Advertisement

Drugs

pp 1–10 | Cite as

Immune Checkpoint Inhibitors in the Treatment of Gastroesophageal Cancer

  • Maxime  Chénard-Poirier
  • Elizabeth C. Smyth
Leading Article
Part of the following topical collections:
  1. Topical Collection on Immuno-Oncology

Abstract

Immune checkpoint blockade has revolutionised the treatment of multiple cancers including melanoma, non-small cell lung cancer, urothelial and renal cell cancers. For patients with chemorefractory gastroesophageal cancer, treatment with anti-PD-1 therapy results in modest benefits in overall survival; nivolumab and pembrolizumab have been licenced in Japan and the USA, respectively, for this indication. However, initial enthusiasm has been tempered by the results of several large negative trials; immune checkpoint blockade is not superior to chemotherapy in the second-line setting or beyond in unselected or low PD-L1-expressing patients. Microsatellite instability is uncommon in patients with metastatic gastric cancer; however, it is associated with response rates of more than 50% and long-term survival benefit. Combining anti-PD-1 with cytotoxic chemotherapy and targeted therapies also shows promise to extend the benefit of immune checkpoint blockade to a larger proportion of gastroesophageal cancer patients. In this review we discuss recently reported and ongoing clinical research in immunotherapy for gastroesophageal cancer, and consider molecular biology associated with sensitivity and resistance to immune checkpoint blockade in gastroesophageal cancer patients.

Notes

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of interest

Maxime Chénard-Poirier has no conflicts of interest to declare. Elizabeth C. Smyth declares honoraria from BMS, Five Prime Therapeutics, Servier, Gritstone Oncology and Celgene.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.CrossRefGoogle Scholar
  2. 2.
    Edgren G, Adami HO, Continuous Vainio E, Nyrén O. A global assessment of the epidemic of adenocarcinoma. Good. 2012.Google Scholar
  3. 3.
    Bang Y-J, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.CrossRefGoogle Scholar
  4. 4.
    Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2013.Google Scholar
  5. 5.
    Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15(11):1224–35.CrossRefGoogle Scholar
  6. 6.
    Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.CrossRefGoogle Scholar
  7. 7.
    Maron SB, Luke JJ, Hovey R, Bao R, Gajewski T, Ji Y, et al. Identification of T-cell-inflamed gastric adenocarcinoma in The Cancer Genome Atlas (TCGA). Am Soc Clin Oncol; 2017.Google Scholar
  8. 8.
    Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017;355(eaaf6322):8399.CrossRefGoogle Scholar
  9. 9.
    Sohn BH, Hwang J-E, Jang H-J, Lee H-S, Oh SC, Shim J-J, et al. Clinical significance of four molecular subtypes of gastric cancer identified by the Cancer Genome Atlas Project. Clin Cancer Res. 2017.Google Scholar
  10. 10.
    The Cancer Genome Atlas Research N. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169–75.CrossRefGoogle Scholar
  11. 11.
    Secrier M, Li X, de Silva N, Eldridge MD, Contino G, Bornschein J, et al. Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat Genet. 2016;48(10):1131–41.CrossRefGoogle Scholar
  12. 12.
    Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500–1.CrossRefGoogle Scholar
  13. 13.
    Bang Y-J, Cho JY, Kim YH, Kim JW, Di Bartolomeo M, Ajani JA, et al. Efficacy of sequential ipilimumab monotherapy versus best supportive care for unresectable locally advanced/metastatic gastric or gastroesophageal junction cancer. Clin Cancer Res. 2017.Google Scholar
  14. 14.
    Ralph C, Elkord E, Burt DJ, O’Dwyer JF, Austin EB, Stern PL, et al. Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin Cancer Res. 2010;16:1662–72 (1078-0432, CCR-09-2870).CrossRefGoogle Scholar
  15. 15.
    Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016.Google Scholar
  16. 16.
    Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018;4(5):e180013.CrossRefGoogle Scholar
  17. 17.
    Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10111):2461–71.CrossRefGoogle Scholar
  18. 18.
    Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P, et al. CheckMate-032 study: efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J Clin Oncol. 2018 (JCO2017766212).Google Scholar
  19. 19.
    Kelly RJ, Lee J, Bang Y-J, Almhanna K, Blum Murphy MA, Catenacci DV, et al. Safety and efficacy of durvalumab in combination with tremelimumab, durvalumab monotherapy, and tremelimumab monotherapy in patients with advanced gastric cancer. Am Soc Clin Oncol; 2018.Google Scholar
  20. 20.
    Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.CrossRefGoogle Scholar
  21. 21.
    Chung HC, Arkenau H-T, Wyrwicz L, Oh D-Y, Lee K-W, Infante JR, et al. Avelumab (MSB0010718C; anti-PD-L1) in patients with advanced gastric or gastroesophageal junction cancer from JAVELIN solid tumor phase Ib trial: analysis of safety and clinical activity. Am Soc Clin Oncol; 2016.Google Scholar
  22. 22.
    Moehler MH, Taïeb J, Gurtler JS, Xiong H, Zhang J, Cuillerot J-M, et al. Maintenance therapy with avelumab (MSB0010718C; anti-PD-L1) vs continuation of first-line chemotherapy in patients with unresectable, locally advanced or metastatic gastric cancer: the phase 3 JAVELIN gastric 100 trial. Am Soc Clin Oncol; 2016.Google Scholar
  23. 23.
    Bang Y, Ruiz EY, Van Cutsem E, Lee K, Wyrwicz L, Schenker M, et al. Phase 3, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment for patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN gastric 300. Ann Oncol. 2018.Google Scholar
  24. 24.
    Derks S, Nason KS, Liao X, Stachler MD, Liu KX, Liu JB, Sicinska E, Goldberg MS, Freeman GJ, Rodig SJ, Davison JM, Bass AJ. Epithelial PD-L2 expression marks Barrett's esophagus and esophageal adenocarcinoma. Cancer Immunol Res 2015;3(10):1123–29.  https://doi.org/10.1158/2326-6066.CIR-15-0046 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shitara K, Özgüroğlu M, Bang Y-J, Di Bartolomeo M, Mandalà M, Ryu M-H, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018;392(10142):123–33.CrossRefGoogle Scholar
  26. 26.
    Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1.CrossRefGoogle Scholar
  27. 27.
    Ascierto P, Bono P, Bhatia S, Melero I, Nyakas M, Svane I, et al. LBA18 efficacy of BMS-986016, a monoclonal antibody that targets lymphocyte activation gene-3 (LAG-3), in combination with nivolumab in pts with melanoma who progressed during prior anti-PD-1/PD-L1 therapy (mel prior IO) in all-comer and biomarker-enriched populations. Ann Oncol. 2017;28(suppl_5).Google Scholar
  28. 28.
    Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29(4):482–91.CrossRefGoogle Scholar
  29. 29.
    Wang Z, Till B, Gao Q. Chemotherapeutic agent-mediated elimination of myeloid-derived suppressor cells. Oncoimmunology. 2017;6(7):e1331807.CrossRefGoogle Scholar
  30. 30.
    Bang Y-J, Muro K, Fuchs CS, Golan T, Geva R, Hara H, et al. KEYNOTE-059 cohort 2: Safety and efficacy of pembrolizumab (pembro) plus 5-fluorouracil (5-FU) and cisplatin for first-line (1L) treatment of advanced gastric cancer. Am Soc Clin Oncol; 2017.Google Scholar
  31. 31.
    Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, et al. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci USA. 2011;108(17):7142–7.CrossRefGoogle Scholar
  32. 32.
    Yasuda S, Sho M, Yamato I, Yoshiji H, Wakatsuki K, Nishiwada S, et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin Exp Immunol. 2013;172(3):500–6.CrossRefGoogle Scholar
  33. 33.
    Chau I, Penel N, Arkenau H-T, Santana-Davila R, Calvo E, Soriano AO, et al. Safety and antitumor activity of ramucirumab plus pembrolizumab in treatment naïve advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: preliminary results from a multi-disease phase I study (JVDF). Am Soc Clin Oncol; 2018.Google Scholar
  34. 34.
    Chau I, Bendell JC, Calvo E, Santana-Davila R, Rodon Ahnert J, Penel N, et al. Interim safety and clinical activity in patients (pts) with advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma from a multicohort phase 1 study of ramucirumab (R) plus pembrolizumab (P). Am Soc Clin Oncol; 2017.Google Scholar
  35. 35.
    Hong SA, Yoo SH, Lee HH, Sun DS, Won HS, Kim O, et al. Prognostic value of Dickkopf-1 and β-catenin expression in advanced gastric cancer. BMC Cancer. 2018;18(1):506.CrossRefGoogle Scholar
  36. 36.
    Strickler JH, Kagey M, Sirard CA, Duda GD, Almenara J, Powers CN, et al. Biomarker studies in a phase I trial of DKN-01 in advanced esophageal cancer. Am Soc Clin Oncol; 2017.Google Scholar
  37. 37.
    Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz H-J, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.CrossRefGoogle Scholar
  38. 38.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.CrossRefGoogle Scholar
  39. 39.
    Smyth EC, Wotherspoon A, Peckitt C, Gonzalez D, Hulkki-Wilson S, Eltahir Z, et al. Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol. 2017;3(9):1197–203.CrossRefGoogle Scholar
  40. 40.
    Li X, Pasche B, Zhang W, Chen K. Association of MUC16 mutation with tumor mutation load and outcomes in patients with gastric cancer. JAMA Oncol. 2018.Google Scholar
  41. 41.
    Smyth EC, Fitzgerald RC. MUC16 mutations and prognosis in gastric cancer: a little goes a long way. JAMA Oncol. 2018.Google Scholar
  42. 42.
    Smyth EC, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D. Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl 5):v38–49.CrossRefGoogle Scholar
  43. 43.
    Al-Batran S-E, Homann N, Schmalenberg H, Kopp H-G, Haag GM, Luley KB, et al. Perioperative chemotherapy with docetaxel, oxaliplatin, and fluorouracil/leucovorin (FLOT) versus epirubicin, cisplatin, and fluorouracil or capecitabine (ECF/ECX) for resectable gastric or gastroesophageal junction (GEJ) adenocarcinoma (FLOT4-AIO): a multicenter, randomized phase 3 trial. Am Soc Clin Oncol.; 2017.Google Scholar
  44. 44.
    Eggermont AM, Chiarion-Sileni V, Grob J-J, Dummer R, Wolchok JD, Schmidt H, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30.CrossRefGoogle Scholar
  45. 45.
    Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35.CrossRefGoogle Scholar
  46. 46.
    Kelly RJ, Zaidi AH, Smith MA, Omstead AN, Kosovec JE, Matsui D, et al. The dynamic and transient immune microenvironment in locally advanced esophageal adenocarcinoma post chemoradiation. Ann Surg. 2017.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Haematology and Medical OncologyCHU de Québec, Université LavalQuebec CityCanada
  2. 2.Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridgeUK

Personalised recommendations