Advertisement

Drugs

pp 1–18 | Cite as

Current and Emerging Drug Therapies for Connective Tissue Disease-Interstitial Lung Disease (CTD-ILD)

  • Adelle S. JeeEmail author
  • Tamera J. Corte
Review Article

Abstract

Interstitial lung disease (ILD) can be associated with all connective tissue diseases and is an important cause of morbidity and mortality. The management of connective tissue disease-interstitial lung disease (CTD-ILD) is challenging due substantial heterogeneity in disease behaviour and paucity of controlled clinical trials to guide treating clinicians. Not all patients require treatment, and the decision to treat needs to be individualised based on a patient’s observed disease behaviour, baseline and longitudinal lung function measurements, extent of lung involvement on radiology and patient factors including age, co-morbidities and personal preference. If indicated, treatment of the CTD-ILD is largely with immunomodulation, with the aim to prevent progression of the ILD before further irreversible lung injury and disability occurs. Corticosteroids, cyclophosphamide, mycophenolate mofetil and azathioprine are the most common immunosuppressive agents currently used to treat CTD-ILD, demonstrating stability of lung function in case series and a small number of randomised controlled trials in ILD associated with systemic sclerosis. Biological and non-biological disease-modifying anti-rheumatic drugs, and the anti-fibrotics nintedanib and pirfenidone, have revolutionised the treatment of connective tissue diseases and idiopathic ILD, respectively. Furthermore, anti-fibrotics have recently demonstrated safety and efficacy in ILD associated with systemic sclerosis. There remains a critical unmet need to clarify when and in whom to initiate treatment, and which agent(s) to utilise to achieve optimal outcomes for CTD-ILD patients whilst minimising harms through prospective multicentre trials. This review highlights the challenges faced when treating patients with CTD-ILD and summarises available evidence for current, emerging and novel therapies.

Notes

Acknowledgements

ASJ would like to acknowledge financial support received through the Lung Foundation Australia/David Wilson Ph.D. Scholarship in Idiopathic Pulmonary Fibrosis Research.

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Dr Adelle S. Jee declares travel fees, educational grant support and a speaker honorarium from Boehringer Ingelheim. Dr Tamera J. Corte declares consulting fees, advisory board membership, travel fees and speaker honorarium from Boehringer-Ingelheim and Roche, and unrestricted educational grants from Boehringer-Ingelheim, Roche, Bristol-Myers Squibb, Bayer and Galapagos.

References

  1. 1.
    Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis. 2007;66(7):940–4.  https://doi.org/10.1136/ard.2006.066068.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Goh NS, Desai SR, Veeraraghavan S, Hansell DM, Copley SJ, Maher TM, et al. Interstitial lung disease in systemic sclerosis: a simple staging system. Am J Respir Crit Care Med. 2008;177(11):1248–54.  https://doi.org/10.1164/rccm.200706-877OC.CrossRefPubMedGoogle Scholar
  3. 3.
    Moore OA, Goh N, Corte T, Rouse H, Hennessy O, Thakkar V, et al. Extent of disease on high-resolution computed tomography lung is a predictor of decline and mortality in systemic sclerosis-related interstitial lung disease. Rheumatology (Oxford). 2013;52(1):155–60.  https://doi.org/10.1093/rheumatology/kes289.CrossRefGoogle Scholar
  4. 4.
    Moore OA, Proudman SM, Goh N, Corte TJ, Rouse H, Hennessy O, et al. Quantifying change in pulmonary function as a prognostic marker in systemic sclerosis-related interstitial lung disease. Clin Exp Rheumatol. 2015;33(4 Suppl 91):S111–6.PubMedGoogle Scholar
  5. 5.
    Bahmer T, Romagnoli M, Girelli F, Claussen M, Rabe KF. The use of auto-antibody testing in the evaluation of interstitial lung disease (ILD) - A practical approach for the pulmonologist. Respir Med. 2016;113:80–92.  https://doi.org/10.1016/j.rmed.2016.01.019.CrossRefPubMedGoogle Scholar
  6. 6.
    Sato S, Kuwana M, Fujita T, Suzuki Y. Anti-CADM-140/MDA5 autoantibody titer correlates with disease activity and predicts disease outcome in patients with dermatomyositis and rapidly progressive interstitial lung disease. Mod Rheumatol. 2013;23(3):496–502.  https://doi.org/10.1007/s10165-012-0663-4.CrossRefPubMedGoogle Scholar
  7. 7.
    Ikeda N, Takahashi K, Yamaguchi Y, Inasaka M, Kuwana M, Ikezawa Z. Analysis of dermatomyositis-specific autoantibodies and clinical characteristics in Japanese patients. J Dermatol. 2011;38(10):973–9.  https://doi.org/10.1111/j.1346-8138.2011.01262.x.CrossRefPubMedGoogle Scholar
  8. 8.
    Jee AS, Sahhar J, Youssef P, Bleasel J, Adelstein S, Nguyen M, et al. Review: Serum biomarkers in idiopathic pulmonary fibrosis and systemic sclerosis associated interstitial lung disease—frontiers and horizons. Pharmacol Ther. 2019.  https://doi.org/10.1016/j.pharmthera.2019.05.014.CrossRefPubMedGoogle Scholar
  9. 9.
    Perez-Bogerd S, Wuyts W, Barbier V, Demeyer H, Van Muylem A, Janssens W, et al. Short and long-term effects of pulmonary rehabilitation in interstitial lung diseases: a randomised controlled trial. Respir Res. 2018;19(1):182.  https://doi.org/10.1186/s12931-018-0884-y.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dowman L, Hill CJ, Holland AE. Pulmonary rehabilitation for interstitial lung disease. Cochrane Database Syst Rev. 2014(10).  https://doi.org/10.1002/14651858.cd006322.pub3.
