Advertisement

Drugs

, Volume 79, Issue 13, pp 1485–1494 | Cite as

Selinexor: First Global Approval

  • Yahiya Y. SyedEmail author
AdisInsight Report
  • 140 Downloads

Abstract

Selinexor (XPOVIO™) is a first-in-class, oral, small molecule Exportin-1 (XPO1) inhibitor that is being developed by Karyopharm Therapeutics for the treatment of cancer. Selinexor (in combination with dexamethasone) received accelerated approval in the USA in July 2019 for the treatment of adult patients with relapsed or refractory multiple myeloma (RRMM). Selinexor is also undergoing clinical development in a wide range of haematological and solid cancers. This article summarizes the milestones in the development of selinexor leading to this first approval for RRMM.

Notes

Compliance with Ethical Standards

Funding

The preparation of this review was not supported by any external funding.

Conflict of interest

During the peer review process the manufacturer of the agent under review was offered an opportunity to comment on the article. Changes resulting from any comments received were made by the author on the basis of scientific completeness and accuracy. Yahiya Y. Syed is a salaried employee of Adis International Ltd/Springer Nature, is responsible for the article content and declares no relevant conflicts of interest.

References

  1. 1.
    Karyopharm Therapeutics Inc. XPOVIO™ (selinexor) tablets, for oral use: US prescribing information; 2019. https://www.fda.gov. Accessed 2 Aug 2019.
  2. 2.
    Gounder MM, Zer A, Tap WD, et al. Phase IB study of selinexor, a first-in-class inhibitor of nuclear export, in patients with advanced refractory bone or soft tissue sarcoma. J Clin Oncol. 2016;34(26):3166–74.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Abdul Razak AR, Mau-Soerensen M, Gabrail NY, et al. First-in-class, first-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J Clin Oncol. 2016;34(34):4142–50.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gandhi UH, Senapedis W, Baloglu E, et al. Clinical implications of targeting XPO1-mediated muclear export in multiple myeloma. Clin Lymphoma Myeloma Leuk. 2018;18(5):335–45.CrossRefPubMedGoogle Scholar
  5. 5.
    Karyopharm Therapeutics. Karyopharm announces FDA approval of XPOVIO™ (selinexor) for the treatment of patients with relapsed or refractory multiple myeloma [media release]. 3 Jul 2019. http://www.karyopharm.com.
  6. 6.
    Karyopharm Therapeutics. Karyopharm’s selinexor receives fast track designation from FDA for the treatment of patients with penta-refractory multiple myeloma [media release]. 10 Apr 2018. http://www.karyopharm.com.
  7. 7.
    Karyopharm Therapeutics. Karyopharm and Antengene sign exclusive license agreement to develop and commercialize selinexor, eltanexor, verdinexor and KPT-9274 in China and other regions in Asia [media release]. 24 May 2018. http://www.karyopharm.coms.
  8. 8.
    Karyopharm Therapeutics. Karyopharm and Ono Pharmaceutical Co. Ltd. sign exclusive license agreement to develop and commercialize selinexor and KPT-8602 in Japan and other countries in Asia [media release]. 12 Oct 2017. http://www.karyopharm.com.
  9. 9.
    Karyopharm Therapeutics. Ivy Brain Tumor Center and Karyopharm Therapeutics collaborate to develop tissue-based clinical trial for brain cancer [media release]. 11 Jul 2019. http://www.karyopharm.com.
  10. 10.
    Karyopharm Therapeutics. Karyopharm Therapeutics Inc. and Katholieke Universiteit Leuven sign exclusive collaboration for the discovery of novel CRM1/Exportin 1 inhibitors [media release]. 11 Oct 2011. http://www.karyopharm.com.
  11. 11.
    Veristat. Veristat and Karyopharm Therapeutics Inc. enter into preferred provider agreement for oncology and novel therapeutic advancement [media release]. 15 Jun 2014. http://www.karyopharm.com.
  12. 12.
    Alexander TB, Lacayo NJ, Choi JK, et al. Phase I study of selinexor, a selective inhibitor of nuclear export, in combination with fludarabine and cytarabine, in pediatric relapsed or refractory acute leukemia. J Clin Oncol. 2016;34(34):4094–101.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Conforti F, Zhang X, Rao G, et al. Therapeutic effects of XPO1 inhibition in thymic epithelial tumors. Cancer Res. 2017;77(20):5614–27.CrossRefPubMedGoogle Scholar
  14. 14.
    Taylor-Kashton C, Lichtensztejn D, Baloglu E, et al. XPO1 inhibition preferentially disrupts the 3D nuclear organization of telomeres in tumor cells. J Cell Physiol. 2016;231(12):2711–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Taylor J, Coleman M, Alvarez K, et al. Selinexor, a first-in-class XPO1 inhibitor, is efficacious and tolerable in patients with myelodysplastic syndromes refractory to hypomethylating agents [abstract]. Blood. 2018;132(Suppl. 1):233.Google Scholar
  16. 16.
    Argueta C, Kashyap T, Klebanov B, et al. Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget. 2018;9(39):25529–44.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Turner JG. The synergistic effect of melphalan and XPO1 inhibition in preclinical models of multiple myeloma [abstract no. 4049]. Cancer Res. 2017;77(13 Suppl.).Google Scholar
  18. 18.
    Rosebeck S, Alonge MM, Kandarpa M, et al. Synergistic myeloma cell death via novel intracellular activation of caspase-10-dependent apoptosis by carfilzomib and selinexor. Mol Cancer Ther. 2016;15(1):60–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Hing ZA, Mantel R, Beckwith KA, et al. Selinexor is effective in acquired resistance to ibrutinib and synergizes with ibrutinib in chronic lymphocytic leukemia. Blood. 2015;125(20):3128–32.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Todaro M, Griggio V, Vitale C, et al. Selinexor (KPT-330) in combination with chemotherapy or idelalisib elicits a synergistic cytotoxic effect in primary CLL cells, also overcoming intrinsic and stromal cells-mediated fludarabine resistance [abstract no. P0087]. Haematologica. 2018;103(Suppl. 3):S110.Google Scholar
  21. 21.
    Muqbil I, Aboukameel A, Elloul S, et al. Anti-tumor activity of selective inhibitor of nuclear export (SINE) compounds, is enhanced in non-Hodgkin lymphoma through combination with mTOR inhibitor and dexamethasone. Cancer Lett. 2016;383(2):309–17.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fischer MA, Friedlander S, Hogdal L, et al. Combination of selective inhibitor of nuclear export (SINE) compounds, selinexor and KPT-8602, with venetoclax (ABT-199) displays enhanced activity in leukemia and large cell lymphoma [abstract]. Blood. 2016;128(22):3949.Google Scholar
  23. 23.
    DeSisto J, Flannery P, Kashyap T, et al. Synergistic effects of the XPO1 inhibitor selinexor with proteasome inhibitors in pediatric high-grade glioma and diffuse intrinsic pontine glioma [abstract no. 1946]. Cancer Res. 2017;77(13 Suppl.).Google Scholar
  24. 24.
    Kashyap T, Muqbil I, Aboukameel A, et al. Combination of selinexor and the proteasome inhibitor, bortezomib shows synergistic cytotoxicity in diffuse large B-cells lymphoma cells in vitro and in vivo [abstract]. Blood. 2016;128(22):4131.Google Scholar
  25. 25.
    Arango NP, Evans K, Zhao M, et al. Nuclear export inhibitor selinexor (KPT-330) demonstrates anti-tumor efficacy alone and in combination with chemotherapy in multiple breast cancer models [abstract no. 3075]. Cancer Res. 2016;76(14 Suppl.).Google Scholar
  26. 26.
    Kashyap T, Argueta C, Unger T, et al. Selinexor reduces the expression of DNA damage repair proteins and sensitizes cancer cells to DNA damaging agents. Oncotarget. 2018;9(56):30773–86.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Turner JG, Kashyap T, Dawson JL, et al. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IkBa and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget. 2016;7(48):78896–909.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Turner JG, Dawson JL, Grant S, et al. Treatment of acquired drug resistance in multiple myeloma by combination therapy with XPO1 and topoisomerase II inhibitors. J Hematol Oncol. 2016;9(1):73.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Muz B, Azab F, de la Puente P, et al. Selinexor overcomes hypoxia-induced drug resistance in multiple myeloma. Transl Oncol. 2017;10(4):632–40.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhong Y, El-Gamal D, Dubovsky JA, et al. Selinexor suppresses downstream effectors of B-cell activation, proliferation and migration in chronic lymphocytic leukemia cells. Leukemia. 2014;28(5):1158–63.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kashyap T, Argueta C, Aboukameel A, et al. Selinexor, a selective inhibitor of nuclear export (SINE) compound, acts through NF-kappaB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death. Oncotarget. 2016;7(48):78883–95.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lagana A, Park S, Edwards D, et al. E2F1 is a biomarker of selinexor resistance in relapsed/refractory multiple myeloma patients [abstract]. Blood. 2018;132(Suppl. 1):3216.Google Scholar
  33. 33.
    Crochiere M, Kashyap T, Kalid O, et al. Deciphering mechanisms of drug sensitivity and resistance to selective inhibitor of nuclear export (SINE) compounds. BMC Cancer. 2015;15:910.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Broijl A, Asselbergs E, Minnema M, et al. A phase II study of selinexor (KPT-330) combined with bortezomib and dexamethasone (SVD) for induction and consolidation for patients with progressive or refractory multiple myeloma: the Selvedex trial [abstract no. PS1338 + poster ]. HemaSphere. 2018;2(Suppl. 2):611–2.Google Scholar
  35. 35.
    Chen C, Siegel D, Gutierrez M, et al. Safety and efficacy of selinexor in relapsed or refractory multiple myeloma and Waldenstrom macroglobulinemia. Blood. 2018;131(8):855–63.CrossRefPubMedGoogle Scholar
  36. 36.
    Vogl DT, Dingli D, Cornell RF, et al. Selective inhibition of nuclear export with oral selinexor for treatment of relapsed or refractory multiple myeloma. J Clin Oncol. 2018;36(9):859–66.CrossRefPubMedGoogle Scholar
  37. 37.
    Chari A, Vogl DT, Dimopoulos MA, et al. Results of the pivotal STORM study (part 2) in penta-refractory multiple myeloma (MM): deep and durable responses with oral selinexor plus low dose dexamethasone in patients with penta exposed and triple class-refractory MM [abstract]. Blood. 2018;132(Suppl. 1):598.Google Scholar
  38. 38.
    Jagannath S, Vogl DT, Dimopoulos MA, et al. Phase 2b results of the STORM study: oral selinexor plus low dose dexamethasone (Sd) in patients with penta-refractory myeloma (penta-MM) [abstract no. MM-255]. Clin Lymphoma Myeloma Leuk. 2018;18(Suppl. 1):S249–50.CrossRefGoogle Scholar
  39. 39.
    Richardson P, Jagannath S, Chari A, et al. Overall survival (OS) with oral selinexor plus low dose dexamethasone (Sd) in patients with triple class refractory-multiple myeloma (TCR-MM) [abstract]. J Clin Oncol. 2019;37(15 Suppl.):8014.Google Scholar
  40. 40.
    White DJ, Bahlis NJ, Venner CP, et al. A phase IB/II trial of selinexor combined with lenalidomide and low dose dexamethasone in patients with relapsed/refractory multiple myeloma [abstract]. Blood. 2017;130(Suppl. 1):1861.Google Scholar
  41. 41.
    Bahlis NJ, Sutherland H, White D, et al. Selinexor plus low-dose bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma. Blood. 2018;132(24):2546–54.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gasparetto C, Lentzsch S, Schiller G, et al. Safety and efficacy of the combination of selinexor, daratumumab, and dexamethasone (SDd) in patients with multiple myeloma (MM) previously exposed to proteasome inhibitors and immunomodulatory drugs. HemaSphere. 2019;3:740.CrossRefGoogle Scholar
  43. 43.
    Chen C, Gasparetto C, White D, et al. Selinexor plus pomalidomide and low dose dexamethasone (SPd) in patients with relapsed or refractory multiple myeloma [abstract no. 3199 + oral]. In: 24th Congress of the European Hematology Association; 2019.Google Scholar
  44. 44.
    Gasparetto C, Lentzsch S, Schiller G, et al. A phase 1b/2 study of selinexor, carfilzomib, and dexamethasone (SKd) in relapsed/refractory multiple myeloma (RRMM) [abstract no. 3423 + oral]. In: 24th Congress of the European Hematology Association; 2019.Google Scholar
  45. 45.
    Jakubowiak AJ, Jasielec JK, Rosenbaum CA, et al. Phase 1 study of selinexor plus carfilzomib and dexamethasone for the treatment of relapsed/refractory multiple myeloma. Br J Haematol. 2019.  https://doi.org/10.1111/bjh.15969.CrossRefPubMedGoogle Scholar
  46. 46.
    Gasparetto C, Lentzsch S, Schiller G, et al. A phase 1b/2 study of selinexor, carfilzomib, and dexamethasone (skd) in relapsed/refractory multiple myeloma (RRMM): PS1414 [abstract no. PS1414]. HemaSphere. 2019;3(Suppl. 1):650.CrossRefGoogle Scholar
  47. 47.
    Baz R, Zonder JA, Shain KH, et al. Phase I/II study of liposomal doxorubicin (DOX) in combination with selinexor (SEL) and dexamethasone (DEX) for relapsed and refractory multiple myeloma (RRMM) [abstract]. Blood. 2017;130(Suppl. 1):3095.Google Scholar
  48. 48.
    Kuruvilla J, Savona M, Baz R, et al. Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood. 2017;129(24):3175–83.CrossRefPubMedGoogle Scholar
  49. 49.
    Kalakonda N, Cavallo F, Follows G, et al. A phase 2b study of selinexor in patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) [abstract no. 031]. Hematol Oncol. 2019;37(S2):62–4.CrossRefGoogle Scholar
  50. 50.
    Garzon R, Savona M, Baz R, et al. A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia. Blood. 2017;129(24):3165–74.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Place AE, Blonquist TM, Stieglitz E, et al. Phase I study of the selinexor in relapsed/refractory childhood acute leukemia [abstract]. Blood. 2018;132(Suppl. 1):1405.Google Scholar
  52. 52.
    Daver NG, Assi R, Kantarjian HM, et al. Final results of phase I/II study of selinexor (SEL) with sorafenib in patients (pts) with relapsed and/or refractory (R/R) FLT3 mutated acute myeloid leukemia (AML) [abstract no. 1441]. Blood. 2018;132(Suppl 1).Google Scholar
  53. 53.
    Fiedler W, Heuser M, Chromik J, et al. Phase II results of ara-C and idarubicin in combination with the selective inhibitor of nuclear export (SINE) compound selinexor (KPT-330) in patients with relapsed or refractory AML [abstract]. Blood. 2016;128(22):341.Google Scholar
  54. 54.
    Wang AY, Weiner H, Green M, et al. A phase I study of selinexor in combination with high-dose cytarabine and mitoxantrone for remission induction in patients with acute myeloid leukemia. J Hematol Oncol. 2018;11(4):1–10.Google Scholar
  55. 55.
    Bhatnagar B, Klisovic RB, Walker AR, et al. A phase 1 clinical trial of selinexor in combination with decitabine in patients with newly diagnosed and relapsed or refractory acute myeloid leukemia [abstract]. Blood. 2016;128(22):1651.Google Scholar
  56. 56.
    Bhatnagar B, Walker AR, Mims AS, et al. Phase 1 study of selinexor plus mitoxantrone, etoposide, and cytarabine in acute myeloid leukemia [abstract]. J Clin Oncol. 2018;36(15 Suppl.).Google Scholar
  57. 57.
    Uy GL, Rettig MP, Fletcher T, et al. Selinexor in combination with cladribine, cytarabine and G-CSF for relapsed or refractory AML [abstract]. Blood. 2017;130(Suppl. 1):816.Google Scholar
  58. 58.
    Gounder MM, Somaiah N, Attia S, et al. Phase 2 results of selinexor in advanced dedifferentiated (DDLS) liposarcoma (SEAL) study: A phase 2/3, randomized, double blind, placebo controlled cross-over study [abstract no. 11512]. J Clin Oncol. 2018;36(15 Suppl. 1).Google Scholar
  59. 59.
    Malone ER, Al-Ezzi E, Gupta AA, et al. Phase 1b study of selinexor, a first in class selective inhibitor of nuclear export (SINE) compound, in combination with doxorubicin in patients (pts) with locally advanced or metastatic soft tissue sarcoma (STS) [abstract no. 11562]. J Clin Oncol. 2018;36(15 Suppl.).Google Scholar
  60. 60.
    Anonymous. Results of a phase 2 trial of selinexor, an oral selective inhibitor of nuclear export (SINE) in 114 patients with gynaecological cancers. Clin Adv Hematol Oncol. 2016;14(12 Suppl.14):8-10.Google Scholar
  61. 61.
    Makker V, Boucicaut N, Cadoo KA, et al. A phase 1 study of selinexor (S) in combination with paclitaxel (P) and carboplatin (C) in patients (pts) with advanced ovarian (OC) or endometrial cancers (EC) [abstract no. 970P]. Ann Oncol. 2017;28(Suppl. 5):v346.Google Scholar
  62. 62.
    Lassman AB, Wen PY, Van Den Bent MJ, et al. Efficacy and safety of selinexor in recurrent glioblastoma [abstract no. 2005]. J Clin Oncol. 2019;37(15 Suppl.).Google Scholar
  63. 63.
    Kendra KL, Watson R, Lesinski GB. Selinexor, a selective inhibitor of nuclear export (SINE), in patients with unresectable melanoma [abstract no. e21014]. J Clin Oncol. 2017;35(15 Suppl.).Google Scholar
  64. 64.
    Shafique M, Ismail-Khan R, Extermann M, et al. A Phase II trial of selinexor (KPT-330) for metastatic triple-negative breast cancer. Oncologist. 2019.  https://doi.org/10.1634/theoncologist.2019-0231.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nilsson S, Stein A, Rolfo C, et al. Selinexor (KPT-330), an oral selective inhibitor of nuclear export (SINE) compound, in combination with FOLFOX in patients with metastatic colorectal cancer (mCRC)-final results of the phase I SENTINEL trial [abstract no. V368]. Oncol Res Treat. 2018;41(Suppl. 4):122.Google Scholar
  66. 66.
    Wei XX, Siegel AP, Aggarwal R, et al. A Phase II trial of selinexor, an oral selective inhibitor of nuclear export compound, in abiraterone- and/or enzalutamide-refractory metastatic castration-resistant prostate cancer. Oncologist. 2018;23(6):656–e64.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Delimpasi S, Pour L, Auner HW, et al. A phase 3 randomized, controlled, open-label study of selinexor, bortezomib, and dexamethasone (SVd) versus bortezomib and dexamethasone (Vd) in patients with relapsed or refractory multiple myeloma (RRMM) [abstract no. TPS8056]. J Clin Oncol. 2018;36(15 Suppl.).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Springer NatureAucklandNew Zealand

Personalised recommendations