The Patient - Patient-Centered Outcomes Research

, Volume 12, Issue 6, pp 639–650 | Cite as

Does Device or Connection Type Affect Health Preferences in Online Surveys?

  • John D. HartmanEmail author
  • Benjamin M. Craig
Original Research Article


Background and Objective

Recent evidence has shown that online surveys can reliably collect preference data, which markedly decrease the cost of health preference studies and expand their representativeness. As the use of mobile technology continues to grow, we wanted to examine its potential impact on health preferences.


Two recently completed discrete choice experiments using members of the US general population (n = 15,292) included information on respondent device (cell phone, tablet, Mac, PC) and internet connection (business, cellular, college, government, residential). In this analysis, we tested for differences in respondent characteristics, participation, response quality, and utility values for the 5-level EQ-5D (EQ-5D-5L) by device and connection.


Compared to Mac and PC users, respondents using a cell phone or tablet had longer completion times and were significantly more likely to drop out during the surveys (p < 0.001). Tablet users also demonstrated more logical inconsistencies (p = 0.05). Likewise, respondents using a cellular internet connection exhibit significantly less consistency in their health preferences. However, matched samples for tablets and cell phones produced similar EQ-5D-5L utility values (mean differences < 0.06 on a quality-adjusted life-year [QALY] scale for all potential health states).


Allowing respondents to complete online surveys using a cell phone or tablet or over a cellular connection substantially increases the diversity of respondents and the likelihood of obtaining a representative sample, as many individuals have cell phones but not a computer. While the results showed systematic variability in participation and response quality by device and connection type, this study did not show any meaningful changes in utility values.


Author Contributions

JH and BC shared much of the responsibility in creating the manuscript. JH performed the literature review and wrote the Introduction, Methods, and Discussion sections. BC wrote the Results section. The authors contributed equally in the data analysis.

Compliance with Ethical Standards


Funding support for this research was provided by a grant from the EuroQol Research Foundation (2016690). The views presented in the study do not necessarily reflect those of the EuroQol Group, and the publication of study results was not contingent on the sponsor’s approval or censorship of the manuscript.

Conflict of interest

John Hartman and Benjamin Craig declare that they have no conflicts of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in either study.


