Advertisement

Use of Cholinesterase Inhibitors in Non-Alzheimer’s Dementias

  • Paul Noufi
  • Rita KhouryEmail author
  • Sajeeka Jeyakumar
  • George T. Grossberg
Review Article

Abstract

Non-Alzheimer’s dementias constitute 30% of all dementias and present with major cognitive and behavioral disturbances. Cholinesterase inhibitors improve memory by increasing brain acetylcholine levels and are approved symptomatic therapies for Alzheimer’s disease (AD). They have also been investigated in other types of dementias with potential cholinergic dysfunction. There is compelling evidence for a profound cholinergic deficit in Lewy Body dementia (LBD) and Parkinson’s disease dementia (PDD), even to a greater extent than AD. However, this deficit is difficult to objectivize in vascular dementia (VaD) given the increased comorbidity with AD. Furthermore, there is minimal to no evidence for cholinergic loss in frontotemporal dementia (FTD). Although cholinesterase inhibitors showed significant improvement in cognitive, behavioral, and functional measures in both LBD and PDD clinical trials, only rivastigmine is approved for PDD, due to the heterogeneity of the scales used, the duration of trials, and the limited sample sizes impacting data interpretation. Similarly, the interpretation of findings in VaD trials are limited by the lack of pre-defined inclusion criteria for ‘pure VaD’ and the wide heterogeneity of patients enrolled with respect to location and extent of cerebrovascular disease. In FTD patients, cholinesterase inhibitors were mostly associated with worsening of cognitive and behavioral symptoms. In non-AD dementias, cholinesterase inhibitors were well tolerated, with increased reports of mild to moderate cholinergic side effects and a non-significant trend for increased cardio and cerebrovascular events with rivastigmine in VaD, justifying their cautious use on a case-by-case basis, especially when there is evidence for cholinergic deficit.

Notes

Compliance with Ethical Standards

Funding

This work was not funded.

Conflict of interest

Authors PN, RK, and SJ declare that they have no conflict of interest. Author GG is a consultant for Acadia, Alkahest, Allergen, Avanir, Axovant, Bioxcel, GE, Genentech, Lundbeck, Novartis, Otsuka, Roche, and Takeda; received research support from Janssen, NIA, and Roche; is on the safety monitoring committee for EryDel, Merck and Newron; and is on the Speaker’s Bureau for Acadia.

References

  1. 1.
    World Health Organization WHO. Dementia. 2017. https://www-who-int.ezp.slu.edu/en/news-room/fact-sheets/detail/dementia. Accessed 03 Sep 2019.
  2. 2.
    DSM-5 A. Neurocognitive Disorders. Diagnostic and Statistical Manual of Mental Disorders. DSM Library: American Psychiatric Association; 2013.Google Scholar
  3. 3.
    Cummings J, Reiber C, Kumar P. The price of progress: funding and financing Alzheimer’s disease drug development. Alzheimer’s Dement (New York, N Y). 2018;4:330–43.  https://doi.org/10.1016/j.trci.2018.04.008.Google Scholar
  4. 4.
    Khoury R, Patel K, Gold J, Hinds S, Grossberg GT. Recent Progress in the Pharmacotherapy of Alzheimer’s Disease. Drugs Aging. 2017;34(11):811–20.  https://doi.org/10.1007/s40266-017-0499-x.Google Scholar
  5. 5.
    Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66(2):137.  https://doi.org/10.1136/jnnp.66.2.137.Google Scholar
  6. 6.
    Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet. 2002;41(10):719–39.  https://doi.org/10.2165/00003088-200241100-00003.Google Scholar
  7. 7.
    Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Of Syst Rev. 2006.  https://doi.org/10.1002/14651858.cd005593.Google Scholar
  8. 8.
    Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. The primary care companion for CNS disorders. 2013;15(2).  https://doi.org/10.4088/pcc.12r01412.
  9. 9.
    Gustavson AR, Cummings JL. Cholinesterase inhibitors in non-Alzheimer dementias. J Am Med Dir Assoc. 2003;4(6 Suppl):S165–9.  https://doi.org/10.1097/01.jam.0000095367.55043.b5.Google Scholar
  10. 10.
    Reingold JL, Morgan JC, Sethi KD. Rivastigmine for the treatment of dementia associated with Parkinson’s disease. Neuropsychiatr Dis Treat. 2007;3(6):775–83.Google Scholar
  11. 11.
    Contestabile A. The history of the cholinergic hypothesis. Behav Brain Res. 2011;221(2):334–40.  https://doi.org/10.1016/j.bbr.2009.12.044.Google Scholar
  12. 12.
    Pepeu G, Grazia Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res. 2017;1670:173–84.  https://doi.org/10.1016/j.brainres.2017.06.023.Google Scholar
  13. 13.
    Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, et al. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener. 2019;14(1):5.  https://doi.org/10.1186/s13024-019-0306-8.Google Scholar
  14. 14.
    McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.  https://doi.org/10.1212/WNL.0000000000004058.Google Scholar
  15. 15.
    Nejad-Davarani S, Koeppe RA, Albin RL, Frey KA, Müller MLTM, Bohnen NI. Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [(18)F]-FEOBV. Mol Psychiatry. 2019;24(3):322–7.  https://doi.org/10.1038/s41380-018-0130-5.Google Scholar
  16. 16.
    Dugger BN, Murray ME, Boeve BF, Parisi JE, Benarroch EE, Ferman TJ, et al. Neuropathological analysis of brainstem cholinergic and catecholaminergic nuclei in relation to rapid eye movement (REM) sleep behaviour disorder. Neuropathol Appl Neurobiol. 2012;38(2):142–52.  https://doi.org/10.1111/j.1365-2990.2011.01203.x.Google Scholar
  17. 17.
    Perry EK, Marshall E, Kerwin J, Smith CJ, Jabeen S, Cheng AV, et al. Evidence of a monoaminergic-cholinergic imbalance related to visual hallucinations in Lewy body dementia. J Neurochem. 1990;55(4):1454–6.Google Scholar
  18. 18.
    Ferman TJ, Boeve BF. Dementia with Lewy bodies. Neurol Clin. 2007;25(3):741–7.  https://doi.org/10.1016/j.ncl.2007.03.001.Google Scholar
  19. 19.
    O’Brien JT, Colloby SJ, Pakrasi S, Perry EK, Pimlott SL, Wyper DJ, et al. Nicotinic alpha4beta2 receptor binding in dementia with Lewy bodies using 123I-5IA-85380 SPECT demonstrates a link between occipital changes and visual hallucinations. NeuroImage. 2008;40(3):1056–63.  https://doi.org/10.1016/j.neuroimage.2008.01.010.Google Scholar
  20. 20.
    Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13(4):217–31.  https://doi.org/10.1038/nrneurol.2017.27.Google Scholar
  21. 21.
    Roy R, Niccolini F, Pagano G, Politis M. Cholinergic imaging in dementia spectrum disorders. Eur J Nucl Med Mol Imaging. 2016;43(7):1376–86.  https://doi.org/10.1007/s00259-016-3349-x.Google Scholar
  22. 22.
    Kotagal V, Muller ML, Kaufer DI, Koeppe RA, Bohnen NI. Thalamic cholinergic innervation is spared in Alzheimer disease compared to parkinsonian disorders. Neurosci Lett. 2012;514(2):169–72.  https://doi.org/10.1016/j.neulet.2012.02.083.Google Scholar
  23. 23.
    Asahina M, Suhara T, Shinotoh H, Inoue O, Suzuki K, Hattori T. Brain muscarinic receptors in progressive supranuclear palsy and Parkinson’s disease: a positron emission tomographic study. J Neurol Neurosurg Psychiatry. 1998;65(2):155–63.Google Scholar
  24. 24.
    Ballard C, Ziabreva I, Perry R, Larsen JP, O’Brien J, McKeith I, et al. Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology. 2006;67(11):1931–4.  https://doi.org/10.1212/01.wnl.0000249130.63615.cc.Google Scholar
  25. 25.
    O’Brien JT, Thomas A. Vascular dementia. Lancet (London, England). 2015;386(10004):1698–706.  https://doi.org/10.1016/s0140-6736(15)00463-8.Google Scholar
  26. 26.
    Khan A, Kalaria RN, Corbett A, Ballard C. Update on vascular dementia. J Geriatr Psychiatry Neurol. 2016;29(5):281–301.  https://doi.org/10.1177/0891988716654987.Google Scholar
  27. 27.
    Roman GC, Kalaria RN. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol Aging. 2006;27(12):1769–85.  https://doi.org/10.1016/j.neurobiolaging.2005.10.004.Google Scholar
  28. 28.
    Saito H, Togashi H, Yoshioka M, Nakamura N, Minami M, Parvez H. Animal models of vascular dementia with emphasis on stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol Suppl. 1995;22(1):S257–9.Google Scholar
  29. 29.
    Gottfries CG, Blennow K, Karlsson I, Wallin A. The neurochemistry of vascular dementia. Dementia (Basel, Switzerland). 1994;5(3–4):163–7.Google Scholar
  30. 30.
    Tohgi H, Abe T, Kimura M, Saheki M, Takahashi S. Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infarct types as compared with Alzheimer-type dementia. J Neural Transm (Vienna, Austria : 1996). 1996;103(10):1211–20.  https://doi.org/10.1007/bf01271206.Google Scholar
  31. 31.
    Perry E, Ziabreva I, Perry R, Aarsland D, Ballard C. Absence of cholinergic deficits in “pure” vascular dementia. Neurology. 2005;64(1):132–3.  https://doi.org/10.1212/01.wnl.0000148591.63727.80.Google Scholar
  32. 32.
    Sharp SI, Francis PT, Elliott MS, Kalaria RN, Bajic N, Hortobagyi T, et al. Choline acetyltransferase activity in vascular dementia and stroke. Dement Geriatr Cogn Disord. 2009;28(3):233–8.  https://doi.org/10.1159/000239235.Google Scholar
  33. 33.
    Keverne JS, Low WC, Ziabreva I, Court JA, Oakley AE, Kalaria RN. Cholinergic neuronal deficits in CADASIL. Stroke. 2007;38(1):188–91.  https://doi.org/10.1161/01.str.0000251787.90695.05.Google Scholar
  34. 34.
    Mesulam M, Siddique T, Cohen B. Cholinergic denervation in a pure multi-infarct state: observations on CADASIL. Neurology. 2003;60(7):1183–5.Google Scholar
  35. 35.
    Liu Q, Zhu Z, Teipel SJ, Yang J, Xing Y, Tang Y, et al. White matter damage in the cholinergic system contributes to cognitive impairment in subcortical vascular cognitive impairment, no dementia. Front Aging Neurosci. 2017.  https://doi.org/10.3389/fnagi.2017.00047.Google Scholar
  36. 36.
    Engelhardt E, Moreira DM, Laks J. Vascular dementia and the cholinergic pathways. Dement Neuropsychol. 2007;1(1):2–9.  https://doi.org/10.1590/S1980-57642008DN10100002.Google Scholar
  37. 37.
    Wang J, Zhang HY, Tang XC. Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment. Acta Pharmacol Sin. 2009;30(7):879–88.  https://doi.org/10.1038/aps.2009.82.Google Scholar
  38. 38.
    Moretti R, Torre P, Antonello RM, Cattaruzza T, Cazzato G, Bava A. Rivastigmine in frontotemporal dementia: an open-label study. Drugs Aging. 2004;21(14):931–7.  https://doi.org/10.2165/00002512-200421140-00003.Google Scholar
  39. 39.
    Young JJ, Lavakumar M, Tampi D, Balachandran S, Tampi RR. Frontotemporal dementia: latest evidence and clinical implications. Ther Adv Psychopharmacol. 2018;8(1):33–48.  https://doi.org/10.1177/2045125317739818.Google Scholar
  40. 40.
    Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet (Lond, Engl). 2015;386(10004):1672–82.  https://doi.org/10.1016/s0140-6736(15)00461-4.Google Scholar
  41. 41.
    Huey ED, Putnam KT, Grafman J. A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology. 2006;66(1):17–22.  https://doi.org/10.1212/01.wnl.0000191304.55196.4d.Google Scholar
  42. 42.
    Murley AG, Rowe JB. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain J Neurol. 2018;141(5):1263–85.  https://doi.org/10.1093/brain/awx327.Google Scholar
  43. 43.
    Minami SS, Shen V, Le D, Krabbe G, Asgarov R, Perez-Celajes L, et al. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists. Biochem Pharmacol. 2015;97(4):454–62.  https://doi.org/10.1016/j.bcp.2015.07.016.Google Scholar
  44. 44.
    Edwards KR, Hershey L, Wray L, Bednarczyk EM, Lichter D, Farlow M, et al. Efficacy and safety of galantamine in patients with dementia with Lewy bodies: a 12-week interim analysis. Dement Geriatr Cogn Disord. 2004;17(Suppl 1):40–8.  https://doi.org/10.1159/000074681.Google Scholar
  45. 45.
    Edwards K, Royall D, Hershey L, Lichter D, Hake A, Farlow M, et al. Efficacy and safety of galantamine in patients with dementia with Lewy bodies: a 24-week open-label study. Dement Geriatr Cogn Disord. 2007;23(6):401–5.  https://doi.org/10.1159/000101512.Google Scholar
  46. 46.
    McKeith I, Del Ser T, Spano P, Emre M, Wesnes K, Anand R, et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet (Lond, Engl). 2000;356(9247):2031–6.  https://doi.org/10.1016/S0140-6736(00)03399-7.Google Scholar
  47. 47.
    Grace J, Daniel S, Stevens T, Shankar KK, Walker Z, Byrne EJ, et al. Long-Term use of rivastigmine in patients with dementia with Lewy bodies: an open-label trial. Int Psychogeriatr. 2001;13(2):199–205.Google Scholar
  48. 48.
    Maclean LE, Collins CC, Byrne EJ. Dementia with Lewy bodies treated with rivastigmine: effects on cognition, neuropsychiatric symptoms, and sleep. Int Psychogeriatr. 2001;13(3):277–88.Google Scholar
  49. 49.
    Grace JB, Walker MP, McKeith IG. A comparison of sleep profiles in patients with dementia with lewy bodies and Alzheimer’s disease. Int J Geriatr Psychiatry. 2000;15(11):1028–33.Google Scholar
  50. 50.
    Rozzini L, Chilovi BV, Bertoletti E, Conti M, Delrio I, Trabucchi M, et al. Cognitive and psychopathologic response to rivastigmine in dementia with Lewy bodies compared to Alzheimer’s disease: a case control study. Am J Alzheimer’s Dis Other Dement. 2007;22(1):42–7.  https://doi.org/10.1177/1533317506297517.Google Scholar
  51. 51.
    Mori E, Ikeda M, Kosaka K, Donepezil DLBSI. Donepezil for dementia with Lewy bodies: a randomized, placebo-controlled trial. Ann Neurol. 2012;72(1):41–52.  https://doi.org/10.1002/ana.23557.Google Scholar
  52. 52.
    Ikeda M, Mori E, Kosaka K, Iseki E, Hashimoto M, Matsukawa N, et al. Long-term safety and efficacy of donepezil in patients with dementia with Lewy bodies: results from a 52-week, open-label, multicenter extension study. Dement Geriatr Cogn Disord. 2013;36(3–4):229–41.  https://doi.org/10.1159/000351672.Google Scholar
  53. 53.
    Ikeda M, Mori E, Matsuo K, Nakagawa M, Kosaka K. Donepezil for dementia with Lewy bodies: a randomized, placebo-controlled, confirmatory phase III trial. Alzheimers Res Ther. 2015;7(1):4.  https://doi.org/10.1186/s13195-014-0083-0.Google Scholar
  54. 54.
    Mori E, Ikeda M, Nagai R, Matsuo K, Nakagawa M, Kosaka K. Long-term donepezil use for dementia with Lewy bodies: results from an open-label extension of Phase III trial. Alzheimers Res Ther. 2015;7(1):5.  https://doi.org/10.1186/s13195-014-0081-2.Google Scholar
  55. 55.
    Mori E, Ikeda M, Nakai K, Miyagishi H, Nakagawa M, Kosaka K. Increased plasma donepezil concentration improves cognitive function in patients with dementia with Lewy bodies: an exploratory pharmacokinetic/pharmacodynamic analysis in a phase 3 randomized controlled trial. J Neurol Sci. 2016;366:184–90.  https://doi.org/10.1016/j.jns.2016.05.001.Google Scholar
  56. 56.
    Mori E, Ikeda M, Nakagawa M, Miyagishi H, Kosaka K. Pretreatment cognitive profile likely to benefit from donepezil treatment in dementia with lewy bodies: pooled analyses of two randomized controlled trials. Dement Geriatr Cogn Disord. 2016;42(1–2):58–68.  https://doi.org/10.1159/000447586.Google Scholar
  57. 57.
    Samuel W, Caligiuri M, Galasko D, Lacro J, Marini M, McClure FS, et al. Better cognitive and psychopathologic response to donepezil in patients prospectively diagnosed as dementia with Lewy bodies: a preliminary study. Int J Geriatr Psychiatry. 2000;15(9):794–802.Google Scholar
  58. 58.
    Pakrasi S, Thomas A, Mosimann UP, Cousins DA, Lett D, Burn DJ, et al. Cholinesterase inhibitors in advanced Dementia with Lewy bodies: increase or stop? Int J Geriatr Psychiatry. 2006;21(8):719–21.  https://doi.org/10.1002/gps.1547.Google Scholar
  59. 59.
    Mori S, Mori E, Iseki E, Kosaka K. Efficacy and safety of donepezil in patients with dementia with Lewy bodies: preliminary findings from an open-label study. Psychiatry Clin Neurosci. 2006;60(2):190–5.  https://doi.org/10.1111/j.1440-1819.2006.01485.x.Google Scholar
  60. 60.
    Rowan E, McKeith IG, Saxby BK, O’Brien JT, Burn D, Mosimann U, et al. Effects of donepezil on central processing speed and attentional measures in Parkinson’s disease with dementia and dementia with Lewy bodies. Dement Geriatr Cogn Disord. 2007;23(3):161–7.  https://doi.org/10.1159/000098335.Google Scholar
  61. 61.
    Kazui H, Adachi H, Kanemoto H, Yoshiyama K, Wada T, Tokumasu Nomura K, et al. Effects of donepezil on sleep disturbances in patients with dementia with Lewy bodies: an open-label study with actigraphy. Psychiatry Res. 2017;251:312–8.  https://doi.org/10.1016/j.psychres.2017.02.039.Google Scholar
  62. 62.
    Ozaki A, Nishida M, Koyama K, Ishikawa K, Nishikawa T. Donepezil-induced sleep spindle in a patient with dementia with Lewy bodies: a case report. Psychogeriatrics. 2012;12(4):255–8.  https://doi.org/10.1111/j.1479-8301.2012.00411.x.Google Scholar
  63. 63.
    Fujita Y, Takebayashi M. Efficacy of low-dose donepezil for visual hallucinations in a patient with dementia with Lewy bodies. Psychiatry Clin Neurosci. 2010;64(3):336.  https://doi.org/10.1111/j.1440-1819.2010.02088.x.Google Scholar
  64. 64.
    Satoh M, Ishikawa H, Meguro K, Kasuya M, Ishii H, Yamaguchi S. Improved visual hallucination by donepezil and occipital glucose metabolism in dementia with Lewy bodies: the Osaki-Tajiri project. Eur Neurol. 2010;64(6):337–44.  https://doi.org/10.1159/000322121.Google Scholar
  65. 65.
