Advertisement

Drugs

, Volume 79, Issue 4, pp 401–415 | Cite as

Engineering for Success: Approaches to Improve Chimeric Antigen Receptor T Cell Therapy for Solid Tumors

  • Melinda Mata
  • Stephen GottschalkEmail author
Review Article
Part of the following topical collections:
  1. Topical Collection on Immuno-Oncology

Abstract

While impressive clinical responses have been observed using chimeric antigen receptor (CAR) T cells targeting CD19+ hematologic malignancies, limited clinical benefit has been observed using CAR T cells for a variety of solid tumors. Results of clinical studies have highlighted several obstacles which CAR T cells face in the context of solid tumors, including insufficient homing to tumor sites, lack of expansion and persistence, encountering a highly immunosuppressive tumor microenvironment, and heterogeneous antigen expression. In this review, we review clinical outcomes and discuss strategies to improve the antitumor activity of CAR T cells for solid tumors.

Notes

Compliance with Ethical Standards

Funding

The authors were supported by US National Institutes of Health (NIH) 1R01CA173750 and 1R01NS106379-01A1, and Cancer Prevention and Research Institute of Texas (CPRIT) grant RP101335.

Conflict of Interest

Melinda Mata has no conflict of interest; she is currently an employee of Immatics US, Inc. Stephen Gottschalk has patents and patent applications in the field of T cell therapy and gene therapy for cancer, is a consultant of ViraCyte, LLC, a member of the data safety monitoring board of Immatics US, Inc., and received research funding from Tessa Therapeutics LTD.

