, Volume 78, Issue 16, pp 1717–1740 | Cite as

Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

  • Mathew Suji Eapen
  • Philip M. Hansbro
  • Anna-Karin Larsson‑Callerfelt
  • Mohit K. Jolly
  • Stephen Myers
  • Pawan Sharma
  • Bernadette Jones
  • Md Atiqur Rahman
  • James Markos
  • Collin Chia
  • Josie Larby
  • Greg Haug
  • Ashutosh Hardikar
  • Heinrich C. Weber
  • George Mabeza
  • Vinicius Cavalheri
  • Yet H. Khor
  • Christine F. McDonald
  • Sukhwinder Singh SohalEmail author
Review Article


Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.



SSS is supported by the Clifford Craig Foundation Launceston, Thoracic Society of Australia and New Zealand (TSANZ) and Boehringer Ingelheim COPD Research Award; PMH is supported by an NHMRC Principal Research Fellowship and a Brawn Fellowship, Faculty of Health, University of Newcastle; VC is supported by a Cancer Council WA postdoctoral fellowship; MKJ is supported by a training fellowship from the Gulf Coast Consortia, on the Computational Cancer Biology Training Program; and PS is supported by the Rebecca L. Cooper Medical Research Foundation, Australia, and the Chancellors Fellowship Programme, University of Technology Sydney (UTS).

Compliance with Ethical Standards

Conflict of interest

Mathew Suji Eapen, Anna-Karin Larsson‑Callerfelt, Mohit K. Jolly, Stephen Myers, Pawan Sharma, Bernadette Jones, Md Atiqur Rahman, James Markos, Collin Chia, Josie Larby, Greg Haug, Ashutosh Hardikar, Heinrich C. Weber, George Mabeza and Vinicius Cavalheri declare no conflicts of interest. Sukhwinder Singh Sohal reports grants from the Thoracic Society of Australia and New Zealand (TSANZ), