valproate in Japanese patients with Dravet syndrome: additional supportive evidence. Epilepsy Res. 2014;108(4):725–31.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Auvin S, Avbersek A, Bast T, Chiron C, Guerrini R, Kaminski RM, et al. Drug development for rare paediatric epilepsies: current state and future directions. Drugs. 2019;79(18):1917–35.PubMedCrossRefGoogle Scholar
  165. 165.
    van Campen JS, Jansen FE, Pet MA, Otte WM, Hillegers MH, Joels M, et al. Relation between stress-precipitated seizures and the stress response in childhood epilepsy. Brain. 2015;138(Pt 8):2234–48.PubMedCrossRefGoogle Scholar
  166. 166.
    Koepp MJ, Caciagli L, Pressler RM, Lehnertz K, Beniczky S. Reflex seizures, traits, and epilepsies: from physiology to pathology. Lancet Neurol. 2016;15(1):92–105.PubMedCrossRefGoogle Scholar
  167. 167.
    Striano P, Belcastro V. Treatment of myoclonic seizures. Expert Rev Neurother. 2012;12(12):1411–7 (quiz 8).PubMedCrossRefGoogle Scholar
  168. 168.
    Vossler DG. Exacerbation of seizures in Lennox–Gastaut syndrome by gabapentin. Neurology. 1996;1996(46):852–3.Google Scholar
  169. 169.
    Genton P. When antiepileptic drugs aggravate epilepsy. Brain Dev. 2000;22(2):75–80.PubMedCrossRefGoogle Scholar
  170. 170.
    Schmidt D, Gram L, Brodie M, Kramer G, Perucca E, Kalviainen R, et al. Tiagabine in the treatment of epilepsy—a clinical review with a guide for the prescribing physician. Epilepsy Res. 2000;41(3):245–51.PubMedCrossRefGoogle Scholar
  171. 171.
    Sills GJ. Pre-clinical studies with the GABAergic compounds vigabatrin and tiagabine. Epileptic Disord. 2003;5(1):51–6.PubMedGoogle Scholar
  172. 172.
    Sills GJ. The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol. 2006;6(1):108–13.PubMedCrossRefGoogle Scholar
  173. 173.
    Ponchaut S, van Hoof F, Veitch K. Cytochrome aa3 depletion is the cause of the deficient mitochondrial respiration induced by chronic valproate administration. Biochem Pharmacol. 1992;43(3):644–7.PubMedCrossRefGoogle Scholar
  174. 174.
    Ponchaut S, van Hoof F, Veitch K. In vitro effects of valproate and valproate metabolites on mitochondrial oxidations. Relevance of CoA sequestration to the observed inhibitions. Biochem Pharmacol. 1992;43(11):2435–42.PubMedCrossRefGoogle Scholar
  175. 175.
    Santos NA, Medina WS, Martins NM, Mingatto FE, Curti C, Santos AC. Aromatic antiepileptic drugs and mitochondrial toxicity: effects on mitochondria isolated from rat liver. Toxicol In Vitro. 2008;22(5):1143–52.PubMedCrossRefGoogle Scholar
  176. 176.
    Naviaux RK, Nguyen KV. POLG mutations associated with Alpers’ syndrome and mitochondrial DNA depletion. Ann Neurol. 2004;55(5):706–12.PubMedCrossRefGoogle Scholar
  177. 177.
    Nanau RM, Neuman MG. Adverse drug reactions induced by valproic acid. Clin Biochem. 2013;46(15):1323–38.PubMedCrossRefGoogle Scholar
  178. 178.
    Perucca E, Gram L, Avanzini G, Dulac O. Antiepileptic drugs as a cause of worsening seizures. Epilepsia. 1998;39(1):5–17.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Neurological Sciences, Larner College of MedicineUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations