Drugs & Aging

, Volume 35, Issue 8, pp 687–698 | Cite as

Pharmacokinetic Factors to Consider in the Selection of Antiseizure Drugs for Older Patients with Epilepsy

  • Gail D. AndersonEmail author
  • Shahin Hakimian
Current Opinion


The incidence of epilepsy is highest in the older adult age group. Seizures in older adults can be more difficult to diagnose because their presentation is often subtle and can easily be mistaken for other conditions. Fortunately, new-onset epilepsy in the older adult is often pharmaco-responsive, with as many as 80–85% of patients achieving remission, often with monotherapy at modest doses. Many physiological and pathological changes occur with aging that can alter the pharmacokinetics of antiseizure drugs (ASDs). For the majority of the old- and new-generation ASDs, a decrease in dose may be needed to maintain concentrations equivalent to those found in young adults. The risk of drug interactions with ASDs is substantial, as polypharmacy is common. The first-generation ASDs (carbamazepine, phenytoin, phenobarbital, and valproic acid) have the potential to interact with many drugs, but many newer ASDs either do not have significant interactions or are selective inhibitors and inducers of specific hepatic enzymes. The differences in adverse effects between younger and older adults are not just due to dosing and pharmacokinetics. Older adults are more susceptible to the gait, balance, and cognitive effects of ASDs. Overall, the improved tolerability and decreased drug interaction potential of the newer-generation ASDs, such as lamotrigine and levetiracetam, have demonstrated their superiority in the treatment of seizures in older adults and, as such, are clearly favored for new-onset epilepsy in older adults.


Compliance with Ethical Standards

Conflicts of Interest

Gail Anderson has no conflicts of interest directly relevant to the content of this article. Shahin Hakimian has participated in clinical trials involving several antiepileptic drugs, a few of which are discussed in this article, as a local co-primary investigator. He has not received any salary support or contribution for his participation. Shahin Hakimian has also consulted for a pharmaceutical drug benefits company, OptumRx, which has no relation to or influence on the current manuscript.


  1. 1.
    Hauser WA, Annegers JF, Rocca WA. Descriptive epidemiology of epilepsy: contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc. 1996;71(6):576–86.PubMedCrossRefGoogle Scholar
  2. 2.
    de la Court A, Breteler MM, Meinardi H, Hauser WA, Hofman A. Prevalence of epilepsy in the elderly: the Rotterdam Study. Epilepsia. 1996;37(2):141–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Sillanpaa M, Kalviainen R, Klaukka T, Helenius H, Shinnar S. Temporal changes in the incidence of epilepsy in Finland: nationwide study. Epilepsy Res. 2006;71(2–3):206–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Cloyd JC, Lackner TE, Leppik IE. Antiepileptics in the elderly. Pharmacoepidemiology and pharmacokinetics. Arch Fam Med. 1994;3(7):589–98.PubMedCrossRefGoogle Scholar
  5. 5.
    Pugh MJ, Knoefel JE, Mortensen EM, Amuan ME, Berlowitz DR, Van Cott AC. New-onset epilepsy risk factors in older veterans. J Am Geriatr Soc. 2009;57(2):237–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Tanaka A, Akamatsu N, Shouzaki T, Toyota T, Yamano M, Nakagawa M, et al. Clinical characteristics and treatment responses in new-onset epilepsy in the elderly. Seizure. 2013;22(9):772–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Mohanraj R, Brodie MJ. Diagnosing refractory epilepsy: response to sequential treatment schedules. Eur J Neurol. 2006;13(3):277–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Besocke AG, Rosso B, Cristiano E, Valiensi SM, Garcia Mdel C, Gonorazky SE, et al. Outcome of newly-diagnosed epilepsy in older patients. Epilepsy Behav. 2013;27(1):29–35.PubMedCrossRefGoogle Scholar
  9. 9.
    Bruun E, Virta LJ, Kalviainen R, Keranen T. Choice of the first anti-epileptic drug in elderly patients with newly diagnosed epilepsy: a Finnish retrospective study. Seizure. 2015;31:27–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Shih JJ, Whitlock JB, Chimato N, Vargas E, Karceski SC, Frank RD. Epilepsy treatment in adults and adolescents: expert opinion, 2016. Epilepsy Behav. 2017;69:186–222.PubMedCrossRefGoogle Scholar
  11. 11.
    Pugh MJ, Cramer J, Knoefel J, Charbonneau A, Mandell A, Kazis L, et al. Potentially inappropriate antiepileptic drugs for elderly patients with epilepsy. J Am Geriatr Soc. 2004;52(3):417–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Halvorsen KH, Johannessen Landmark C, Granas AG. Prevalence of different combinations of antiepileptic drugs and CNS Drugs in elderly home care service and nursing home patients in Norway. Epilepsy Res Treat. 2016;2016:5153093.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Finamore JM, Sperling MR, Zhan T, Nei M, Skidmore CT, Mintzer S. Seizure outcome after switching antiepileptic drugs: a matched, prospective study. Epilepsia. 2016;57(8):1294–300.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang SP, Mintzer S, Skidmore CT, Zhan T, Stuckert E, Nei M, et al. Seizure recurrence and remission after switching antiepileptic drugs. Epilepsia. 2013;54(1):187–93.PubMedCrossRefGoogle Scholar
  15. 15.
    McLean AJ, Le Couteur DG. Aging biology and geriatric clinical pharmacology. Pharmacol Rev. 2004;56(2):163–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Klotz U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev. 2009;41(2):67–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Tan JL, Eastment JG, Poudel A, Hubbard RE. Age-related changes in hepatic function: an update on implications for drug therapy. Drugs Aging. 2015;32(12):999–1008.PubMedCrossRefGoogle Scholar
  18. 18.
    Reeve E, Wiese MD, Mangoni AA. Alterations in drug disposition in older adults. Expert Opin Drug Metab Toxicol. 2015;11(4):491–508.PubMedCrossRefGoogle Scholar
  19. 19.
    Graves NM, Brundage RC, Wen Y, Cascino G, So E, Ahman P, et al. Population pharmacokinetics of carbamazepine in adults with epilepsy. Pharmacotherapy. 1998;18(2):273–81.PubMedGoogle Scholar
  20. 20.
    Wegner I, Wilhelm AJ, Sander JW, Lindhout D. The impact of age on lamotrigine and oxcarbazepine kinetics: a historical cohort study. Epilepsy Behav. 2013;29(1):217–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Punyawudho B, Ramsay ER, Brundage RC, Macias FM, Collins JF, Birnbaum AK. Population pharmacokinetics of carbamazepine in elderly patients. Ther Drug Monit. 2012;34(2):176–81.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ahmed GF, Brundage RC, Marino SE, Cloyd JC, Leppik IE, Pennell PB, et al. Population pharmacokinetics of unbound and total drug concentrations following intravenously administered carbamazepine in elderly and younger adult patients with epilepsy. J Clin Pharmacol. 2013;53(3):276–84.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Amstutz U, Shear NH, Rieder MJ, Hwang S, Fung V, Nakamura H, et al. Recommendations for HLA-B*15:02 and HLA-A*31:01 genetic testing to reduce the risk of carbamazepine-induced hypersensitivity reactions. Epilepsia. 2014;55(4):496–506.PubMedCrossRefGoogle Scholar
  24. 24.
    Phillips EJ, Sukasem C, Whirl-Carrillo M, Muller DJ, Dunnenberger HM, Chantratita W, et al. Clinical Pharmacogenetics Implementation Consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther. 2018;103(4):574–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Messina S, Battino D, Croci D, Mamoli D, Ratti S, Perucca E. Phenobarbital pharmacokinetics in old age: a case-matched evaluation based on therapeutic drug monitoring data. Epilepsia. 2005;46(3):372–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Mattson RH, Cramer JA, Collins JF, Smith DB, Delgado-Escueta AV, Browne TR, et al. Comparison of carbamazepine, phenobarbital, phenytoin and primidone in partial and secondarily generalized tonic-clonic seizures. N Engl J Med. 1985;313:145–51.PubMedCrossRefGoogle Scholar
  27. 27.
    van der Weide J, Steijns LS, van Weelden MJ, de Haan K. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics. 2001;11(4):287–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Hung CC, Lin CJ, Chen CC, Chang CJ, Liou HH. Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther Drug Monit. 2004;26(5):534–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Odani A, Hashimoto Y, Otsuki Y, Uwai Y, Hattori H, Furusho K, et al. Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther. 1997;62(3):287–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Mamiya K, Ieiri I, Shimamoto J, Yukawa E, Imai J, Ninomiya H, et al. The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia. 1998;39(12):1317–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Hayes MJ, Langman MJ, Short AH. Changes in drug metabolism with increasing age: 2. phenytoin clearance and protein binding. Br J Clin Pharmacol. 1975;2(1):73–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bauer LA, Blouin RA. Age and phenytoin kinetics in adult epileptics. Clin Pharmacol Ther. 1982;31(3):301–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Bach B, Hansen JM, Kampmann JP, Rasmussen SN, Skovsted L. Disposition of antipyrine and phenytoin correlated with age and liver volume in man. Clin Pharmacokinet. 1981;6(5):389–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Valodia P, Seymour MA, Miller R, McFadyen ML, Folb PI. Factors influencing the population pharmacokinetic parameters of phenytoin in adult epileptic patients in South Africa. Ther Drug Monit. 1999;21(1):57–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Ahn JE, Cloyd JC, Brundage RC, Marino SE, Conway JM, Ramsay RE, et al. Phenytoin half-life and clearance during maintenance therapy in adults and elderly patients with epilepsy. Neurology. 2008;71(1):38–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Battino D, Croci D, Mamoli D, Messina S, Perucca E. Influence of aging on serum phenytoin concentrations: a pharmacokinetic analysis based on therapeutic drug monitoring data. Epilepsy Res. 2004;59(2–3):155–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S, Lee MT, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther. 2014;96(5):542–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Veering BT, Burm AG, Souveijn JH, Serree JM, Spierdijk J. The effect of age on serum concentrations of albumin and alpha 1-acid glycoprotein. Br J Clin Pharmacol. 1990;29:201–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Anderson GD, Pak C, Doane KW, Griffy KG, Temkin NR, Wilensky AJ, et al. Revised Winter–Tozer equation for normalized phenytoin concentrations in trauma and elderly patients with hypoalbuminemia. Ann Pharmacother. 1997;31:279–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Cramer JA, Mattson RH, Bennett DM, Swick CT. Variable free and total valproic acid concentrations in sole- and multidrug therapy. Ther Drug Monit. 1986;8:411–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Bryson SM, Verma N, Scott PJ, Rubin PC. Pharmacokinetics of valproic acid in young and elderly subjects. Br J Clin Pharmacol. 1983;16(1):104–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Fattore C, Messina S, Battino D, Croci D, Mamoli D, Perucca E. The influence of old age and enzyme inducing comedication on the pharmacokinetics of valproic acid at steady-state: a case-matched evaluation based on therapeutic drug monitoring data. Epilepsy Res. 2006;70(2–3):153–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Birnbaum AK, Hardie NA, Conway JM, Bowers SE, Lackner TE, Graves NM, et al. Valproic acid doses, concentrations, and clearances in elderly nursing home residents. Epilepsy Res. 2004;62(2–3):157–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Perucca E, Grimaldi R, Gatti G, Pirracchio S, Crema F, Frigo GM. Pharmacokinetics of valproic acid in the elderly. Br J Clin Pharmacol. 1984;17(6):665–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dore M, San Juan AE, Frenette AJ, Williamson D. Clinical importance of monitoring unbound valproic acid concentration in patients with hypoalbuminemia. Pharmacotherapy. 2017;37(8):900–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Gidal BE, Collins DM, Beinlich BR. Apparent valproic acid neurotoxicity in a hypoalbuminemic patient. Ann Pharmacother. 1993;27(1):32–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Albani F, Riva R, Procaccianti G, Baruzzi A, Perucca E. Free fraction of valproic acid: in vitro time-dependent increase and correlation with free fatty acid concentration in human plasma and serum. Epilepsia. 1983;24(1):65–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Riva R, Albani F, Baruzzi A, Galvani I, Perucca E. Determination of unbound valproic acid concentration in plasma by equilibrium dialysis and gas–liquid chromatography: methodological aspects and observations in epileptic patients. Ther Drug Monit. 1982;4(4):341–52.PubMedCrossRefGoogle Scholar
  49. 49.
    McLean MJ. Clinical pharmacokinetics of gabapentin. Neurology. 1994;44(6 Suppl 5):S17–22.PubMedGoogle Scholar
  50. 50.
    Ahmed GF, Bathena SP, Brundage RC, Leppik IE, Conway JM, Schwartz JB, et al. Pharmacokinetics and saturable absorption of gabapentin in nursing home elderly patients. AAPS J. 2017;19(2):551–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Armijo JA, Pena MA, Adin J, Vega-Gil N. Association between patient age and gabapentin serum concentration-to-dose ratio: a preliminary multivariate analysis. Ther Drug Monit. 2004;26(6):633–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Johannessen Landmark C, Beiske G, Baftiu A, Burns ML, Johannessen SI. Experience from therapeutic drug monitoring and gender aspects of gabapentin and pregabalin in clinical practice. Seizure. 2015;28:88–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Posner J, Holdich T, Crome P. Comparison of lamotrigine pharmacokinetics in young and elderly healthy volunteers. J Pharm Med. 1991;1:121–8.Google Scholar
  54. 54.
    Arif H, Svoronos A, Resor SR Jr, Buchsbaum R, Hirsch LJ. The effect of age and comedication on lamotrigine clearance, tolerability, and efficacy. Epilepsia. 2011;52(10):1905–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Punyawudho B, Ramsay RE, Macias FM, Rowan AJ, Collins JF, Brundage RC, et al. Population pharmacokinetics of lamotrigine in elderly patients. J Clin Pharmacol. 2008;48(4):455–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Johannessen Landmark C, Baftiu A, Tysse I, Valso B, Larsson PG, Rytter E, et al. Pharmacokinetic variability of four newer antiepileptic drugs, lamotrigine, levetiracetam, oxcarbazepine, and topiramate: a comparison of the impact of age and comedication. Ther Drug Monit. 2012;34(4):440–5.PubMedGoogle Scholar
  57. 57.
    Hirsch LJ, Arif H, Buchsbaum R, Weintraub D, Lee J, Chang JT, et al. Effect of age and comedication on levetiracetam pharmacokinetics and tolerability. Epilepsia. 2007;48(7):1351–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Contin M, Mohamed S, Albani F, Riva R, Baruzzi A. Levetiracetam clinical pharmacokinetics in elderly and very elderly patients with epilepsy. Epilepsy Res. 2012;98(2–3):130–4.PubMedCrossRefGoogle Scholar
  59. 59.
    van Heiningen PN, Eve MD, Oosterhuis B, Jonkman JH, de Bruin H, Hulsman JA, et al. The influence of age on the pharmacokinetics of the antiepileptic agent oxcarbazepine. Clin Pharmacol Ther. 1991;50(4):410–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Chen CB, Hsiao YH, Wu T, Hsih MS, Tassaneeyakul W, Jorns TP, et al. Risk and association of HLA with oxcarbazepine-induced cutaneous adverse reactions in Asians. Neurology. 2017;88(1):78–86.PubMedCrossRefGoogle Scholar
  61. 61.
    Randinitis EJ, Posvar EL, Alvey CW, Sedman AJ, Cook JA, Bockbrader HN. Pharmacokinetics of pregabalin in subjects with various degrees of renal function. J Clin Pharmacol. 2003;43(3):277–83.PubMedCrossRefGoogle Scholar
  62. 62.
    May TW, Rambeck B, Neb R, Jurgens U. Serum concentrations of pregabalin in patients with epilepsy: the influence of dose, age, and comedication. Ther Drug Monit. 2007;29(6):789–94.PubMedCrossRefGoogle Scholar
  63. 63.
    Doose D, Larsson K, Natarajan J, Neto W. Comparative single-dose pharmacokinetics of topiramate in elderly versus young men and women (Abstract). Epilepsia. 1998;39(Suppl 6):56.Google Scholar
  64. 64.
    Wallace J, Shellenberger K. Pharmacokinetics of zonisamide in young and elderly subjects. Epilepsia. 1998;39(Suppl 6):190–1.Google Scholar
  65. 65.
    Shah J, Shellenberger K, Canafax DM. Zonisamide: chemistry, biotransformation and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, Perrucca E, editors. Antiepileptic drugs. 5th ed. Philadelphia: Lippincott Williams &Wilcox; 2002. p. 873–9.Google Scholar
  66. 66.
    Schoemaker R, Wade JR, Stockis A. Brivaracetam population pharmacokinetics and exposure-response modeling in adult subjects with partial-onset seizures. J Clin Pharmacol. 2016;56(12):1591–602.PubMedCrossRefGoogle Scholar
  67. 67.
    Greenblatt DJ, Divoll M, Surrendra KP, et al. Clobazam kinetics in the elderly. Br J Clin Pharmacol. 1981;12:631–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    By the American Geriatrics Society Beers Criteria Update Expert P. American Geriatrics Society 2015 Updated Beers Criteria for Potentially Inappropriate Medication Use in Older Adults. J Am Geriatr Soc. 2015;63(11):2227–46.CrossRefGoogle Scholar
  69. 69.
    Almeida L, Falcao A, Maia J, Mazur D, Gellert M, Soares-da-Silva P. Single-dose and steady-state pharmacokinetics of eslicarbazepine acetate (BIA 2-093) in healthy elderly and young subjects. J Clin Pharmacol. 2005;45(9):1062–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Svendsen T, Brodtkorb E, Reimers A, Molden E, Saetre E, Johannessen SI, et al. Pharmacokinetic variability, efficacy and tolerability of eslicarbazepine acetate-A national approach to the evaluation of therapeutic drug monitoring data and clinical outcome. Epilepsy Res. 2017;129:125–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Maia J, Almeida L, Falcao A, Soares E, Mota F, Potgieter MA, et al. Effect of renal impairment on the pharmacokinetics of eslicarbazepine acetate. Int J Clin Pharmacol Ther. 2008;46(3):119–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Svendsen T, Brodtkorb E, Baftiu A, Burns ML, Johannessen SI, Johannessen Landmark C. Therapeutic drug monitoring of lacosamide in Norway: focus on pharmacokinetic variability. Efficacy and Tolerability. Neurochem Res. 2017;42(7):2077–83.PubMedCrossRefGoogle Scholar
  73. 73.
    Cawello W, Fuhr U, Hering U, Maatouk H, Halabi A. Impact of impaired renal function on the pharmacokinetics of the antiepileptic drug lacosamide. Clin Pharmacokinet. 2013;52(10):897–906.PubMedCrossRefGoogle Scholar
  74. 74.
    Patsalos PN. The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia. 2015;56(1):12–27.PubMedCrossRefGoogle Scholar
  75. 75.
    Patsalos PN, Gougoulaki M, Sander JW. Perampanel serum concentrations in adults with epilepsy: effect of dose, age, sex, and concomitant anti-epileptic drugs. Ther Drug Monit. 2016;38(3):358–64.PubMedCrossRefGoogle Scholar
  76. 76.
    Chang S-W, Yeh C, Van Logtenberg M, Sedek G, Karolchyk M. A geriatric pharmacokinetic evaluation of rufinamide (abstract). Clin Pharmacol Ther. 2000;67:154.Google Scholar
  77. 77.
    Italiano D, Perucca E. Clinical pharmacokinetics of new-generation antiepileptic drugs at the extremes of age: an update. Clin Pharmacokinet. 2013;52(8):627–45.PubMedCrossRefGoogle Scholar
  78. 78.
    Hosia-Randell HM, Muurinen SM, Pitkala KH. Exposure to potentially inappropriate drugs and drug-drug interactions in elderly nursing home residents in Helsinki, Finland: a cross-sectional study. Drugs Aging. 2008;25(8):683–92.PubMedCrossRefGoogle Scholar
  79. 79.
    Hanlon JT, Perera S, Newman AB, Thorpe JM, Donohue JM, Simonsick EM, et al. Potential drug-drug and drug-disease interactions in well-functioning community-dwelling older adults. J Clin Pharm Ther. 2017;42(2):228–33.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2003;2(8):473–81.PubMedCrossRefGoogle Scholar
  81. 81.
    Hines LE, Murphy JE. Potentially harmful drug-drug interactions in the elderly: a review. Am J Geriatr Pharmacother. 2011;9(6):364–77.PubMedCrossRefGoogle Scholar
  82. 82.
    Gidal BE, French JA, Grossman P, Le Teuff G. Assessment of potential drug interactions in patients with epilepsy: impact of age and sex. Neurology. 2009;72(5):419–25.PubMedCrossRefGoogle Scholar
  83. 83.
