Treatment Withdrawal Following Remission in Juvenile Idiopathic Arthritis: A Systematic Review of the Literature

  • Olha Halyabar
  • Jay Mehta
  • Sarah Ringold
  • Dax G. Rumsey
  • Daniel B. HortonEmail author
Systematic Review



Early diagnosis and treatment of juvenile idiopathic arthritis (JIA) with conventional and biologic disease-modifying anti-rheumatic drugs have vastly improved outcomes for children with these diseases. Currently, a large proportion of children with JIA are able to achieve clinical inactive disease and remission. With this success, important questions have arisen about when medications can be stopped and how to balance the risks and benefits of continuing medications versus the potential for flare after stopping.


The aim was to conduct a systematic review of the available literature to summarize current evidence about medication withdrawal for JIA in remission.


We conducted a systematic literature search in PubMed and Embase from 1990 to 2019. References were first screened by title and then independently screened by title and abstract by two authors. A total of 77 original papers were selected for full-text review. Data were extracted from 30 papers on JIA and JIA-associated uveitis, and the quality of the evidence was evaluated using National Institutes of Health (NIH)/National Heart, Lung, and Blood Institute (NHLBI) tools. Studies on biochemical and radiologic biomarkers were also reviewed and summarized.


Most studies investigating treatment withdrawal in JIA have been observational and of poor or fair quality; interpretations of these studies have been limited by differences in study populations, disease and remission durations, the medications withdrawn, approaches to withdrawal, and definitions of disease outcomes. Overall the data suggest that flares are common after stopping JIA medications, particularly biologic medications. Clinical characteristics associated with increased risks of flare have not been consistently identified. Biochemical biomarkers and ultrasound findings have been shown to predict outcomes after stopping medications, but to date, no such predictor has been consistently validated across JIA populations. Studies have also not identified optimal strategies for withdrawing medication for well-controlled JIA. Promising withdrawal strategies include discontinuing methotrexate before biologic medications in children receiving combination therapy, dose reduction for children on biologics, and treat-to-target approaches to withdrawal. These and other strategies require further investigation in larger, high-quality studies.


The published literature on treatment withdrawal in JIA has varied in design and quality, yielding little conclusive evidence thus far on the management of JIA in remission. Given the importance of this question, international collaborative efforts are underway to study clinical and biologic predictors of successful medication withdrawal in JIA. These efforts may ultimately support the development of personalized approaches to withdrawing medication in children with JIA in remission.



The authors would like to thank Meaghan Muir for assisting with the original literature search and Chloe Rotman for assistance with the updated literature search and editing of references.

Compliance with Ethical Standards


This paper was supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health: L40-AR070497 and K23-AR070286. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

Dr. Horton has received grant funding on related topics from the Childhood Arthritis and Rheumatology Research Alliance and the Arthritis Foundation, as well as grant funding on unrelated matters from Bristol-Myers Squibb. Dr. Halyabar, Dr. Mehta, Dr. Ringold and Dr. Rumsey declare no conflicts of interest.

Supplementary material

40272_2019_362_MOESM1_ESM.pdf (109 kb)
Supplementary material 1 (PDF 110 kb)