  1. 1.
    Bansback N, Brazier J, Tsuchiya A, Anis A. Using a discrete choice experiment to estimate health state utility values. J Health Econ. 2012;31(1):306–18. Scholar
  2. 2.
    Craig BM, Greiner W, Brown DS, Reeve BB. Valuation of child health-related quality of life in the United States. Health Econ. 2016;25(6):768–77. Scholar
  3. 3.
    Norman R, Viney R, Brazier J, Burgess L, Cronin P, King M, et al. Valuing SF-6D health states using a discrete choice experiment. Med Decis Mak. 2014;34(6):773–86. Scholar
  4. 4.
    Viney R, Norman R, Brazier J, Cronin P, King MT, Ratcliffe J, et al. An Australian discrete choice experiment to value EQ-5D health states. Health Econ. 2014;23(6):729–42. Scholar
  5. 5.
    Lancsar E, Louviere J. Conducting discrete choice experiments to inform healthcare decision making. Pharmacoeconomics. 2008;26(8):661–77. Scholar
  6. 6.
    Stolk EA, Oppe M, Scalone L, Krabbe PFM. Discrete choice modeling for the quantification of health states: the case of the EQ-5D. Value Health. 2010;13(8):1005–13. Scholar
  7. 7.
    Scalone L, Stalmeier PFM, Milani S, Krabbe PFM. Values for health states with different life durations. Eur J Health Econ. 2015;16(9):917–25. Scholar
  8. 8.
    Muhlbacher AC, Rudolph I, Lincke HJ, Nubling M. Preferences for treatment of attention-deficit/hyperactivity disorder (ADHD): a discrete choice experiment. BMC Health Serv Res. 2009;9:10. Scholar
  9. 9.
    Krabbe PFM, Devlin NJ, Stolk EA, Shah KK, Oppe M, van Hout B, et al. Multinational evidence of the applicability and robustness of discrete choice modeling for deriving EQ-5D-5L health-state values. Med Care. 2014;52(11):935–43.CrossRefGoogle Scholar
  10. 10.
    Soekhai V, de Bekker-Grob EW, Ellis AR, Vass CM. Discrete choice experiments in health economics: past, present and future. Pharmacoeconomics. 2019;37(2):201–26. Scholar
  11. 11.
    Couper MP, Tourangeau R, Conrad FG, Crawford SD. What they see is what we get—response options for web surveys. Soc Sci Comput Rev. 2004;22(1):111–27. Scholar
  12. 12.
    Revilla M, Toninelli D, Ochoa C, Loewe G. Do online access panels need to adapt surveys for mobile devices? Internet Res. 2016;26(5):1209–27. Scholar
  13. 13.
    Brosnan K, Grun B, Dolnicar S. PC, phone or tablet? Use, preference and completion rates for web surveys. Int J Market Res. 2017;59(1):35–55. Scholar
  14. 14.
    Mavletova A. Data quality in PC and mobile web surveys. Soc Sci Comput Rev. 2013;31(6):725–43. Scholar
  15. 15.
    de Bruijne M, Wijnant A. Mobile response in web panels. Soc Sci Comput Rev. 2014;32(6):728–42. Scholar
  16. 16.
    Liebe U, Glenk K, Oehlmann M, Meyerhoff J. Does the use of mobile devices (tablets and smartphones) affect survey quality and choice behaviour in web surveys? J Choice Model. 2015;14:17–31. Scholar
  17. 17.
    Lambert AD, Miller AL. Living with smartphones: does completion device affect survey responses? Res High Educ. 2015;56(2):166–77. Scholar
  18. 18.
    Couper MP, Peterson GJ. Why do web surveys take longer on smartphones? Soc Sci Comput Rev. 2017;35(3):357–77. Scholar
  19. 19.
    Lynn P, Kaminska O. The impact of mobile phones on survey measurement error. Public Opin Q. 2013;77(2):586–605. Scholar
  20. 20.
    Lugtig P, Toepoel V. The use of PCs, smartphones, and tablets in a probability-based panel survey: effects on survey measurement error. Soc Sci Comput Rev. 2016;34(1):78–94. Scholar
  21. 21.
    Toepoel V, Lugtig P. What happens if you offer a mobile option to your web panel? Evidence from a probability-based panel of internet users. Soc Sci Comput Rev. 2014;32(4):544–60. Scholar
  22. 22.
    Schlosser S, Mays A. Mobile and dirty: does using mobile devices affect the data quality and the response process of online surveys? Soc Sci Comput Rev. 2018;36(2):212–30. Scholar
  23. 23.
    de Bruijne M, Wijnant A. Comparing survey results obtained via mobile devices and computers: an experiment with a mobile web survey on a heterogeneous group of mobile devices versus a computer-assisted web survey. Soc Sci Comput Rev. 2013;31(4):482–504. Scholar
  24. 24.
    Tourangeau R, Sun HY, Yan T, Maitland A, Rivero G, Williams D. Web surveys by smartphones and tablets: effects on data quality. Soc Sci Comput Rev. 2018;36(5):542–56. Scholar
  25. 25.
    Toninelli D, Revilla M. Smartphones vs PCs: does the device affect the web survey experience and the measurement error for sensitive topics? A replication of the Mavletova & Couper’s 2013 experiment. Surv Res Methods. 2016;10(2):153–69. Scholar
  26. 26.
    Mavletova A, Couper MP. Sensitive topics in PC web and mobile web surveys: is there a difference? Surv Res Methods. 2013;7(3):191–205.Google Scholar
  27. 27.
    Keusch F, Yan T. Web versus mobile web: an experimental study of device effects and self-selection effects. Soc Sci Comput Rev. 2017;35(6):751–69. Scholar
  28. 28.
    Craig BM, Rand K, Bailey H, Stalmeier PF. Quality-adjusted life-years without constant proportionality. Value Health. 2018;29(9):1124–31. Scholar
  29. 29.