    Ukai K, Fujishiro H, Iritani S, Ozaki N. Long-term efficacy of donepezil for relapse of visual hallucinations in patients with dementia with Lewy bodies. Psychogeriatrics. 2015;15(2):133–7.  https://doi.org/10.1111/psyg.12089.Google Scholar
  66. 66.
    Emre M, Aarsland D, Albanese A, Byrne EJ, Deuschl G, De Deyn PP, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med. 2004;351(24):2509–18.  https://doi.org/10.1056/NEJMoa041470.Google Scholar
  67. 67.
    Poewe W, Wolters E, Emre M, Onofrj M, Hsu C, Tekin S, et al. Long-term benefits of rivastigmine in dementia associated with Parkinson’s disease: an active treatment extension study. Mov Disord. 2006;21(4):456–61.  https://doi.org/10.1002/mds.20700.Google Scholar
  68. 68.
    Aarsland D, Hutchinson M, Larsen JP. Cognitive, psychiatric and motor response to galantamine in Parkinson’s disease with dementia. Int J Geriatr Psychiatry. 2003;18(10):937–41.  https://doi.org/10.1002/gps.949.Google Scholar
  69. 69.
    Litvinenko IV, Odinak MM, Mogil’naya VI, Emelin AY. Efficacy and safety of galantamine (reminyl) for dementia in patients with Parkinson’s disease (an open controlled trial). Neurosci Behav Physiol. 2008;38(9):937–45.  https://doi.org/10.1007/s11055-008-9077-3.Google Scholar
  70. 70.
    Hiraoka K, Okamura N, Funaki Y, Hayashi A, Tashiro M, Hisanaga K, et al. Cholinergic deficit and response to donepezil therapy in Parkinson’s disease with dementia. Eur Neurol. 2012;68(3):137–43.  https://doi.org/10.1159/000338774.Google Scholar
  71. 71.
    Werber EA, Rabey JM. The beneficial effect of cholinesterase inhibitors on patients suffering from Parkinson’s disease and dementia. J Neural Transm (Vienna, Austria: 1996). 2001;108(11):1319–25.  https://doi.org/10.1007/s007020100008.Google Scholar
  72. 72.
    Thomas AJ, Burn DJ, Rowan EN, Littlewood E, Newby J, Cousins D, et al. A comparison of the efficacy of donepezil in Parkinson’s disease with dementia and dementia with Lewy bodies. Int J Geriatr Psychiatry. 2005;20(10):938–44.  https://doi.org/10.1002/gps.1381.Google Scholar
  73. 73.
    Leroi I, Brandt J, Reich SG, Lyketsos CG, Grill S, Thompson R, et al. Randomized placebo-controlled trial of donepezil in cognitive impairment in Parkinson’s disease. Int J Geriatr Psychiatry. 2004;19(1):1–8.  https://doi.org/10.1002/gps.993.Google Scholar
  74. 74.
    Ravina B, Putt M, Siderowf A, Farrar JT, Gillespie M, Crawley A, et al. Donepezil for dementia in Parkinson’s disease: a randomised, double blind, placebo controlled, crossover study. J Neurol Neurosurg Psychiatry. 2005;76(7):934–9.  https://doi.org/10.1136/jnnp.2004.050682.Google Scholar
  75. 75.
    Dubois B, Tolosa E, Katzenschlager R, Emre M, Lees AJ, Schumann G, et al. Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov Disord. 2012;27(10):1230–8.  https://doi.org/10.1002/mds.25098.Google Scholar
  76. 76.
    Wilkinson D, Doody R, Helme R, Taubman K, Mintzer J, Kertesz A, et al. Donepezil in vascular dementia: a randomized, placebo-controlled study. Neurology. 2003;61(4):479–86.Google Scholar
  77. 77.
    Black S, Roman GC, Geldmacher DS, Salloway S, Hecker J, Burns A, et al. Efficacy and tolerability of donepezil in vascular dementia: positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial. Stroke. 2003;34(10):2323–30.  https://doi.org/10.1161/01.STR.0000091396.95360.E1.Google Scholar
  78. 78.