  11. 11.
    Raghu G. Idiopathic pulmonary fibrosis: guidelines for diagnosis and clinical management have advanced from consensus-based in 2000 to evidence-based in 2011. Eur Respir J. 2011;37(4):743–6.  https://doi.org/10.1183/09031936.00017711.CrossRefPubMedGoogle Scholar
  12. 12.
    Strehl C, Spies CM, Buttgereit F. Pharmacodynamics of glucocorticoids. Clin Exp Rheumatol. 2011;29(5 Suppl 68):S13–8.PubMedGoogle Scholar
  13. 13.
    Iudici M, van der Goes MC, Valentini G, Bijlsma JW. Glucocorticoids in systemic sclerosis: weighing the benefits and risks—a systematic review. Clin Exp Rheumatol. 2013;31(2 Suppl 76):157–65.PubMedGoogle Scholar
  14. 14.
    Trang G, Steele R, Baron M, Hudson M. Corticosteroids and the risk of scleroderma renal crisis: a systematic review. Rheumatol Int. 2012;32(3):645–53.  https://doi.org/10.1007/s00296-010-1697-6.CrossRefPubMedGoogle Scholar
  15. 15.
    Steen VD, Medsger TA. Case–control study of corticosteroids and other drugs that either precipitate or protect from the development of scleroderma renal crisis. Arthritis Rheum. 1998;41(9):1613.  https://doi.org/10.1002/1529-0131(199809)41:9%3c1613:AID-ART11%3e3.0.CO;2-O.CrossRefPubMedGoogle Scholar
  16. 16.
    Hall AG, Tilby MJ. Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev. 1992;6(3):163–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Tashkin DP, Elashoff R, Clements PJ, Goldin J, Roth MD, Furst DE, et al. Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med. 2006;354(25):2655–66.  https://doi.org/10.1056/NEJMoa055120.CrossRefPubMedGoogle Scholar
  18. 18.
    Hoyles RK, Ellis RW, Wellsbury J, Lees B, Newlands P, Goh NS, et al. A multicenter, prospective, randomized, double-blind, placebo-controlled trial of corticosteroids and intravenous cyclophosphamide followed by oral azathioprine for the treatment of pulmonary fibrosis in scleroderma. Arthritis Rheum. 2006;54(12):3962–70.  https://doi.org/10.1002/art.22204.CrossRefPubMedGoogle Scholar
  19. 19.
    Corte TJ, Ellis R, Renzoni EA, Hansell DM, Nicholson AG, du Bois RM, et al. Use of intravenous cyclophosphamide in known or suspected, advanced non-specific interstitial pneumonia. Sarcoidosis Vasculitis Diffuse Lung Dis. 2009;26(2):132–8.Google Scholar
  20. 20.
    Barnes H, Holland A, Westall G, Glaspole I. Cyclophosphamide for connective tissue disease-associated interstitial lung disease. Chest. 2017;152(4):A442-A.  https://doi.org/10.1016/j.chest.2017.08.469.CrossRefGoogle Scholar
  21. 21.
    Khanna D, Tashkin DP, Denton CP, Lubell MW, Vazquez-Mateo C, Wax S. Ongoing clinical trials and treatment options for patients with systemic sclerosis–associated interstitial lung disease. Rheumatology. 2018;58(4):567–79.  https://doi.org/10.1093/rheumatology/key151.CrossRefGoogle Scholar
  22. 22.
    Martinez FJ, McCune WJ. Cyclophosphamide for scleroderma lung disease. N Engl J Med. 2006;354(25):2707–9.  https://doi.org/10.1056/NEJMe068095.CrossRefPubMedGoogle Scholar
  23. 23.
    Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118.CrossRefPubMedGoogle Scholar
  24. 24.
    Tashkin DP, Roth MD, Clements PJ, Furst DE, Khanna D, Kleerup EC, et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir Med. 2016;4(9):708–19.  https://doi.org/10.1016/S2213-2600(16)30152-7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fischer A, Brown KK, Du Bois RM, Frankel SK, Cosgrove GP, Fernandez-Perez ER, et al. Mycophenolate mofetil improves lung function in connective tissue disease-associated interstitial lung disease. J Rheumatol. 2013;40(5):640–6.  https://doi.org/10.3899/jrheum.121043.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Omair MA, Alahmadi A, Johnson SR. Safety and effectiveness of mycophenolate in systemic sclerosis. A systematic review. PLoS One. 2015;10(5):e0124205.  https://doi.org/10.1371/journal.pone.0124205.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nihtyanova SI, Brough GM, Black CM, Denton CP. Mycophenolate mofetil in diffuse cutaneous systemic sclerosis—a retrospective analysis. Rheumatology (Oxford). 2007;46(3):442–5.  https://doi.org/10.1093/rheumatology/kel244.CrossRefGoogle Scholar
  28. 28.
    Naidu G, Sharma S, Dhir V, Dhooria S, Sinha A, Mb A, et al. FRI0445 A randomised controlled trial to compare the efficacy of oral mycophenolate mofetil with placebo in patients with systemic sclerosis related early interstitial lung disease. Ann Rheum Dis. 2018;77(Suppl 2):751.  https://doi.org/10.1136/annrheumdis-2018-eular.4673.CrossRefGoogle Scholar
  29. 29.
    Maltzman JS, Koretzky GA. Azathioprine: old drug, new actions. J Clin Investig. 2003;111(8):1122–4.  https://doi.org/10.1172/JCI18384.CrossRefPubMedGoogle Scholar
  30. 30.
    Bérezné A, Ranque B, Valeyre D, Brauner M, Allanore Y, Launay D, et al. Therapeutic strategy combining intravenous cyclophosphamide followed by oral azathioprine to treat worsening interstitial lung disease associated with systemic sclerosis: a retrospective multicenter open-label study. J Rheumatol. 2008;35(6):1064.PubMedGoogle Scholar
  31. 31.
    Oldham JM, Lee C, Valenzi E, Witt LJ, Adegunsoye A, Hsu S, et al. Azathioprine response in patients with fibrotic connective tissue disease-associated interstitial lung disease. Respir Med. 2016;121:117–22.  https://doi.org/10.1016/j.rmed.2016.11.007.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Poormoghim H, Rezaei N, Sheidaie Z, Almasi AR, Moradi-Lakeh M, Almasi S, et al. Systemic sclerosis: comparison of efficacy of oral cyclophosphamide and azathioprine on skin score and pulmonary involvement-a retrospective study. Rheumatol Int. 2014;34(12):1691–9.  https://doi.org/10.1007/s00296-014-3026-y.CrossRefPubMedGoogle Scholar
  33. 33.
    Paone C, Chiarolanza I, Cuomo G, Ruocco L, Vettori S, Menegozzo M, et al. Twelve-month azathioprine as maintenance therapy in early diffuse systemic sclerosis patients treated for 1-year with low dose cyclophosphamide pulse therapy. Clin Exp Rheumatol. 2007;25(4):613–6.PubMedGoogle Scholar
  34. 34.
    Nadashkevich O, Davis P, Fritzler M, Kovalenko W. A randomized unblinded trial of cyclophosphamide versus azathioprine in the treatment of systemic sclerosis. Clin Rheumatol. 2006;25(2):205–12.  https://doi.org/10.1007/s10067-005-1157-y.CrossRefPubMedGoogle Scholar
  35. 35.
    Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit. 1995;17(6):584–91.  https://doi.org/10.1097/00007691-199512000-00007.CrossRefPubMedGoogle Scholar
  36. 36.
    Azzi JR, Sayegh MH, Mallat SG. Calcineurin inhibitors: 40 years later, can’t live without…. J Immunol. 2013;191(12):5785.  https://doi.org/10.4049/jimmunol.1390055.CrossRefPubMedGoogle Scholar
  37. 37.
    Jain S, Bicknell GR, Nicholson ML. Tacrolimus has less fibrogenic potential than cyclosporin A in a model of renal ischaemia-reperfusion injury. Br J Surg. 2000;87(11):1563–8.  https://doi.org/10.1046/j.1365-2168.2000.01576.x.CrossRefPubMedGoogle Scholar
  38. 38.
    Oddis CV, Sciurba FC, Elmagd KA, Starzl TE. Tacrolimus in refractory poly myositis with interstitial lung disease. Lancet. 1999;353(9166):1762–3.  https://doi.org/10.1016/S0140-6736(99)01927-3.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Witt LJ, Demchuk C, Curran JJ, Strek ME. Benefit of adjunctive tacrolimus in connective tissue disease-interstitial lung disease. Pulm Pharmacol Ther. 2016;36:46–52.  https://doi.org/10.1016/j.pupt.2015.12.004.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shimojima Y, Ishii W, Matsuda M, Kishida D, Ikeda SI. Effective use of calcineurin inhibitor in combination therapy for interstitial lung disease in patients with dermatomyositis and polymyositis. J Clin Rheumatol. 2017;23(2):87–93.  https://doi.org/10.1097/rhu.0000000000000487.CrossRefPubMedGoogle Scholar
  41. 41.
    Kurita T, Yasuda S, Amengual O, Atsumi T. The efficacy of calcineurin inhibitors for the treatment of interstitial lung disease associated with polymyositis/dermatomyositis. Lupus. 2015;24(1):3–9.  https://doi.org/10.1177/0961203314554849.CrossRefPubMedGoogle Scholar
  42. 42.
    Wilkes MR, Sereika SM, Fertig N, Lucas MR, Oddis CV. Treatment of antisynthetase-associated interstitial lung disease with tacrolimus. Arthritis Rheum. 2005;52(8):2439–46.  https://doi.org/10.1002/art.21240.CrossRefPubMedGoogle Scholar
  43. 43.
    Kurita T, Yasuda S, Oba K, Odani T, Kono M, Otomo K, et al. The efficacy of tacrolimus in patients with interstitial lung diseases complicated with polymyositis or dermatomyositis. Rheumatology. 2015;54(1):39–44.  https://doi.org/10.1093/rheumatology/keu166.CrossRefPubMedGoogle Scholar
  44. 44.
    Perosa F, Prete M, Racanelli V, Dammacco F. CD20-depleting therapy in autoimmune diseases: from basic research to the clinic. J Intern Med. 2010;267(3):260–77.  https://doi.org/10.1111/j.1365-2796.2009.02207.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Daoussis D, Melissaropoulos K, Sakellaropoulos G, Antonopoulos I, Markatseli TE, Simopoulou T, et al. A multicenter, open-label, comparative study of B-cell depletion therapy with Rituximab for systemic sclerosis-associated interstitial lung disease. Semin Arthritis Rheum. 2017;46(5):625–31.  https://doi.org/10.1016/j.semarthrit.2016.10.003.CrossRefPubMedGoogle Scholar
  46. 46.
    Jordan S, Distler JHW, Maurer B, Huscher D, van Laar JM, Allanore Y, et al. Effects and safety of rituximab in systemic sclerosis: an analysis from the European Scleroderma Trial and Research (EUSTAR) group. Ann Rheum Dis. 2015;74(6):1188–94.  https://doi.org/10.1136/annrheumdis-2013-204522.CrossRefPubMedGoogle Scholar
  47. 47.
    Andersson H, Sem M, Lund MB, Aalokken TM, Gunther A, Walle-Hansen R, et al. Long-term experience with rituximab in anti-synthetase syndrome-related interstitial lung disease. Rheumatology (Oxford). 2015;54(8):1420–8.  https://doi.org/10.1093/rheumatology/kev004.CrossRefGoogle Scholar
  48. 48.
    Chartrand S, Swigris JJ, Peykova L, Fischer A. Rituximab for the treatment of connective tissue disease-associated interstitial lung disease. Sarcoidosis Vasculitis Diffuse Lung Dis. 2016;32(4):296–304.Google Scholar
  49. 49.
    Lafyatis R, Kissin E, York M, Farina G, Viger K, Fritzler MJ, et al. B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 2009;60(2):578–83.  https://doi.org/10.1002/art.24249.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fitzgerald DB, Moloney F, Twomey M, O’Connell JO, Cronin O, Harty L, et al. Efficacy and safety of rituximab in connective tissue disease related interstitial lung disease. Sarcoidosis Vasculitis Diffuse Lung Dis. 2015;32(3):215–21.Google Scholar
  51. 51.
    Giuggioli D, Lumetti F, Colaci M, Fallahi P, Antonelli A, Ferri C. Rituximab in the treatment of patients with systemic sclerosis. Our experience and review of the literature. Autoimmun Rev. 2015;14(11):1072–8.  https://doi.org/10.1016/j.autrev.2015.07.008.CrossRefPubMedGoogle Scholar
  52. 52.
    Keir GJ, Maher TM, Ming D, Abdullah R, Lauretis A, Wickremasinghe M, et al. Rituximab in severe, treatment-refractory interstitial lung disease. Respirology (Carlton, Vic). 2014;19(3):353–9.  https://doi.org/10.1111/resp.12214.CrossRefGoogle Scholar
  53. 53.
    Lioté H, Lioté F, Séroussi B, Mayaud C, Cadranel J. Rituximab-induced lung disease: a systematic literature review. Eur Respir J. 2010;35(3):681.  https://doi.org/10.1183/09031936.00080209.CrossRefPubMedGoogle Scholar
  54. 54.
    Matteson E, Bongartz T, Ryu JH, Crowson CS, Hartman TE, Dellaripa PF. Open-label, pilot study of the safety and clinical effects of rituximab in patients with rheumatoid arthritis-associated interstitial pneumonia. Open J Rheumatol Autoimmune Dis. 2012;2(3):53–8.  https://doi.org/10.4236/ojra.2012.23011.CrossRefGoogle Scholar
  55. 55.
    McQueen FM, Solanki K. Rituximab in diffuse cutaneous systemic sclerosis: should we be using it today? Rheumatology. 2015;54(5):757–67.  https://doi.org/10.1093/rheumatology/keu463.CrossRefPubMedGoogle Scholar
  56. 56.
    Md Yusof MY, Kabia A, Darby M, Lettieri G, Beirne P, Vital EM, et al. Effect of rituximab on the progression of rheumatoid arthritis-related interstitial lung disease: 10 years’ experience at a single centre. Rheumatology (Oxford, England). 2017;56(8):1348–57.  https://doi.org/10.1093/rheumatology/kex072.CrossRefGoogle Scholar
  57. 57.
    Smith V, Van Praet JT, Vandooren B, Van der Cruyssen B, Naeyaert J-M, Decuman S, et al. Rituximab in diffuse cutaneous systemic sclerosis: an open-label clinical and histopathological study. Ann Rheum Dis. 2010;69(01):193–7.  https://doi.org/10.1136/ard.2008.095463.CrossRefPubMedGoogle Scholar
  58. 58.
    Sharp C, McCabe M, Dodds N, Edey A, Mayers L, Adamali H, et al. Rituximab in autoimmune connective tissue disease–associated interstitial lung disease. Rheumatology. 2016;55(7):1318–24.  https://doi.org/10.1093/rheumatology/kew195.CrossRefPubMedGoogle Scholar
  59. 59.
    Bosello SL, De Luca G, Rucco M, Berardi G, Falcione M, Danza FM, et al. Long-term efficacy of B cell depletion therapy on lung and skin involvement in diffuse systemic sclerosis. Semin Arthritis Rheum. 2015;44(4):428–36.  https://doi.org/10.1016/j.semarthrit.2014.09.002.CrossRefPubMedGoogle Scholar
  60. 60.
    Boonstra M, Meijs J, Dorjee AL, Marsan NA, Schouffoer A, Ninaber MK, et al. Rituximab in early systemic sclerosis. RMD Open. 2017;3(2):e000384.  https://doi.org/10.1136/rmdopen-2016-000384.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Doyle TJ, Dhillon N, Madan R, Cabral F, Fletcher EA, Koontz DC, et al. Rituximab in the treatment of interstitial lung disease associated with antisynthetase syndrome: a multicenter retrospective case review. J Rheumatol. 2018;45(6):841–50.  https://doi.org/10.3899/jrheum.170541.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Saunders P, Tsipouri V, Keir GJ, Ashby D, Flather MD, Parfrey H, et al. Rituximab versus cyclophosphamide for the treatment of connective tissue disease-associated interstitial lung disease (RECITAL): study protocol for a randomised controlled trial. Trials. 2017;18(1):275.  https://doi.org/10.1186/s13063-017-2016-2.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fischer A, Antoniou KM, Brown KK, Cadranel J, Corte TJ, du Bois RM, et al. An official European Respiratory Society/American Thoracic Society research statement: interstitial pneumonia with autoimmune features. Eur Respir J. 2015;46(4):976–87.  https://doi.org/10.1183/13993003.00150-2015.CrossRefPubMedGoogle Scholar
  64. 64.
    Rubbert-Roth A, Furst DE, Nebesky JM, Jin A, Berber E. A review of recent advances using tocilizumab in the treatment of rheumatic diseases. Rheumatol Ther. 2018;5(1):21–42.  https://doi.org/10.1007/s40744-018-0102-x.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Khanna D, Denton CP, Lin CJ, van Laar JM, Frech TM, Anderson ME, et al. Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial (faSScinate). Ann Rheum Dis. 2017;77(2):212–20.  https://doi.org/10.1136/annrheumdis-2017-211682.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Khanna D, Lin CJF, Kuwana M, Allanore Y, Batalov A, Butrimiene I, et al. Efficacy and safety of tocilizumab for the treatment of systemic sclerosis: results from a phase 3 randomized controlled trial. 2018 ACR/ARHP Annual Meeting. Chicago: Arthritis and Rheumatology; 2018.Google Scholar
  67. 67.
    Khanna D, Lin CJF, Goldin J, Kim G, Kuwana M, Allanore Y et al., editors. Preservation of lung function observed in a phase 3 randomized controlled trial of tocilizumab for the treatment of early systemic sclerosis. American Thoracic Society International Congress; 2019. American Journal of Respiratory and Critical Care Medicine.Google Scholar
  68. 68.
    Smolen JS, Landewe R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76(6):960–77.  https://doi.org/10.1136/annrheumdis-2016-210715.CrossRefPubMedGoogle Scholar
  69. 69.
    Singh JA, Saag KG, Bridges SL Jr, Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016;68(1):1–26.  https://doi.org/10.1002/art.39480.CrossRefPubMedGoogle Scholar
  70. 70.
    Picchianti Diamanti A, Markovic M, Argento G, Giovagnoli S, Ricci A, Lagana B, et al. Therapeutic management of patients with rheumatoid arthritis and associated interstitial lung disease: case report and literature review. Ther Adv Respir Dis. 2017;11(1):64–72.  https://doi.org/10.1177/1753465816668780.CrossRefPubMedGoogle Scholar
  71. 71.
    Manfredi A, Sebastiani M, Cassone G, Colaci M, Sandri G, Ferri C. Tocilizumab for the treatment of patients with rheumatoid arthritis and interstitial lung diseases: a case series. Clin Exp Rheumatol. 2018;36(2):342.PubMedGoogle Scholar
  72. 72.
    Fernández-Díaz C, Narvaez-García J, Martín-Lόpez M, Rubio-Muñoz P, Castañeda-Sanz S, Vegas-Revenga N, et al. THU0134 Interstitial lung disease and rheumatoid arthritis. Multicenter study with tocilizumab. Ann Rheum Dis. 2017;76(Suppl 2):251–2.  https://doi.org/10.1136/annrheumdis-2017-eular.3580.CrossRefGoogle Scholar
  73. 73.
    Mohr M, Jacobi AM. Interstitial lung disease in rheumatoid arthritis: response to IL-6R blockade. Scand J Rheumatol. 2011;40(5):400–1.  https://doi.org/10.3109/03009742.2011.599072.CrossRefPubMedGoogle Scholar
  74. 74.
    Wendling D, Vidon C, Godfrin-Valnet M, Rival G, Guillot X, Prati C. Exacerbation of combined pulmonary fibrosis and emphysema syndrome during tocilizumab therapy for rheumatoid arthritis. Joint Bone Spine. 2013;80(6):670–1.  https://doi.org/10.1016/j.jbspin.2013.03.009.CrossRefPubMedGoogle Scholar
  75. 75.
    Kawashiri SY, Kawakami A, Sakamoto N, Ishimatsu Y, Eguchi K. A fatal case of acute exacerbation of interstitial lung disease in a patient with rheumatoid arthritis during treatment with tocilizumab. Rheumatol Int. 2012;32(12):4023–6.  https://doi.org/10.1007/s00296-010-1525-z.CrossRefPubMedGoogle Scholar
  76. 76.
    Ikegawa K, Hanaoka M, Ushiki A, Yamamoto H, Kubo K. A case of organizing pneumonia induced by tocilizumab. Intern Med (Tokyo, Japan). 2011;50(19):2191–3.CrossRefGoogle Scholar
  77. 77.
    Kremer JM, Genant HK, Moreland LW, Russell AS, Emery P, Abud-Mendoza C, et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Effects of rheumatoid arthritis treatment with abatacept. Ann Intern Med. 2006;144(12):865–76.  https://doi.org/10.7326/0003-4819-144-12-200606200-00003.CrossRefPubMedGoogle Scholar
  78. 78.
    Orencia: EPAR—product information. 25 ed2017.Google Scholar
  79. 79.
    Australian product information Orencia (Abatacept); 2018. http://www.medicines.org.au/product.cfm?type=cmi&handle=bqcorenc. Accessed 28 Jan 2018.
  80. 80.
    Drug approval package Orencia (Abatacept) injectable (IV). In: Administration UFaD, editor. Web2013.Google Scholar
  81. 81.
    Sato S, Fujimoto M, Hasegawa M, Komura K, Yanaba K, Hayakawa I, et al. Serum soluble CTLA-4 levels are increased in diffuse cutaneous systemic sclerosis. Rheumatology (Oxford). 2004;43(10):1261–6.  https://doi.org/10.1093/rheumatology/keh303.CrossRefGoogle Scholar
  82. 82.
    Saverino D, Simone R, Bagnasco M, Pesce G. The soluble CTLA-4 receptor and its role in autoimmune diseases: an update. Autoimmun Highlights. 2010;1(2):73–81.  https://doi.org/10.1007/s13317-010-0011-7.CrossRefGoogle Scholar
  83. 83.
    Elhai M, Meunier M, Matucci-Cerinic M, Maurer B, Riemekasten G, Leturcq T, et al. Outcomes of patients with systemic sclerosis-associated polyarthritis and myopathy treated with tocilizumab or abatacept: a EUSTAR observational study. Ann Rheum Dis. 2013;72(7):1217–20.  https://doi.org/10.1136/annrheumdis-2012-202657.CrossRefPubMedGoogle Scholar
  84. 84.
    Mera-Varela A, Perez-Pampin E. Abatacept therapy in rheumatoid arthritis with interstitial lung disease. J Clin Rheumatol. 2014;20(8):445–6.  https://doi.org/10.1097/rhu.0000000000000084.CrossRefPubMedGoogle Scholar
  85. 85.
    Mochizuki T, Ikari K, Yano K, Sato M, Okazaki K. Long-term deterioration of interstitial lung disease in patients with rheumatoid arthritis treated with abatacept. Mod Rheumatol. 2018.  https://doi.org/10.1080/14397595.2018.1481566.CrossRefPubMedGoogle Scholar
  86. 86.
    George N, Makhoul S. Abatacept related organising pneumonia in a patient with rheumatoid arthritis [abstract]. American Thoracic Society International Conference; 17/05/2015; Denver. American Journal of Respiratory and Critical Care Medicine; 2015.Google Scholar
  87. 87.
    Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med. 2015;192(2):e3–19.  https://doi.org/10.1164/rccm.201506-1063st.
  88. 88.
    Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377(9779):1760–9.  https://doi.org/10.1016/s0140-6736(11)60405-4.CrossRefPubMedGoogle Scholar
  89. 89.
    Oku H, Shimizu T, Kawabata T, Nagira M, Hikita I, Ueyama A, et al. Antifibrotic action of pirfenidone and prednisolone: different effects on pulmonary cytokines and growth factors in bleomycin-induced murine pulmonary fibrosis. Eur J Pharmacol. 2008;590(1–3):400–8.  https://doi.org/10.1016/j.ejphar.2008.06.046.CrossRefPubMedGoogle Scholar
  90. 90.
    Khanna D, Albera C, Fischer A, Khalidi N, Raghu G, Chung L, et al. An open-label, phase ii study of the safety and tolerability of pirfenidone in patients with scleroderma-associated interstitial lung disease: the LOTUSS Trial. J Rheumatol. 2016;43(9):1672–9.  https://doi.org/10.3899/jrheum.151322.CrossRefPubMedGoogle Scholar
  91. 91.
    Li T, Guo L, Chen Z, Gu L, Sun F, Tan X, et al. Pirfenidone in patients with rapidly progressive interstitial lung disease associated with clinically amyopathic dermatomyositis. Sci Rep. 2016;6:33226.  https://doi.org/10.1038/srep33226.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Jee A, Adelstein S, Bleasel J, Keir G, Nguyen M, Sahhar J, et al. Role of autoantibodies in the diagnosis of connective-tissue disease ILD (CTD-ILD) and interstitial pneumonia with autoimmune features (IPAF). J Clin Med. 2017;6(5):51.CrossRefPubMedCentralGoogle Scholar
  93. 93.
    Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45(5):1434–45.  https://doi.org/10.1183/09031936.00174914.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Distler O, Brown KK, Distler JHW, Assassi S, Maher TM, Cottin V, et al. Design of a randomised, placebo-controlled clinical trial of nintedanib in patients with systemic sclerosis-associated interstitial lung disease (SENSCIS). Clin Exp Rheumatol. 2017;106(4):75–81.Google Scholar
  95. 95.
    Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, et al. Nintedanib for systemic sclerosis–associated interstitial lung disease. N Engl J Med. 2019.  https://doi.org/10.1056/nejmoa1903076.CrossRefPubMedGoogle Scholar
  96. 96.
    Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82.  https://doi.org/10.1056/NEJMoa1402584.CrossRefPubMedGoogle Scholar
  97. 97.
    Flaherty KR, Brown KK, Wells AU, Clerisme-Beaty E, Collard HR, Cottin V, et al. Design of the PF-ILD trial: a double-blind, randomised, placebo-controlled phase III trial of nintedanib in patients with progressive fibrosing interstitial lung disease. BMJ Open Respir Res. 2017;4(1):e000212.  https://doi.org/10.1136/bmjresp-2017-000212.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Khanna D, Saggar R, Mayes MD, Abtin F, Clements PJ, Maranian P, et al. A one-year, phase I/IIa, open-label pilot trial of imatinib mesylate in the treatment of systemic sclerosis-associated active interstitial lung disease. Arthritis Rheum. 2011;63(11):3540–6.  https://doi.org/10.1002/art.30548.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Fraticelli P, Gabrielli B, Pomponio G, Valentini G, Bosello S, Riboldi P, et al. Low-dose oral imatinib in the treatment of systemic sclerosis interstitial lung disease unresponsive to cyclophosphamide: a phase II pilot study. Arthritis Res Ther. 2014;16(4):R144.  https://doi.org/10.1186/ar4606.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Spiera RF, Gordon JK, Mersten JN, Magro CM, Mehta M, Wildman HF, et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann Rheum Dis. 2011;70(6):1003.  https://doi.org/10.1136/ard.2010.143974.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Gordon J, Udeh U, Doobay K, Magro C, Wildman H, Davids M, et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 24-month open label, extension phase, single-centre trial. Clin Exp Rheumatol. 2014;32(6 Suppl 86):S-189–93.PubMedGoogle Scholar
  102. 102.
    Prey S, Ezzedine K, Doussau A, Grandoulier AS, Barcat D, Chatelus E, et al. Imatinib mesylate in scleroderma-associated diffuse skin fibrosis: a phase II multicentre randomized double-blinded controlled trial. Br J Dermatol. 2012;167(5):1138–44.  https://doi.org/10.1111/j.1365-2133.2012.11186.x.CrossRefPubMedGoogle Scholar
  103. 103.