References

  1. 1.
    Sadelain M. Chimeric antigen receptors: driving immunology towards synthetic biology. Curr Opin Immunol. 2016;41:68–76.  https://doi.org/10.1016/j.coi.2016.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Maus MV, June CH. Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res. 2016;22(8):1875–84.  https://doi.org/10.1158/1078-0432.CCR-15-1433.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15.  https://doi.org/10.1016/j.coi.2015.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257(1):107–26.  https://doi.org/10.1111/imr.12131.CrossRefPubMedGoogle Scholar
  5. 5.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.  https://doi.org/10.1056/NEJMoa1103849.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.  https://doi.org/10.1056/NEJMoa1215134.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.  https://doi.org/10.1056/NEJMoa1407222.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139.  https://doi.org/10.1126/scitranslmed.aac5415.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.  https://doi.org/10.1056/NEJMoa1709866.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.  https://doi.org/10.1056/NEJMoa1709919.CrossRefPubMedGoogle Scholar
  11. 11.
    Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129(25):3322–31.  https://doi.org/10.1182/blood-2017-02-769208.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Susanibar Adaniya SP, Cohen AD, Garfall AL. CAR T cell immunotherapy for Multiple Myeloma A review of current data and potential clinical applications. Am J Hematol. 2019.  https://doi.org/10.1002/ajh.25428 (Epub 2019 Feb 7).CrossRefPubMedGoogle Scholar
  13. 13.
    Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86(24):10024–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90(2):720–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res. 2004;64(24):9160–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Pameijer CR, Navanjo A, Meechoovet B, Wagner JR, Aguilar B, Wright CL, et al. Conversion of a tumor-binding peptide identified by phage display to a functional chimeric T cell antigen receptor. Cancer Gene Ther. 2007;14(1):91–7.  https://doi.org/10.1038/sj.cgt.7700993.CrossRefPubMedGoogle Scholar
  17. 17.
    Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res. 2015;3(2):125–35.  https://doi.org/10.1158/2326-6066.CIR-14-0127.CrossRefPubMedGoogle Scholar
  18. 18.
    Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006;12(20 Pt 1):6106–15.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15(4):825–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Guedan S, Chen X, Madar A, Carpenito C, McGettigan SE, Frigault MJ, et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood. 2014;124(7):1070–80.  https://doi.org/10.1182/blood-2013-10-535245.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guedan S, Posey Jr AD, Shaw C, Wing A, Da T, Patel PR, et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight. Epub 2018 Jan 11.  https://doi.org/10.1172/jci.insight.96976.
  22. 22.
    Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822–6.  https://doi.org/10.1172/JCI46110.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature Med. 2015;21(6):581–90.  https://doi.org/10.1038/nm.3838.CrossRefPubMedGoogle Scholar
  24. 24.
    Kawalekar OU, O’Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD Jr, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44(2):380–90.  https://doi.org/10.1016/j.immuni.2016.01.021.CrossRefPubMedGoogle Scholar
  25. 25.
    Beatty GL, O’Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology. 2018;155(1):29–32.  https://doi.org/10.1053/j.gastro.2018.03.029.CrossRefPubMedGoogle Scholar
  26. 26.
    Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9.  https://doi.org/10.1056/NEJMoa1610497.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9(399):eaaa0984.  https://doi.org/10.1126/scitranslmed.aaa0984.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Heczey A, Louis CU, Savoldo B, Dakhova O, Durett A, Grilley B, et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther. 2017;25(9):2214–24.  https://doi.org/10.1016/j.ymthe.2017.05.012.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stephan MT, Ponomarev V, Brentjens RJ, Chang AH, Dobrenkov KV, Heller G, et al. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat Med. 2007;13(12):1440–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao Z, Condomines M, van der Stegen SJC, Perna F, Kloss CC, Gunset G, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell. 2015;28(4):415–28.  https://doi.org/10.1016/j.ccell.2015.09.004.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Milone MC, Bhoj VG. The pharmacology of T cell therapies. Mol Ther Methods Clin Dev. 2018;8:210–21.  https://doi.org/10.1016/j.omtm.2018.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563–71.  https://doi.org/10.1038/s41591-018-0010-1.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mueller KT, Waldron E, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, et al. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. Clin Cancer Res. 2018;24(24):6175–84.  https://doi.org/10.1158/1078-0432.CCR-18-0758.CrossRefPubMedGoogle Scholar
  34. 34.
    Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med. 2012;4(132):132ra53.  https://doi.org/10.1126/scitranslmed.3003761.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130(21):2295–306.  https://doi.org/10.1182/blood-2017-06-793141.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118(1):294–305.CrossRefPubMedGoogle Scholar
  37. 37.
    Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 2005;26(2):111–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290–7.  https://doi.org/10.1038/nm.2446.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500.  https://doi.org/10.1038/leu.2015.247.CrossRefPubMedGoogle Scholar
  41. 41.
    Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016;8(355):355ra116.  https://doi.org/10.1126/scitranslmed.aaf8621.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang D, Aguilar B, Starr R, Alizadeh D, Brito A, Sarkissian A, et al. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight. Epub 2018 May 17.  https://doi.org/10.1172/jci.insight.99048.
  43. 43.
    Omer B, Castillo PA, Tashiro H, Shum T, Huynh MTA, Cardenas M, et al. Chimeric antigen receptor signaling domains differentially regulate proliferation and native T cell receptor function in virus-specific T cells. Front Med (Lausanne). 2018;5:343.  https://doi.org/10.3389/fmed.2018.00343.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14(11):1264–70.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6.  https://doi.org/10.1182/blood-2011-05-354449.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3(8):1094–101.  https://doi.org/10.1001/jamaoncol.2017.0184.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell. 2017;170(1):142-57.e19.  https://doi.org/10.1016/j.cell.2017.06.007.CrossRefGoogle Scholar
  48. 48.
    Abdelsamed HA, Zebley CC, Youngblood B. Epigenetic maintenance of acquired gene expression programs during memory CD8 T cell homeostasis. Front Immunol. 2018;9:6.  https://doi.org/10.3389/fimmu.2018.00006.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature. 2018;558(7709):307–12.  https://doi.org/10.1038/s41586-018-0178-z.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123(24):3750–9.  https://doi.org/10.1182/blood-2014-01-55217.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 2013;121(4):573–84.  https://doi.org/10.1182/blood-2012-05-431718.CrossRefPubMedGoogle Scholar
  52. 52.
    Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC, et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood. 2008;111(11):5326–33.  https://doi.org/10.1182/blood-2007-09-113050.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li Y, Bleakley M, Yee C. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol. 2005;175(4):2261–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Gattinoni L, Klebanoff CA, Restifo NP. Pharmacologic induction of CD8+ T cell memory: better living through chemistry. Sci Transl Med. 2009;1(11):11ps2.  https://doi.org/10.1126/scitranslmed.3000302.CrossRefGoogle Scholar
  55. 55.
    Muralidharan S, Hanley PJ, Liu E, Chakraborty R, Bollard C, Shpall E, et al. Activation of Wnt signaling arrests effector differentiation in human peripheral and cord blood-derived T lymphocytes. J Immunol. 2011;187(10):5221–32.  https://doi.org/10.4049/jimmunol.1101585.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32(1):67–78.  https://doi.org/10.1016/j.immuni.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM, Tamas P, et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity. 2011;34(2):224–36.  https://doi.org/10.1016/j.immuni.2011.01.012.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Das RK, Vernau L, Grupp SA, Barrett DM. Naive T cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers. Cancer Discov. Epub 2019 Jan 10.  https://doi.org/10.1158/2159-8290.CD-18-1314.
  59. 59.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850–4.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Louis CU, Straathof K, Bollard CM, Gerken C, Huls MH, Gresik MV, et al. Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Blood. 2009;113(11):2442–50.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Agarwal A, Shen LY, Kirk AD. The role of alemtuzumab in facilitating maintenance immunosuppression minimization following solid organ transplantation. Transpl Immunol. 2008;20(1–2):6–11.  https://doi.org/10.1016/j.trim.2008.09.003.CrossRefPubMedGoogle Scholar
  62. 62.
    Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017.  https://doi.org/10.1126/scitranslmed.aaj2013.CrossRefPubMedGoogle Scholar
  63. 63.
    Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8.  https://doi.org/10.4049/jimmunol.1490019.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol. 2015;33(1):74–82.  https://doi.org/10.1200/JCO.2014.57.3329.CrossRefPubMedGoogle Scholar
  65. 65.
    Lacy MQ, Jacobus S, Blood EA, Kay NE, Rajkumar SV, Greipp PR. Phase II study of interleukin-12 for treatment of plateau phase multiple myeloma (E1A96): a trial of the Eastern Cooperative Oncology Group. Leuk Res. 2009;33(11):1485–9.  https://doi.org/10.1016/j.leukres.2009.01.020.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cohen J. IL-12 deaths: explanation and a puzzle. Science. 1995;270(5238):908.CrossRefPubMedGoogle Scholar
  67. 67.
    Mueller K, Schweier O, Pircher H. Efficacy of IL-2- versus IL-15-stimulated CD8 T cells in adoptive immunotherapy. Eur J Immunol. 2008;38(10):2874–85.CrossRefPubMedGoogle Scholar
  68. 68.
    Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia. 2010;24(6):1160–70.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Krenciute G, Prinzing BL, Yi Z, Wu MF, Liu H, Dotti G, et al. Transgenic expression of IL15 improves antiglioma activity of IL13Ralpha2-CAR T cells but results in antigen loss variants. Cancer Immunol Res. 2017;5(7):571–81.  https://doi.org/10.1158/2326-6066.CIR-16-0376.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Chen Y, Sun C, Landoni E, Metelitsa LS, Dotti G, Savoldo B. Eradication of neuroblastoma by T cells redirected with an optimized GD2-specific chimeric antigen receptor and interleukin-15. Clin Cancer Res. 2019.  https://doi.org/10.1158/1078-0432.CCR-18-1811 (Epub 2019 Jan 7).CrossRefPubMedGoogle Scholar