    Jakubczyk M, Craig BM, Barra M, Groothuis-Oudshoorn CG, Hartman JD, Huynh E, et al. Choice defines value: a predictive modeling competition in health preference research. Value Health. 2018;21(2):229–38.CrossRefGoogle Scholar
  30. 30.
    Euroqol. About the EQ-5D-5L. 2018. Accessed 22 Mar 2018.
  31. 31.
    Survey K. Mobile surveys. Accessed 9 May 2017.
  32. 32.
    Craig BM, Runge SK, Rand-Hendriksen K, Ramos-Goni JM, Oppe M. Learning and satisficing: an analysis of sequence effects in health valuation. Value Health. 2015;18(2):217–23. Scholar
  33. 33.
    Campbell D, Morkbak MR, Olsen SB. Response time in online stated choice experiments: the non-triviality of identifying fast and slow respondents. J Environ Econ Policy. 2017;6(1):17–35. Scholar
  34. 34.
    Sendelbah A, Vehovar V, Slavec A, Petrovic A. Investigating respondent multitasking in web surveys using paradata. Comput Hum Behav. 2016;55:777–87. Scholar
  35. 35.
    Stern MJ. The use of client-side paradata in analyzing the effects of visual layout on changing responses in web surveys. Field Methods. 2008;20(4):377–98. Scholar
  36. 36.
    Rossmann J, Gummer T. Using paradata to predict and correct for panel attrition. Soc Sci Comput Rev. 2016;34(3):312–32. Scholar
  37. 37.
    Olson K. Paradata for nonresponse adjustment. Ann Am Acad Polit Soc Sci. 2013;645(1):142–70. Scholar
  38. 38.
    Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.CrossRefGoogle Scholar
  39. 39.
    Leuven E, Sianesi B. PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. Statistical Software Components. 2015. Accessed 30 May 2017.
  40. 40.
    Caliendo M, Kopeinig S. Some practical guidance for the implementation of propensity score matching. J Econ Surv. 2008;22(1):31–72. Scholar
  41. 41.
    Bradley RA, Terry ME. Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika. 1952;39(3/4):324–45.CrossRefGoogle Scholar
  42. 42.
    Zermelo E. Die berechnung der turnier-ergebnisse als ein maximumproblem der wahrscheinlichkeitsrechnung. Math Z. 1929;29(1):436–60.CrossRefGoogle Scholar
  43. 43.
    Craig BM, Rand K. Choice defines QALYs. Med Care. 2018;56(6):529–36.CrossRefGoogle Scholar
  44. 44.
    Jonker MF, Donkers B, de Bekker-Grob EW, Stolk EA. Advocating a paradigm shift in health-state valuations: the estimation of time-preference corrected QALY tariffs. Value Health. 2018;21(8):993–1001. Scholar
  45. 45.
    DeShazo JR, Fermo G. Designing choice sets for stated preference methods: the effects of complexity on choice consistency. J Environ Econ Manag. 2002;44(1):123–43. Scholar
  46. 46.
    Swait J, Louviere J. The role of the scale parameter in the estimation and comparison of multinomial logit-models. J Mark Res. 1993;30(3):305–14. Scholar
  47. 47.
    Hensher D, Louviere J, Swait J. Combining sources of preference data. J Econ. 1998;89(1):197–221.CrossRefGoogle Scholar
  48. 48.
    Louviere JJ, Islam T, Wasi N, Street D, Burgess L. Designing discrete choice experiments: do optimal designs come at a price? J Consum Res. 2008;35(2):360–75. Scholar
  49. 49.
    Devlin NJ, Hansen P, Kind P, Williams A. Logical inconsistencies in survey respondents’ health state valuations—a methodological challenge for estimating social tariffs. Health Econ. 2003;12(7):529–44. Scholar
  50. 50.
    Dolan P, Kind P. Inconsistency and health state valuations. Soc Sci Med. 1996;42(4):609–15. Scholar
  51. 51.
    Al Sayah F, Johnson JA, Ohinmaa A, Xie F, Bansback N, on behalf of the Canadian EQ-5D Valuation Study Group. Health literacy and logical inconsistencies in valuations of hypothetical health states: results from the Canadian EQ-5D-5L valuation study. Qual Life Res. 2017;26(6):1483–92. Scholar
  52. 52.
    Badia X, Roset M, Herdman M. Inconsistent responses in three preference-elicitation methods for health states. Soc Sci Med. 1999;49(7):943–50. Scholar
  53. 53.
    Yang ZH, van Busschbach J, Timman R, Janssen MF, Luo N. Logical inconsistencies in time trade-off valuation of EQ-5D-5L health states: whose fault is it? PLoS One. 2017;12(9):10. Scholar
  54. 54.
    Cameron AC, Trivedi PK. Econometric models based on count data. Comparisons and applications of some estimators and tests. J Appl Econ. 1986;1(1):29–53.CrossRefGoogle Scholar
  55. 55.
    Wooldridge JM. Econometric analysis of cross section and panel data. Cambridge: MIT Press; 2010.Google Scholar
  56. 56.
    Greene WH. Econometric analysis. 5th ed. Chennai: Pearson Education India; 2003.Google Scholar
  57. 57.
    Craig BM, Pickard AS, Rand-Hendriksen K. Do health preferences contradict ordering of EQ-5D labels? Qual Life Res. 2015;24(7):1759–65. Scholar
  58. 58.
    Jonker MF, Donkers B, de Bekker-Grob EW, Stolk EA. Effect of level overlap and color coding on attribute non-attendance in discrete choice experiments. Value Health. 2018;21(7):767–71. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Health Sciences and AdministrationUniversity of West FloridaPensacolaUSA
  2. 2.Department of EconomicsUniversity of South FloridaTampaUSA

Personalised recommendations