    Pellom ST Jr, Dudimah DF, Thounaojam MC, Sayers TJ, Shanker A. Modulatory effects of bortezomib on host immune cell functions. Immunotherapy. 2015;7(9):1011–22.  https://doi.org/10.2217/imt.15.66.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Mutlu GM, Budinger GRS, Wu M, Lam AP, Zirk A, Rivera S, et al. Proteasomal inhibition after injury prevents fibrosis by modulating TGF-β1 signalling. Thorax. 2012;67(2):139.  https://doi.org/10.1136/thoraxjnl-2011-200717.CrossRefPubMedGoogle Scholar
  105. 105.
    Ogawa Y, Tobinai K, Ogura M, Ando K, Tsuchiya T, Kobayashi Y, et al. Phase I and II pharmacokinetic and pharmacodynamic study of the proteasome inhibitor bortezomib in Japanese patients with relapsed or refractory multiple myeloma. Cancer Sci. 2008;99(1):140–4.  https://doi.org/10.1111/j.1349-7006.2007.00638.x.CrossRefPubMedGoogle Scholar
  106. 106.
    Miyakoshi S, Kami M, Yuji K, Matsumura T, Takatoku M, Sasaki M, et al. Severe pulmonary complications in Japanese patients after bortezomib treatment for refractory multiple myeloma. Blood. 2006;107(9):3492–4.  https://doi.org/10.1182/blood-2005-11-4541.CrossRefPubMedGoogle Scholar
  107. 107.
    Yoshizawa K, Mukai HY, Miyazawa M, Miyao M, Ogawa Y, Ohyashiki K, et al. Bortezomib therapy-related lung disease in Japanese patients with multiple myeloma: incidence, mortality and clinical characterization. Cancer Sci. 2014;105(2):195–201.  https://doi.org/10.1111/cas.12335.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Narimatsu H, Hori A, Matsumura T, Kodama Y, Takita M, Kishi Y, et al. Cooperative relationship between pharmaceutical companies, academia, and media explains sharp decrease in frequency of pulmonary complications after bortezomib in Japan. J Clin Oncol. 2008;26(35):5820–3.  https://doi.org/10.1200/jco.2008.20.3307.CrossRefPubMedGoogle Scholar
  109. 109.
    Kang W, Kim JS, Cho SH, Kim SK, Chang J, Park MS. Nonspecific interstitial pneumonitis after bortezomib and thalidomide treatment in a multiple myeloma patient. Yonsei Med J. 2010;51(3):448–50.  https://doi.org/10.3349/ymj.2010.51.3.448.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Li J, Chen S, Hu Y, Cai J. Bortezomib-induced severe pulmonary complications in multiple myeloma: a case report and literature review. Oncol Lett. 2016;11(3):2255–60.  https://doi.org/10.3892/ol.2016.4204.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Hernandez-Rodriguez NA, Cambrey AD, Harrison NK, Chambers RC, Gray AJ, Southcott AM, et al. Role of thrombin in pulmonary fibrosis. Lancet. 1995;346(8982):1071–3.CrossRefPubMedGoogle Scholar
  112. 112.
    Chambers RC. Procoagulant signalling mechanisms in lung inflammation and fibrosis: novel opportunities for pharmacological intervention? Br J Pharmacol. 2008;153(Suppl 1):S367–78.  https://doi.org/10.1038/sj.bjp.0707603.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Bogatkevich GS, Ludwicka-Bradley A, Silver RM. Dabigatran, a direct thrombin inhibitor, demonstrates antifibrotic effects on lung fibroblasts. Arthritis Rheum. 2009;60(11):3455–64.  https://doi.org/10.1002/art.24935.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Bogatkevich GS, Ludwicka-Bradley A, Nietert PJ, Akter T, van Ryn J, Silver RM. Antiinflammatory and antifibrotic effects of the oral direct thrombin inhibitor dabigatran etexilate in a murine model of interstitial lung disease. Arthritis Rheum. 2011;63(5):1416–25.  https://doi.org/10.1002/art.30255.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Howell DC, Goldsack NR, Marshall RP, McAnulty RJ, Starke R, Purdy G, et al. Direct thrombin inhibition reduces lung collagen, accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. Am J Pathol. 2001;159(4):1383–95.  https://doi.org/10.1016/s0002-9440(10)62525-4.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Silver RM, Atanelishvili I, Akter T, Kajdasz K, Wilson D, Nieter P et al. Safety and suitability of a direct thrombin inhibitor, Dabigatran eteilate, in scleroderma-associated interstitial lung disease (SSc-ILD) patients. American thoracic society international congress; 20/05/2018; San Diego. American Journal of Respiratory and Critical Care Medicine; 2018.Google Scholar
  117. 117.
    Noth I, Anstrom KJ, Calvert SB, de Andrade J, Flaherty KR, Glazer C, et al. A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186(1):88–95.  https://doi.org/10.1164/rccm.201202-0314OC.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Ludwicka A, Ohba T, Trojanowska M, Yamakage A, Strange C, Smith EA, et al. Elevated levels of platelet derived growth factor and transforming growth factor-beta 1 in bronchoalveolar lavage fluid from patients with scleroderma. J Rheumatol. 1995;22(10):1876–83.PubMedGoogle Scholar
  119. 119.
    Horan GS, Wood S, Ona V, Li DJ, Lukashev ME, Weinreb PH, et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med. 2008;177(1):56–65.  https://doi.org/10.1164/rccm.200706-805OC.CrossRefPubMedGoogle Scholar
  120. 120.
    Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96(3):319–28.CrossRefGoogle Scholar
  121. 121.
    Hsu V, Denton C, Domsic R, Furst D, Rischmueller M, Stanislav M, et al. Pomalidomide in patients with interstitial lung disease due to systemic sclerosis: a phase II, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. J Rheumatol. 2018;45(3):405–10.  https://doi.org/10.3899/jrheum.161040.CrossRefPubMedGoogle Scholar
  122. 122.