  71. 71.
    Chmielewski M, Kopecky C, Hombach AA, Abken H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 2011;71(17):5697–706.  https://doi.org/10.1158/0008-5472.CAN-11-0103.CrossRefPubMedGoogle Scholar
  72. 72.
    Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP, et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res. 2012;18(6):1672–83.  https://doi.org/10.1158/1078-0432.CCR-11-3050.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME, Kassim SH, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res. 2015;21(10):2278–88.  https://doi.org/10.1158/1078-0432.CCR-14-2085.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Koneru M, Purdon TJ, Spriggs D, Koneru S, Brentjens RJ. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology. 2015;4(3):e994446.  https://doi.org/10.4161/2162402X.2014.994446.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hu B, Ren J, Luo Y, Keith B, Young RM, Scholler J, et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 2017;20(13):3025–33.  https://doi.org/10.1016/j.celrep.2017.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG, Cheung K, et al. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep. 2018;23(7):2130–41.  https://doi.org/10.1016/j.celrep.2018.04.051.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Chmielewski M, Abken H. CAR T cells releasing IL-18 convert to T-Bet(high) FoxO1(low) effectors that exhibit augmented activity against advanced solid tumors. Cell Rep. 2017;21(11):3205–19.  https://doi.org/10.1016/j.celrep.2017.11.063.CrossRefPubMedGoogle Scholar
  78. 78.
    Vera JF, Hoyos V, Savoldo B, Quintarelli C, Giordano Attianese GM, Leen AM, et al. Genetic manipulation of tumor-specific cytotoxic T lymphocytes to restore responsiveness to IL-7. Mol Ther. 2009;17(5):880–8.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Perna SK, Pagliara D, Mahendravada A, Liu H, Brenner MK, Savoldo B, et al. Interleukin-7 mediates selective expansion of tumor-redirected cytotoxic T lymphocytes (CTLs) without enhancement of regulatory T-cell inhibition. Clin Cancer Res. 2014;20(1):131–9.  https://doi.org/10.1158/1078-0432.CCR-13-1016.CrossRefPubMedGoogle Scholar
  80. 80.
    Shum T, Omer B, Tashiro H, Kruse RL, Wagner DL, Parikh K, et al. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov. 2017;7(11):1238–47.  https://doi.org/10.1158/2159-8290.CD-17-0538.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Markley JC, Sadelain M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood. 2010;115(17):3508–19.  https://doi.org/10.1182/blood-2009-09-241398.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21(11):2122–9.  https://doi.org/10.1038/mt.2013.154.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS. Chemokines in tumor progression and metastasis. Oncotarget. 2013;4(12):2171–85.  https://doi.org/10.18632/oncotarget.1426.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother. 2010;33(8):780–8.  https://doi.org/10.1097/cji.0b013e3181ee6675.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Moon EK, Carpenito C, Sun J, Wang LC, Kapoor V, Predina J, et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res. 2011;17(14):4719–30.  https://doi.org/10.1158/1078-0432.CCR-11-0351.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113(25):6392–402.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52.  https://doi.org/10.1146/annurev-med-062315-120245.CrossRefPubMedGoogle Scholar
  88. 88.
    Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I, Hoyos V, et al. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res. 2014;74(18):5195–205.  https://doi.org/10.1158/0008-5472.CAN-14-0697.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med. 2014;6(261):261ra151.  https://doi.org/10.1126/scitranslmed.3010162.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5(12):1282–95.  https://doi.org/10.1158/2159-8290.CD-15-1020.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–8.  https://doi.org/10.1038/nm.4441.CrossRefPubMedGoogle Scholar
  92. 92.
    Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res. 2016;4(6):498–508.  https://doi.org/10.1158/2326-6066.CIR-15-0231.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Perazzelli J, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest. 2016;126(10):3814–26.  https://doi.org/10.1172/JCI87366.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Qin H, Ramakrishna S, Nguyen S, Fountaine TJ, Ponduri A, Stetler-Stevenson M, et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol Ther Oncolytics. 2018;11:127–37.  https://doi.org/10.1016/j.omto.2018.10.006.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, et al. Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape. J Clin Invest. 2016;126(8):3036–52.  https://doi.org/10.1172/JCI83416.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, et al. Trivalent CAR T-cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 2018;20(4):506–18.  https://doi.org/10.1093/neuonc/nox182.CrossRefPubMedGoogle Scholar
  97. 97.
    Wing A, Fajardo CA, Posey AD Jr, Shaw C, Da T, Young RM, et al. Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager. Cancer Immunol Res. 2018;6(5):605–16.  https://doi.org/10.1158/2326-6066.CIR-17-0314.CrossRefPubMedGoogle Scholar
  98. 98.