  1. 1.
    Thierry S, Fautrel B, Lemelle I, Guillemin F. Prevalence and incidence of juvenile idiopathic arthritis: a systematic review. Joint Bone Spine. 2014;81(2):112–7.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Petty RE, Southwood TR, Baum J, Bhettay E, Glass DN, Manners P, et al. Revision of the proposed classification criteria for juvenile idiopathic arthritis: Durban, 1997. J Rheumatol. 1998;25(10):1991–4.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31(2):390–2.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Burgos-Vargas R, Rudwaleit M, Sieper J. The place of juvenile onset spondyloarthropathies in the Durban 1997 ILAR classification criteria of juvenile idiopathic arthritis. International League of Associations for Rheumatology. J Rheumatol. 2002;29(5):869–74.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ravelli A, Varnier GC, Oliveira S, Castell E, Arguedas O, Magnani A, et al. Antinuclear antibody-positive patients should be grouped as a separate category in the classification of juvenile idiopathic arthritis. Arthritis Rheumatol. 2011;63(1):267–75.CrossRefGoogle Scholar
  6. 6.
    Stoll ML, Punaro M. Psoriatic juvenile idiopathic arthritis: a tale of two subgroups. Curr Opin Rheumatol. 2011;23(5):437–43.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ravelli A, Consolaro A, Schiappapietra B, Martini A. The conundrum of juvenile psoriatic arthritis. Clin Exp Rheumatol. 2015;33(5 Suppl 93):S40–3.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Eng SW, Duong TT, Rosenberg AM, Morris Q, Yeung RS, Reacch OUT, et al. The biologic basis of clinical heterogeneity in juvenile idiopathic arthritis. Arthritis Rheumatol. 2014;66(12):3463–75.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nigrovic PA, Raychaudhuri S, Thompson SD. Review: genetics and the classification of arthritis in adults and children. Arthritis Rheumatol. 2018;70(1):7–17.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Martini A, Ravelli A, Avcin T, Beresford MW, Burgos-Vargas R, Cuttica R, et al. Toward new classification criteria for juvenile idiopathic arthritis: first steps, Pediatric Rheumatology International Trials Organization International Consensus. J Rheumatol. 2019;46(2):190–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wallace CA, Ravelli A, Huang B, Giannini EH. Preliminary validation of clinical remission criteria using the OMERACT filter for select categories of juvenile idiopathic arthritis. J Rheumatol. 2006;33(4):789–95.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wallace CA, Giannini EH, Huang B, Itert L, Ruperto N. American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res. 2011;63(7):929–36.CrossRefGoogle Scholar
  13. 13.
    Consolaro A, Bracciolini G, Ruperto N, Pistorio A, Magni-Manzoni S, Malattia C, et al. Remission, minimal disease activity, and acceptable symptom state in juvenile idiopathic arthritis: defining criteria based on the juvenile arthritis disease activity score. Arthritis Rheumatol. 2012;64(7):2366–74.CrossRefGoogle Scholar
  14. 14.
    Shoop-Worrall SJW, Verstappen SMM, Baildam E, Chieng A, Davidson J, Foster H, et al. How common is clinically inactive disease in a prospective cohort of patients with juvenile idiopathic arthritis? The importance of definition. Ann Rheum Dis. 2017;76(8):1381–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Shoop-Worrall SJW, Verstappen SMM, McDonagh JE, Baildam E, Chieng A, Davidson J, et al. Long-term outcomes following achievement of clinically inactive disease in juvenile idiopathic arthritis: the importance of definition. Arthritis Rheumatol (Hoboken, NJ). 2018;70(9):1519–29.CrossRefGoogle Scholar
  16. 16.
    Consolaro A, Ruperto N, Bracciolini G, Frisina A, Gallo MC, Pistorio A, et al. Defining criteria for high disease activity in juvenile idiopathic arthritis based on the juvenile arthritis disease activity score. Ann Rheum Dis. 2014;73(7):1380–3.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Taylor J, Giannini EH, Lovell DJ, Huang B, Morgan EM. Lack of concordance in interrater scoring of the provider’s global assessment of children with juvenile idiopathic arthritis with low disease activity. Arthritis Care Res (Hoboken). 2018;70(1):162–6.CrossRefGoogle Scholar
  18. 18.
    Mack ME, Hsia E, Aletaha D. Comparative assessment of the different American College of Rheumatology/European League Against Rheumatism Remission definitions for rheumatoid arthritis for their use as clinical trial end points. Arthritis Rheumatol. 2017;69(3):518–28.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Knowlton N, Jiang K, Frank MB, Aggarwal A, Wallace C, McKee R, et al. The meaning of clinical remission in polyarticular juvenile idiopathic arthritis: gene expression profiling in peripheral blood mononuclear cells identifies distinct disease states. Arthritis Rheumatol. 2009;60(3):892–900.CrossRefGoogle Scholar
  20. 20.
    Jiang K, Wong L, Sawle AD, Frank MB, Chen Y, Wallace CA, et al. Whole blood expression profiling from the TREAT trial: insights for the pathogenesis of polyarticular juvenile idiopathic arthritis. Arthritis Res Ther. 2016;18(1):157.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Anink J, Otten MH, Gorter SL, Prince FH, van Rossum MA, van den Berg JM, et al. Treatment choices of paediatric rheumatologists for juvenile idiopathic arthritis: etanercept or adalimumab? Rheumatology (Oxford). 2013;52(9):1674–9.CrossRefGoogle Scholar
  22. 22.
    Kearsley-Fleet L, Davies R, Baildam E, Beresford MW, Foster HE, Southwood TR, et al. Factors associated with choice of biologic among children with juvenile idiopathic arthritis: results from two UK paediatric biologic registers. Rheumatology (Oxford). 2016;55(9):1556–65.CrossRefGoogle Scholar
  23. 23.
    Textbook of Pediatric Rheumatology, 7th Edition. Saunders; 2015.Google Scholar
  24. 24.
    Horton DB, Onel KB, Beukelman T, Ringold S. Attitudes and approaches for withdrawing drugs for children with clinically inactive nonsystemic JIA: a survey of the Childhood Arthritis and Rheumatology Research Alliance. J Rheumatol. 2017;44(3):352–60.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Broughton T, Armon K. Defining juvenile idiopathic arthritis remission and optimum time for disease-modifying anti-rheumatic drug withdrawal: why we need a consensus. Paediatr Drugs. 2012;14(1):7–12.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Beukelman T, Xie F, Chen L, Horton DB, Lewis JD, Mamtani R, et al. Risk of malignancy associated with paediatric use of tumour necrosis factor inhibitors. Ann Rheum Dis. 2018;77(7):1012–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Aeschlimann FA, Chong SL, Lyons TW, Beinvogl BC, Goez-Mogollon LM, Tan S, et al. Risk of serious infections associated with biologic agents in juvenile idiopathic arthritis: a systematic review and meta-analyses. J Pediatr. 2019;204(162–71):e3.Google Scholar
  28. 28.
    Gidman W, Meacock R, Symmons D. The humanistic and economic burden of juvenile idiopathic arthritis in the era of biologic medication. Curr Rheumatol Rep. 2015;17(5):31.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Horton DB SJ, Wec A, Beukelman T, Boneparth A, Haverkamp K, Kohlheim M, Mannion M, Moorthy LN, Ringold S, Rosenthal M. How young people with juvenile idiopathic arthritis and their caregivers weigh the risks of the disease and its treatment: a mixed-methods study [abstract]. Arthritis Rheumatol. 2017.Google Scholar
  30. 30.
  31. 31.
    Foell D, Wulffraat N, Wedderburn LR, Wittkowski H, Frosch M, Gerss J, et al. Methotrexate withdrawal at 6 vs 12 months in juvenile idiopathic arthritis in remission: a randomized clinical trial. JAMA. 2010;303(13):1266–73.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Cai Y, Liu X, Zhang W, Xu J, Cao L. Clinical trial of etanercept tapering in juvenile idiopathic arthritis during remission. Rheumatol Int. 2013;33(9):2277–82.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Lovell DJ, Johnson AL, Huang B, Gottlieb BS, Morris PW, Kimura Y, et al. Risk, timing, and predictors of disease flare after discontinuation of anti-tumor necrosis factor therapy in children with polyarticular forms of juvenile idiopathic arthritis with clinically inactive disease. Arthritis Rheumatol. 2018;70(9):1508–18.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hissink Muller P, Brinkman D, Schonenberg-Meinema D, Van Den Bosch W, Koopman-Keemink Y, Brederije I, et al. Treatment strategy study in new onset DMARD naive juvenile idiopathic arthritis first results on 24 months clinical outcome. Ann Rheum Dis. 2018;77:478.Google Scholar