    Wilkinson D, Roman G, Salloway S, Hecker J, Boundy K, Kumar D, et al. The long-term efficacy and tolerability of donepezil in patients with vascular dementia. Int J Geriatr Psychiatry. 2010;25(3):305–13.  https://doi.org/10.1002/gps.2340.Google Scholar
  79. 79.
    Roman GC, Salloway S, Black SE, Royall DR, Decarli C, Weiner MW, et al. Randomized, placebo-controlled, clinical trial of donepezil in vascular dementia: differential effects by hippocampal size. Stroke. 2010;41(6):1213–21.  https://doi.org/10.1161/STROKEAHA.109.570077.Google Scholar
  80. 80.
    Kwon JC, Kim EG, Kim JW, Kwon OD, Yoo BG, Yi HA, et al. A multicenter, open-label, 24-week follow-up study for efficacy on cognitive function of donepezil in Binswanger-type subcortical vascular dementia. Am J Alzheimer’s Dis Other Dement. 2009;24(4):293–301.  https://doi.org/10.1177/1533317509334960.Google Scholar
  81. 81.
    Erkinjuntti T, Kurz A, Gauthier S, Bullock R, Lilienfeld S, Damaraju CV. Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet (Lond, Engl). 2002;359(9314):1283–90.  https://doi.org/10.1016/S0140-6736(02)08267-3.Google Scholar
  82. 82.
    Erkinjuntti T, Kurz A, Small GW, Bullock R, Lilienfeld S, Damaraju CV, et al. An open-label extension trial of galantamine in patients with probable vascular dementia and mixed dementia. Clin Ther. 2003;25(6):1765–82.Google Scholar
  83. 83.
    Auchus AP, Brashear HR, Salloway S, Korczyn AD, De Deyn PP, Gassmann-Mayer C, et al. Galantamine treatment of vascular dementia: a randomized trial. Neurology. 2007;69(5):448–58.  https://doi.org/10.1212/01.wnl.0000266625.31615.f6.Google Scholar
  84. 84.
    Moretti R, Torre P, Antonello RM, Cazzato G, Bava A. Rivastigmine in subcortical vascular dementia: an open 22-month study. J Neurol Sci. 2002;203–204:141–6.Google Scholar
  85. 85.
    Mok V, Wong A, Ho S, Leung T, Lam WW, Wong KS. Rivastigmine in Chinese patients with subcortical vascular dementia. Neuropsychiatr Dis Treat. 2007;3(6):943–8.Google Scholar
  86. 86.
    Moretti R, Torre P, Antonello RM, Cazzato G, Bava A. Rivastigmine in subcortical vascular dementia: a randomized, controlled, open 12-month study in 208 patients. Am J Alzheimer’s Dis Other Dement. 2003;18(5):265–72.  https://doi.org/10.1177/153331750301800508.Google Scholar
  87. 87.
    Moretti R, Torre P, Antonello RM, Cazzato G, Pizzolato G. Different responses to rivastigmine in subcortical vascular dementia and multi-infarct dementia. Am J Alzheimer’s Dis Other Dement. 2008;23(2):167–76.  https://doi.org/10.1177/1533317507312558.Google Scholar
  88. 88.
    Ballard C, Sauter M, Scheltens P, He Y, Barkhof F, van Straaten EC, et al. Efficacy, safety and tolerability of rivastigmine capsules in patients with probable vascular dementia: the VantagE study. Curr Med Res Opin. 2008;24(9):2561–74.  https://doi.org/10.1185/03007990802328142.Google Scholar
  89. 89.
    Kertesz A, Morlog D, Light M, Blair M, Davidson W, Jesso S, et al. Galantamine in frontotemporal dementia and primary progressive aphasia. Dement Geriatr Cogn Disord. 2008;25(2):178–85.  https://doi.org/10.1159/000113034.Google Scholar
  90. 90.
    Mendez MF, Shapira JS, McMurtray A, Licht E. Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatry. 2007;15(1):84–7.  https://doi.org/10.1097/01.JGP.0000231744.69631.33.Google Scholar
  91. 91.