    Kowal-Bielecka O, Fransen J, Avouac J, Becker M, Kulak A, Allanore Y, et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis. 2017;76(8):1327.  https://doi.org/10.1136/annrheumdis-2016-209909.CrossRefPubMedGoogle Scholar
  123. 123.
    van Laar JM, Farge D, Sont JK, Naraghi K, Marjanovic Z, Larghero J, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA. 2014;311(24):2490–8.  https://doi.org/10.1001/jama.2014.6368.CrossRefPubMedGoogle Scholar
  124. 124.
    Burt RK, Shah SJ, Dill K, Grant T, Gheorghiade M, Schroeder J, et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet. 2011;378(9790):498–506.  https://doi.org/10.1016/s0140-6736(11)60982-3.CrossRefPubMedGoogle Scholar
  125. 125.
    Sullivan KM, Goldmuntz EA, Keyes-Elstein L, McSweeney PA, Pinckney A, Welch B, et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med. 2018;378(1):35–47.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Sullivan KM, Shah A, Sarantopoulos S, Furst DE. Review: Hematopoietic stem cell transplantation for scleroderma: effective immunomodulatory therapy for patients with pulmonary involvement. Arthritis Rheumatol. 2016;68(10):2361–71.  https://doi.org/10.1002/art.39748.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Skeoch S, Weatherley N, Swift AJ, Oldroyd A, Johns C, Hayton C, et al. Drug-induced interstitial lung disease: a systematic review. J Clin Med. 2018;7(10):E356.  https://doi.org/10.3390/jcm7100356.CrossRefPubMedGoogle Scholar
  128. 128.
    Camus P, Bonniaud P, Camus C, Foucher P, Jacquet L. Pneumotox—an updated time-saving web resource. Eur Respir J. 2013;42(Suppl 57):5043.Google Scholar
  129. 129.
    Camus P. Pneumotox: The drug-induced respiratory disease website; 2019. http://www.pneumotox.com. Accessed 01 June 2019.
  130. 130.
    Chen J, Chi S, Li F, Yang J, Cho WC, Liu X. Biologics-induced interstitial lung diseases in rheumatic patients: facts and controversies. Routledge: Taylor and Francis; 2017. p. 265–83.Google Scholar
  131. 131.
    Conway R, Low C, Coughlan RJ, O’Donnell MJ, Carey JJ. Methotrexate and lung disease in rheumatoid arthritis: a meta-analysis of randomized controlled trials. Arthritis Rheumatol. 2014;66(4):803–12.  https://doi.org/10.1002/art.38322.CrossRefPubMedGoogle Scholar
  132. 132.
    Rojas-Serrano J, Herrera-Bringas D, Pérez-Román D, Pérez-Dorame R, Mateos-Toledo H, Mejía M. Rheumatoid arthritis-related interstitial lung disease (RA-ILD): methotrexate and the severity of lung disease are associated to prognosis. Clin Rheumatol. 2017;36(7):1493–500.  https://doi.org/10.1007/s10067-017-3707-5.CrossRefPubMedGoogle Scholar
  133. 133.
    Bongartz T, Nannini C, Medina-Velasquez YF, Achenbach SJ, Crowson CS, Ryu JH, et al. Incidence and mortality of interstitial lung disease in rheumatoid arthritis: a population-based study. Arthritis Rheum. 2010;62(6):1583–91.  https://doi.org/10.1002/art.27405.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Suissa S, Hudson M, Ernst P. Leflunomide use and the risk of interstitial lung disease in rheumatoid arthritis. Arthritis Rheum. 2006;54(5):1435–9.  https://doi.org/10.1002/art.21806.CrossRefPubMedGoogle Scholar
  135. 135.
    Curtis JR, Sarsour K, Napalkov P, Costa LA, Schulman KL. Incidence and complications of interstitial lung disease in users of tocilizumab, rituximab, abatacept and anti-tumor necrosis factor [alpha] agents, a retrospective cohort study (Report). Arthritis Res Ther. 2015;17:319.  https://doi.org/10.1186/s13075-015-0835-7.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Hallowell R, Horton M. Interstitial lung disease in patients with rheumatoid arthritis: spontaneous and drug induced. Drugs. 2014;74(4):443–50.  https://doi.org/10.1007/s40265-014-0190-z.CrossRefPubMedGoogle Scholar
  137. 137.
    Koo BS, Hong S, Kim YJ, Kim Y-G, Lee C-K, Yoo B. Mortality in patients with rheumatoid arthritis-associated interstitial lung disease treated with an anti-tumor necrosis factor agent. Korean J Intern Med. 2015;30(1):104–9.  https://doi.org/10.3904/kjim.2015.30.1.104.CrossRefPubMedGoogle Scholar
  138. 138.
    Horai Y, Miyamura T, Shimada K, Takahama S, Minami R, Yamamoto M, et al. Eternacept for the treatment of patients with rheumatoid arthritis and concurrent interstitial lung disease. J Clin Pharm Ther. 2012;37(1):117–21.  https://doi.org/10.1111/j.1365-2710.2010.01234.x.CrossRefPubMedGoogle Scholar
  139. 139.
    Dixon WG, Hyrich KL, Watson KD, Lunt M, Symmons DP. Influence of anti-TNF therapy on mortality in patients with rheumatoid arthritis-associated interstitial lung disease: results from the British Society for Rheumatology Biologics Register. Ann Rheum Dis. 2010;69(6):1086–91.  https://doi.org/10.1136/ard.2009.120626.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Hagiwara K, Sato T, Takagi-Kobayashi S, Hasegawa S, Shigihara N, Akiyama O. Acute exacerbation of preexisting interstitial lung disease after administration of etanercept for rheumatoid arthritis. J Rheumatol. 2007;34(5):1151–4.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalSydneyAustralia
  2. 2.Central Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia

Personalised recommendations