  35. 35.
    Wallace CA, Ringold S, Bohnsack J, Spalding SJ, Brunner HI, Milojevic D, et al. Extension study of participants from the trial of early aggressive therapy in juvenile idiopathic arthritis. J Rheumatol. 2014;41(12):2459–65.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ruperto N, Brunner HI, Quartier P, Constantin T, Wulffraat NM, Horneff G, et al. Canakinumab in patients with systemic juvenile idiopathic arthritis and active systemic features: results from the 5-year long-term extension of the phase III pivotal trials. Ann Rheum Dis. 2018;77:1710–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Otten MH, Prince FH, Armbrust W, ten Cate R, Hoppenreijs EP, Twilt M, et al. Factors associated with treatment response to etanercept in juvenile idiopathic arthritis. JAMA. 2011;306(21):2340–7.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Guzman J, Oen K, Huber AM, Watanabe Duffy K, Boire G, Shiff N, et al. The risk and nature of flares in juvenile idiopathic arthritis: results from the ReACCh-Out cohort. Ann Rheum Dis. 2016;75(6):1092–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Klotsche J, Minden K, Niewerth M, Horneff G. Time spent in inactive disease before MTX withdrawal is relevant with regard to the flare risk in patients with JIA. Ann Rheum Dis. 2018;77:996–1002.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ravelli A, Viola S, Ramenghi B, Aramini L, Ruperto N, Martini A. Frequency of relapse after discontinuation of methotrexate therapy for clinical remission in juvenile rheumatoid arthritis. J Rheumatol. 1995;22(8):1574–6.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Chang CY, Meyer RM, Reiff AO. Impact of medication withdrawal method on flare-free survival in patients with juvenile idiopathic arthritis on combination therapy. Arthritis Care Res. 2015;67(5):658–66.CrossRefGoogle Scholar
  42. 42.
    Aquilani A, Pires Marafon D, Marasco E, Nicolai R, Messia V, Perfetti F, et al. Predictors of flare following etanercept withdrawal in patients with rheumatoid factor-negative juvenile idiopathic arthritis who reached remission while taking medication. J Rheumatol. 2018;77:996–1002.Google Scholar
  43. 43.
    Prince FH, Twilt M, Simon SC, van Rossum MA, Armbrust W, Hoppenreijs EP, et al. When and how to stop etanercept after successful treatment of patients with juvenile idiopathic arthritis. Ann Rheum Dis. 2009;68(7):1228–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Simonini G, Ferrara G, Pontikaki I, Scoccimarro E, Giani T, Taddio A, et al. Flares after withdrawal of biologic therapies in juvenile idiopathic arthritis: clinical and laboratory correlates of remission duration. Arthritis Care Res. 2018;70:1046–51.CrossRefGoogle Scholar
  45. 45.
    Su Y, Yang YH, Chiang BL. Treatment response to etanercept in methotrexate refractory juvenile idiopathic arthritis: an analysis of predictors and long-term outcomes. Clin Rheumatol. 2017;36(9):1997–2004.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Remesal A, Inocencio DE, Merino R, Garcia-Consuegra J. Discontinuation of etanercept after successful treatment in patients with juvenile idiopathic arthritis. J Rheumatol. 2010;37(9):1970–1.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Pratsidou-Gertsi P, Trachana M, Pardalos G, Kanakoudi-Tsakalidou F. A follow-up study of patients with juvenile idiopathic arthritis who discontinued etanercept due to disease remission. Clin Exp Rheumatol. 2010;28(6):919–22.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Hissink Muller P, Brinkman DMC, Schonenberg-Meinema D, van den Bosch WB, Koopman-Keemink Y, Brederije ICJ, et al. Treat to target (drug-free) inactive disease in DMARD-naive juvenile idiopathic arthritis: 24-month clinical outcomes of a three-armed randomised trial. Ann Rheum Dis. 2019;78:51–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Ter Haar NM, van Dijkhuizen EHP, Swart JF, van Royen-Kerkhof A, El Idrissi A, Leek AP, et al. Treatment to target using recombinant interleukin-1 receptor antagonist as first-line monotherapy in new-onset systemic juvenile idiopathic arthritis: results from a five-year follow-up study. Arthritis Rheumatol (Hoboken, NJ). 2019;71(7):1163–73.CrossRefGoogle Scholar