    Arciniegas DB, Anderson CA. Donepezil-induced confusional state in a patient with autopsy-proven behavioral-variant frontotemporal dementia. J Neuropsychiatry Clin Neurosci. 2013;25(3):E25–6.  https://doi.org/10.1176/appi.neuropsych.12060158.Google Scholar
  92. 92.
    Katzenschlager R, Sampaio C, Costa J, Lees A. Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database Syst Rev. 2003.  https://doi.org/10.1002/14651858.cd003735.Google Scholar
  93. 93.
    Mori E, Ikeda M, Nakagawa M, Miyagishi H, Yamaguchi H, Kosaka K. Effects of donepezil on extrapyramidal symptoms in patients with dementia with lewy bodies: a secondary pooled analysis of two randomized-controlled and two open-label long-term extension studies. Dement Geriatr Cogn Disord. 2015;40(3–4):186–98.  https://doi.org/10.1159/000433524.Google Scholar
  94. 94.
    Oertel W, Poewe W, Wolters E, De Deyn PP, Emre M, Kirsch C, et al. Effects of rivastigmine on tremor and other motor symptoms in patients with Parkinson’s disease dementia: a retrospective analysis of a double-blind trial and an open-label extension. Drug Saf. 2008;31(1):79–94.  https://doi.org/10.2165/00002018-200831010-00007.Google Scholar
  95. 95.
    Khoury R, Rajamanickam J, Grossberg GT. An update on the safety of current therapies for Alzheimer’s disease: focus on rivastigmine. Ther Adv Drug Saf. 2018;9(3):171–8.  https://doi.org/10.1177/2042098617750555.Google Scholar
  96. 96.
    Emre M, Poewe W, De Deyn PP, Barone P, Kulisevsky J, Pourcher E, et al. Long-term safety of rivastigmine in parkinson disease dementia: an open-label, randomized study. Clin Neuropharmacol. 2014;37(1):9–16.  https://doi.org/10.1097/WNF.0000000000000010.Google Scholar
  97. 97.
    Wang HF, Yu JT, Tang SW, Jiang T, Tan CC, Meng XF, et al. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. J Neurol Neurosurg Psychiatry. 2015;86(2):135–43.  https://doi.org/10.1136/jnnp-2014-307659.Google Scholar
  98. 98.
    Meng Y-H, Wang P-P, Song Y-X, Wang J-H. Cholinesterase inhibitors and memantine for Parkinson’s disease dementia and Lewy body dementia: a meta-analysis. Exp Ther Med. 2019;17(3):1611–24.  https://doi.org/10.3892/etm.2018.7129.Google Scholar
  99. 99.
    Weintraub D, Somogyi M, Meng X. Rivastigmine in Alzheimer’s disease and Parkinson’s disease dementia: an ADAS-cog factor analysis. Am J Alzheimer’s Dis other Dement. 2011;26(6):443–9.  https://doi.org/10.1177/1533317511424892.Google Scholar
  100. 100.
    Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol. 2007;6(9):782–92.  https://doi.org/10.1016/S1474-4422(07)70195-3.Google Scholar
  101. 101.
    Bohnen NI, Grothe MJ, Ray NJ, Muller M, Teipel SJ. Recent advances in cholinergic imaging and cognitive decline-Revisiting the cholinergic hypothesis of dementia. Curr Geriatr Rep. 2018;7(1):1–11.  https://doi.org/10.1007/s13670-018-0234-4.Google Scholar
  102. 102.
    Fotiou DF, Stergiou V, Tsiptsios D, Lithari C, Nakou M, Karlovasitou A. Cholinergic deficiency in Alzheimer’s and Parkinson’s disease: evaluation with pupillometry. Int J Psychophysiol. 2009;73(2):143–9.  https://doi.org/10.1016/j.ijpsycho.2009.01.011.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PsychiatryAmerican University of BeirutBeirutLebanon
  2. 2.Department of Psychiatry and Behavioral NeuroscienceSaint Louis University School of MedicineSt. LouisUSA

Personalised recommendations