    Moon YW, Hajjar J, Hwu P, Naing A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer. 2015;3:51.  https://doi.org/10.1186/s40425-015-0094-9.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Mussai F, Egan S, Hunter S, Webber H, Fisher J, Wheat R, et al. Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity. Cancer Res. 2015;75(15):3043–53.  https://doi.org/10.1158/0008-5472.CAN-14-3443.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Leone RD, Emens LA. Targeting adenosine for cancer immunotherapy. J Immunother Cancer. 2018;6(1):57.  https://doi.org/10.1186/s40425-018-0360-8.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Young A, Mittal D, Stagg J, Smyth MJ. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov. 2014;4(8):879–88.  https://doi.org/10.1158/2159-8290.CD-14-0341.CrossRefPubMedGoogle Scholar
  102. 102.
    Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 primes the dynamics of breast cancer progression via DUSP4 inhibition. Cancer Res. 2017;77(12):3268–79.  https://doi.org/10.1158/0008-5472.CAN-16-3126.CrossRefPubMedGoogle Scholar
  103. 103.
    Dennis KL, Blatner NR, Gounari F, Khazaie K. Current status of interleukin-10 and regulatory T-cells in cancer. Curr Opin Oncol. 2013;25(6):637–45.  https://doi.org/10.1097/CCO.0000000000000006.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med. 2015;21(5):524–9.  https://doi.org/10.1038/nm.3833.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Kakarla S, Chow KK, Mata M, Shaffer DR, Song XT, Wu MF, et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther. 2013;21(8):1611–20.  https://doi.org/10.1038/mt.2013.110.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lo A, Wang LS, Scholler J, Monslow J, Avery D, Newick K, et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 2015;75(14):2800–10.  https://doi.org/10.1158/0008-5472.CAN-14-3041.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC, Restifo NP, et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013;210(6):1125–35.  https://doi.org/10.1084/jem.20130110.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Zarour HM. Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res. 2016;22(8):1856–64.  https://doi.org/10.1158/1078-0432.CCR-15-1849.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R, Sun J, et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res. 2014;20(16):4262–73.  https://doi.org/10.1158/1078-0432.CCR-13-2627.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res. 2013;19(20):5636–46.  https://doi.org/10.1158/1078-0432.CCR-13-0458.CrossRefPubMedGoogle Scholar
  111. 111.
    Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8(5):369–80.  https://doi.org/10.1016/j.ccr.2005.10.012.CrossRefPubMedGoogle Scholar
  112. 112.
    Foster AE, Dotti G, Lu A, Khalil M, Brenner MK, Heslop HE, et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother. 2008;31(5):500–5.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, et al. Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther. 2018;26(7):1855–66.  https://doi.org/10.1016/j.ymthe.2018.05.003.CrossRefPubMedGoogle Scholar
  114. 114.
    Bollard CM, Tripic T, Cruz CR, Dotti G, Gottschalk S, Torrano V, et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J Clin Oncol. 2018;36(11):1128–39.  https://doi.org/10.1200/JCO.2017.74.3179.CrossRefPubMedGoogle Scholar
  115. 115.
    Watanabe N, Anurathapan U, Brenner M, Heslop H, Leen A, Rooney C, et al. Transgenic expression of a novel immunosuppressive signal converter on T cells [abstract no. 398]. Mol Ther. 2013;22(Suppl 1):S153.Google Scholar
  116. 116.
    Wilkie S, Burbridge SE, Chiapero-Stanke L, Pereira AC, Cleary S, van der Stegen SJ, et al. Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J Biol Chem. 2010;285(33):25538–44.  https://doi.org/10.1074/jbc.M110.127951.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Bajgain P, Tawinwung S, D’Elia L, Sukumaran S, Watanabe N, Hoyos V, et al. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer. 2018;6(1):34.  https://doi.org/10.1186/s40425-018-0347-5.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Rivadeneira DB, Delgoffe GM. Antitumor T-cell reconditioning: improving metabolic fitness for optimal cancer immunotherapy. Clin Cancer Res. 2018;24(11):2473–81.  https://doi.org/10.1158/1078-0432.CCR-17-0894.CrossRefPubMedGoogle Scholar
  119. 119.
    Le Bourgeois T, Strauss L, Aksoylar HI, Daneshmandi S, Seth P, Patsoukis N, et al. Targeting T cell metabolism for improvement of cancer immunotherapy. Front Oncol. 2018;8:237.  https://doi.org/10.3389/fonc.2018.00237.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Schurich A, Magalhaes I, Mattsson J. Metabolic regulation of CAR T cell function by the hypoxic microenvironment in solid tumors. Immunotherapy. 2019;11(4):335–45.  https://doi.org/10.2217/imt-2018-0141.CrossRefPubMedGoogle Scholar
  121. 121.
    Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016;167(3):829-42 e13.  https://doi.org/10.1016/j.cell.2016.09.031.CrossRefGoogle Scholar
  122. 122.
    Scharping NE, Menk AV, Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res. 2017;5(1):9–16.  https://doi.org/10.1158/2326-6066.CIR-16-0103.CrossRefPubMedGoogle Scholar
  123. 123.
    Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006;24(13):e20–2.CrossRefPubMedGoogle Scholar
  124. 124.
    Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–12.  https://doi.org/10.1038/mt.2013.17.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51.  https://doi.org/10.1038/mt.2010.24.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T Cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96.  https://doi.org/10.1200/JCO.2014.58.0225.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 2010;70(22):9053–61.  https://doi.org/10.1158/0008-5472.CAN-10-2880.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res. 2013;1(1):26–31.  https://doi.org/10.1158/2326-6066.CIR-13-0006.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016;164(4):770–9.  https://doi.org/10.1016/j.cell.2016.01.011.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Liu X, Jiang S, Fang C, Yang S, Olalere D, Pequignot EC, et al. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res. 2015;75(17):3596–607.  https://doi.org/10.1158/0008-5472.CAN-15-0159.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S, Olivares S, et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 2015;75(17):3505–18.  https://doi.org/10.1158/0008-5472.CAN-15-0139.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–5.  https://doi.org/10.1038/nbt.2459.CrossRefPubMedGoogle Scholar
  133. 133.
    Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira AC, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32(5):1059–70.  https://doi.org/10.1007/s10875-012-9689-9.CrossRefPubMedGoogle Scholar
  134. 134.
    Lanitis E, Poussin M, Klattenhoff AW, Song D, Sandaltzopoulos R, June CH, et al. Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res. 2013;1(1):43–53.  https://doi.org/10.1158/2326-6066.CIR-13-0008.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013;5(215):215ra172.  https://doi.org/10.1126/scitranslmed.3006597.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015;350(6258):aab4077.  https://doi.org/10.1126/science.aab4077.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Sakemura R, Terakura S, Watanabe K, Julamanee J, Takagi E, Miyao K, et al. A Tet-on inducible system for controlling CD19-chimeric antigen receptor expression upon drug administration. Cancer Immunol Res. 2016;4(8):658–68.  https://doi.org/10.1158/2326-6066.CIR-16-0043.CrossRefPubMedGoogle Scholar
  138. 138.
    Mata M, Gerken C, Nguyen P, Krenciute G, Spencer DM, Gottschalk S. Inducible activation of MyD88 and CD40 in CAR T cells results in controllable and potent antitumor activity in preclinical solid tumor models. Cancer Discov. 2017;7(11):1306–19.  https://doi.org/10.1158/2159-8290.CD-17-0263.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Foster AE, Mahendravada A, Shinners NP, Chang WC, Crisostomo J, Lu A, et al. Regulated expansion and survival of chimeric antigen receptor-modified T cells using small molecule-dependent inducible MyD88/CD40. Mol Ther. 2017;25(9):2176–88.  https://doi.org/10.1016/j.ymthe.2017.06.014.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Lupo-Stanghellini MT, Provasi E, Bondanza A, Ciceri F, Bordignon C, Bonini C. Clinical impact of suicide gene therapy in allogeneic hematopoietic stem cell transplantation. Hum Gene Ther. 2010;21(3):241–50.  https://doi.org/10.1089/hum.2010.014.CrossRefPubMedGoogle Scholar
  141. 141.
    Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft versus leukemia. Science. 1997;276:1719–24.CrossRefPubMedGoogle Scholar
  142. 142.
    Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, et al. An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005;105(11):4247–54.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–83.  https://doi.org/10.1056/NEJMoa1106152.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Zhou X, Naik S, Dakhova O, Dotti G, Heslop HE, Brenner MK. Serial activation of the inducible caspase 9 safety switch after human stem cell transplantation. Mol Ther. 2016;24(4):823–31.  https://doi.org/10.1038/mt.2015.234.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Thomis DC, Marktel S, Bonini C, Traversari C, Gilman M, Bordignon C, et al. A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood. 2001;97(5):1249–57.CrossRefPubMedGoogle Scholar
  146. 146.
    Falcon C, Al-Obaidi M, Di Stasi A. Exploiting cell death pathways for inducible cell elimination to modulate graft-versus-host-disease. Biomedicines. 2017.  https://doi.org/10.3390/biomedicines5020030.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Vogler I, Newrzela S, Hartmann S, Schneider N, Von LD, Koehl U, et al. An improved bicistronic CD20/tCD34 vector for efficient purification and in vivo depletion of gene-modified T cells for adoptive immunotherapy. Mol Ther. 2010;18(7):1330–8.  https://doi.org/10.1038/mt.2010.83.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Wang X, Chang WC, Wong CW, Colcher D, Sherman M, Ostberg JR, et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood. 2011;118(5):1255–63.  https://doi.org/10.1182/blood-2011-02-337360.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Wang Y, Chen M, Wu Z, Tong C, Dai H, Guo Y, et al. CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. Oncoimmunology. 2018;7(7):e1440169.  https://doi.org/10.1080/2162402X.2018.1440169.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA(+) metastatic colorectal cancers. Mol Ther. 2017;25(5):1248–58.  https://doi.org/10.1016/j.ymthe.2017.03.010.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Thistlethwaite FC, Gilham DE, Guest RD, Rothwell DG, Pillai M, Burt DJ, et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother. 2017;66(11):1425–36.  https://doi.org/10.1007/s00262-017-2034-7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Immatics US, IncHoustonUSA
  2. 2.Department of Bone Marrow Transplantation and Cellular TherapySt Jude Children’s Research HospitalMemphisUSA

Personalised recommendations