  50. 50.
    Saboo US, Metzinger JL, Radwan A, Arcinue C, Parikh R, Mohamed A, et al. Risk factors associated with the relapse of uveitis in patients with juvenile idiopathic arthritis: a preliminary report. J AAPOS. 2013;17(5):460–4.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Acharya NR, Patel S, Homayounfar G, Enanoria WTA, Shakoor A, Chakrabarti A, et al. Relapse of juvenile idiopathic arthritis-associated uveitis after discontinuation of immunomodulatory therapy. Ocular Immunol Inflamm. 2018;16:1–7.Google Scholar
  52. 52.
    Lerman MA, Lewen MD, Kempen JH, Mills MD. Uveitis reactivation in children treated with tumor necrosis factor alpha inhibitors. Am J Ophthalmol. 2015;160(1):193–200.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kalinina Ayuso V, van de Winkel EL, Rothova A, de Boer JH. Relapse rate of uveitis post-methotrexate treatment in juvenile idiopathic arthritis. Am J Ophthalmol. 2011;151(2):217–22.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Simonini G, Bracaglia C, Cattalini M, Taddio A, Brambilla A, De Libero C, et al. Predictors of relapse after discontinuing systemic treatment in childhood autoimmune chronic uveitis. J Rheumatol. 2017;44(6):822–6.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Shakoor A, Esterberg E, Acharya NR. Recurrence of uveitis after discontinuation of infliximab. Ocular Immunol Inflamm. 2014;22(2):96–101.CrossRefGoogle Scholar
  56. 56.
    Angeles-Han ST, Ringold S, Beukelman T, Lovell D, Cuello CA, Becker ML, et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the screening, monitoring, and treatment of juvenile idiopathic arthritis-associated uveitis. Arthritis Care Res. 2019;71(6):703–16.CrossRefGoogle Scholar
  57. 57.
    Gerss J, Roth J, Holzinger D, Ruperto N, Wittkowski H, Frosch M, et al. Phagocyte-specific S100 proteins and high-sensitivity C reactive protein as biomarkers for a risk-adapted treatment to maintain remission in juvenile idiopathic arthritis: a comparative study. Ann Rheum Dis. 2012;71(12):1991–7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Anink J, Van Suijlekom-Smit LW, Otten MH, Prince FH, van Rossum MA, Dolman KM, et al. MRP8/14 serum levels as a predictor of response to starting and stopping anti-TNF treatment in juvenile idiopathic arthritis. Arthritis Res Ther. 2015;17:200.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rothmund F, Gerss J, Ruperto N, Dabritz J, Wittkowski H, Frosch M, et al. Validation of relapse risk biomarkers for routine use in patients with juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2014;66(6):949–55.CrossRefGoogle Scholar
  60. 60.
    Yamasaki Y, Takei S, Imanaka H, Nerome Y, Kubota T, Nonaka Y, et al. Prediction of long-term remission of oligo/polyarticular juvenile idiopathic arthritis with S100A12 and vascular endothelial growth factor. Mod Rheumatol. 2016;26(4):551–6.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hinze CH, Foell D, Johnson AL, Spalding SJ, Gottlieb BS, Morris PW, et al. Serum S100A8/A9 and S100A12 levels in children with polyarticular forms of juvenile idiopathic arthritis: relationship to maintenance of clinical inactive disease during and flare after discontinuation of anti-TNF therapy. Arthritis Rheumatol (Hoboken, NJ). 2019;71:451–9.CrossRefGoogle Scholar
  62. 62.
    Mor-Vaknin N, Rivas M, Legendre M, Mohan S, Yuanfan Y, Mau T, et al. High levels of DEK autoantibodies in sera of patients with polyarticular juvenile idiopathic arthritis and with early disease flares following cessation of anti-tumor necrosis factor therapy. Arthritis Rheumatol. 2018;70(4):594–605.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Magni-Manzoni S, Scire CA, Ravelli A, Klersy C, Rossi S, Muratore V, et al. Ultrasound-detected synovial abnormalities are frequent in clinically inactive juvenile idiopathic arthritis, but do not predict a flare of synovitis. Ann Rheum Dis. 2013;72(2):223–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Zhao Y, Rascoff NE, Iyer RS, Thapa M, Reichley L, Oron AP, et al. Flares of disease in children with clinically inactive juvenile idiopathic arthritis were not correlated with ultrasound findings. J Rheumatol. 2018;45(6):851–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Miotto ESVB, Mitraud SAV, Furtado RNV, Natour J, Len CA, Terreri M. Patients with juvenile idiopathic arthritis in clinical remission with positive power Doppler signal in joint ultrasonography have an increased rate of clinical flare: a prospective study. Pediatr Rheumatol Online J. 2017;15(1):80.CrossRefGoogle Scholar