    Bruun E, Virta LJ, Kalviainen R, Keranen T. Co-morbidity and clinically significant interactions between antiepileptic drugs and other drugs in elderly patients with newly diagnosed epilepsy. Epilepsy Behav. 2017;73:71–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Pugh MJ, Vancott AC, Steinman MA, Mortensen EM, Amuan ME, Wang CP, et al. Choice of initial antiepileptic drug for older veterans: possible pharmacokinetic drug interactions with existing medications. J Am Geriatr Soc. 2010;58(3):465–71.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ucar M, Neuvonen M, Luurila H, Dahlqvist R, Neuvonen PJ, Mjorndal T. Carbamazepine markedly reduces serum concentrations of simvastatin and simvastatin acid. Eur J Clin Pharmacol. 2004;59(12):879–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Candrilli SD, Manjunath R, Davis KL, Gidal BE. The association between antiepileptic drug and HMG-CoA reductase inhibitor co-medication and cholesterol management in patients with epilepsy. Epilepsy Res. 2010;91(2–3):260–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Qato DM, Wilder J, Schumm LP, Gillet V, Alexander GC. Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 vs 2011. JAMA Intern Med. 2016;176(4):473–82.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rowan AJ, Ramsay RE, Collins JF, Pryor F, Boardman KD, Uthman BM, et al. New onset geriatric epilepsy: a randomized study of gabapentin, lamotrigine, and carbamazepine. Neurology. 2005;64(11):1868–73.PubMedCrossRefGoogle Scholar
  89. 89.
    Werhahn KJ, Trinka E, Dobesberger J, Unterberger I, Baum P, Deckert-Schmitz M, et al. A randomized, double-blind comparison of antiepileptic drug treatment in the elderly with new-onset focal epilepsy. Epilepsia. 2015;56(3):450–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Arif H, Buchsbaum R, Pierro J, Whalen M, Sims J, Resor SR Jr, et al. Comparative effectiveness of 10 antiepileptic drugs in older adults with epilepsy. Arch Neurol. 2010;67(4):408–15.PubMedCrossRefGoogle Scholar
  91. 91.
    Marson AG, Al-Kharusi AM, Alwaidh M, Appleton R, Baker GA, Chadwick DW, et al. The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet. 2007;369(9566):1000–15.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chung S, Wang N, Hank N. Comparative retention rates and long-term tolerability of new antiepileptic drugs. Seizure. 2007;16(4):296–304.PubMedCrossRefGoogle Scholar
  93. 93.
    Tatum WOT, French JA, Faught E, Morris GL 3rd, Liporace J, Kanner A, et al. Postmarketing experience with topiramate and cognition. Epilepsia. 2001;42(9):1134–40.PubMedCrossRefGoogle Scholar
  94. 94.
    Bootsma HP, Ricker L, Diepman L, Gehring J, Hulsman J, Lambrechts D, et al. Long-term effects of levetiracetam and topiramate in clinical practice: a head-to-head comparison. Seizure. 2008;17(1):19–26.PubMedCrossRefGoogle Scholar
  95. 95.
    Zeber JE, Copeland LA, Pugh MJ. Variation in antiepileptic drug adherence among older patients with new-onset epilepsy. Ann Pharmacother. 2010;44(12):1896–904.PubMedCrossRefGoogle Scholar
  96. 96.
    Ettinger AB, Manjunath R, Candrilli SD, Davis KL. Prevalence and cost of nonadherence to antiepileptic drugs in elderly patients with epilepsy. Epilepsy Behav. 2009;14(2):324–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Berghuis B, van der Palen J, de Haan GJ, Lindhout D, Koeleman BPC, Sander JW, et al. Carbamazepine- and oxcarbazepine-induced hyponatremia in people with epilepsy. Epilepsia. 2017;58(7):1227–33.PubMedCrossRefGoogle Scholar
  98. 98.
    Gupta DK, Bhoi SK, Kalita J, Misra UK. Hyponatremia following esclicarbazepine therapy. Seizure. 2015;29:11–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Theitler J, Brik A, Shaniv D, Berkovitch M, Gandelman-Marton R. Antiepileptic drug treatment in community-dwelling older patients with epilepsy: a retrospective observational study of old- versus new-generation antiepileptic drugs. Drugs Aging. 2017;34(6):479–87.PubMedCrossRefGoogle Scholar
  100. 100.
    Schoenberg MR, Rum RS, Osborn KE, Werz MA. A randomized, double-blind, placebo-controlled crossover study of the effects of levetiracetam on cognition, mood, and balance in healthy older adults. Epilepsia. 2017;58(9):1566–74.PubMedCrossRefGoogle Scholar
  101. 101.
    Hart LA, Anderson GD. Methods of estimating kidney function for drug dosing in special populations. Clin Pharmacokinet. 2018;57(85):943–76.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacy and Regional Epilepsy CenterUniversity of WashingtonSeattleUSA
  2. 2.Department of Neurology and Regional Epilepsy CenterUniversity of WashingtonSeattleUSA

Personalised recommendations