  66. 66.
    De Lucia O, Ravagnani V, Pregnolato F, Hila A, Pontikaki I, Gattinara M, et al. Baseline ultrasound examination as possible predictor of relapse in patients affected by juvenile idiopathic arthritis (JIA). Ann Rheum Dis. 2018;77(10):1426–31.PubMedPubMedCentralGoogle Scholar
  67. 67.
    van Gulik EC, Hemke R, Welsink-Karssies MM, Schonenberg-Meinema D, Dolman KM, Barendregt AM, et al. Normal MRI findings of the knee in patients with clinically active juvenile idiopathic arthritis. Eur J Radiol. 2018;102:36–40.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Schett G, Emery P, Tanaka Y, Burmester G, Pisetsky DS, Naredo E, et al. Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions. Ann Rheum Dis. 2016;75(8):1428–37.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Edwards CJ, Fautrel B, Schulze-Koops H, Huizinga TWJ, Kruger K. Dosing down with biologic therapies: a systematic review and clinicians’ perspective. Rheumatology (Oxford). 2017;56(11):1847–56.CrossRefGoogle Scholar
  70. 70.
    Verhoef LM, van den Bemt BJ, van der Maas A, Vriezekolk JE, Hulscher ME, van den Hoogen FH, et al. Down-titration and discontinuation strategies of tumour necrosis factor-blocking agents for rheumatoid arthritis in patients with low disease activity. Cochrane Database Syst Rev. 2019;5:CD010455.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Rech J, Hueber AJ, Finzel S, Englbrecht M, Haschka J, Manger B, et al. Prediction of disease relapses by multibiomarker disease activity and autoantibody status in patients with rheumatoid arthritis on tapering DMARD treatment. Ann Rheum Dis. 2016;75(9):1637–44.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Tweehuysen L, van den Ende CH, Beeren FM, Been EM, van den Hoogen FH, den Broeder AA. Little evidence for usefulness of biomarkers for predicting successful dose reduction or discontinuation of a biologic agent in rheumatoid arthritis: a systematic review. Arthritis Rheumatol (Hoboken, NJ). 2017;69(2):301–8.CrossRefGoogle Scholar
  73. 73.
    Bouman CAM, van der Maas A, van Herwaarden N, Sasso EH, van den Hoogen FHJ, den Broeder AA. A multi-biomarker score measuring disease activity in rheumatoid arthritis patients tapering adalimumab or etanercept: predictive value for clinical and radiographic outcomes. Rheumatology (Oxford). 2017;56(6):973–80.CrossRefGoogle Scholar
  74. 74.
    Tweehuysen L, den Broeder N, van Herwaarden N, Joosten LAB, van Lent PL, Vogl T, et al. Predictive value of serum calprotectin (S100A8/A9) for clinical response after starting or tapering anti-TNF treatment in patients with rheumatoid arthritis. RMD Open. 2018;4(1):e000654.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Inciarte-Mundo J, Ramirez J, Hernandez MV, Ruiz-Esquide V, Cuervo A, Cabrera-Villalba SR, et al. Calprotectin strongly and independently predicts relapse in rheumatoid arthritis and polyarticular psoriatic arthritis patients treated with tumor necrosis factor inhibitors: a 1-year prospective cohort study. Arthritis Res Ther. 2018;20(1):275.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ye W, Tucker LJ, Coates LC. Tapering and discontinuation of biologics in patients with psoriatic arthritis with low disease activity. Drugs. 2018;78(16):1705–15.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Ward MM, Deodhar A, Gensler LS, Dubreuil M, Yu D, Khan MA, et al. 2019 update of the American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis. Arthritis Rheumatol (Hoboken, NJ). 2019;71:1285–99.CrossRefGoogle Scholar
  78. 78.
    Guzman J, Oen K, Tucker LB, Huber AM, Shiff N, Boire G, et al. The outcomes of juvenile idiopathic arthritis in children managed with contemporary treatments: results from the ReACCh-Out cohort. Ann Rheum Dis. 2015;74(10):1854–60.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
  80. 80.
    Cleary A, Murphy H, Davidson J. Intra-articular corticosteroid injections in juvenile idiopathic arthritis. Arch Dis Child. 2003;88(3):192–6.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Falvey S, Shipman L, Ilowite N, Beukelman T. Methotrexate-induced nausea in the treatment of juvenile idiopathic arthritis. Pediatr Rheumatol. 2017;15(1):1–6.CrossRefGoogle Scholar
  82. 82.
    Wallace C, Giannini E, Spalding S, Hashkes P, O’Neil K, Zeft A, Lovell D. Predictors and sustainability of clinical inactive disease in polyarticular juvenile idiopathic arthritis given aggressive therapy very early in the disease course. Arthritis Rheum. 2013;65:S334–5.CrossRefGoogle Scholar
  83. 83.
    Kwok LW, Tam LS, Zhu T, Leung YY, Li E. Predictors of maternal and fetal outcomes in pregnancies of patients with systemic lupus erythematosus. Lupus. 2011;20(8):829–36.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Lahiri M, Lim AY. Angioedema and systemic lupus erythematosus–a complementary association? Ann Acad Med Singap. 2007;36(2):142–5.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Lahutte B, Cornic F, Bonnot O, Consoli A, An-Gourfinkel I, Amoura Z, et al. Multidisciplinary approach of organic catatonia in children and adolescents may improve treatment decision making. Prog Neuro-psychopharmacol Biol Psychiatry. 2008;32(6):1393–8.CrossRefGoogle Scholar
  86. 86.
    Gottlieb BS, Keenan GF, Lu T, Ilowite NT. Discontinuation of methotrexate treatment in juvenile rheumatoid arthritis. Pediatrics. 1997;100(6):994–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Minden K, Horneff G, Niewerth M, Seipelt E, Aringer M, Aries P, et al. Time of disease-modifying antirheumatic drug start in juvenile idiopathic arthritis and the likelihood of a drug-free remission in young adulthood. Arthritis Care Res. 2019;71(4):471–81.CrossRefGoogle Scholar
  88. 88.
    Iglesias E, Torrente-Segarra V, Bou R, Ricart S, González MI, Sánchez J, et al. Non-systemic juvenile idiopathic arthritis outcome after reaching clinical remission with anti-TNF-α therapy: a clinical practice observational study of patients who discontinued treatment. Rheumatol Int. 2014;34(8):1053–7.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Postepski J, Kobusinska K, Olesinska E, Osinska V, Opoka-Winiarska V. Clinical remission in juvenile idiopathic arthritis after termination of etanercept. Rheumatol Int. 2013;33(10):2657–60.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Baszis K, Garbutt J, Toib D, Mao J, King A, White A, et al. Clinical outcomes after withdrawal of anti-tumor necrosis factor alpha therapy in patients with juvenile idiopathic arthritis: a twelve-year experience. Arthritis Rheumatol. 2011;63(10):3163–8.CrossRefGoogle Scholar
  91. 91.
    Aquilani A, Marafon DP, Marasco E, Nicolai R, Messia V, Perfetti F, et al. Predictors of flare following etanercept withdrawal in patients with rheumatoid factor-negative juvenile idiopathic arthritis who reached remission while taking medication. J Rheumatol. 2018;45(7):956–61.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Jabs DA, Nussenblatt RB, Rosenbaum JT, Standardization of Uveitis Nomenclature Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140(3):509–16.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Breitbach M, Tappeiner C, Bohm MR, Zurek-Imhoff B, Heinz C, Thanos S, et al. Discontinuation of long-term adalimumab treatment in patients with juvenile idiopathic arthritis-associated uveitis. Graefes Arch Clin Exp Ophthalmol. 2017;255(1):171–7.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PediatricsBoston Children’s HospitalBostonUSA
  2. 2.Department of PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.Department of PediatricsSeattle Children’s HospitalSeattleUSA
  4. 4.Department of PediatricsUniversity of AlbertaEdmontonCanada
  5. 5.Department of PediatricsRutgers Robert Wood Johnson Medical SchoolNew BrunswickUSA
  6. 6.Rutgers Center for Pharmacoepidemiology and Treatment ScienceInstitute for Health, Health Care Policy and Aging ResearchNew BrunswickUSA
  7. 7.Department of Biostatistics and EpidemiologyRutgers School of Public HealthPiscatawayUSA

Personalised recommendations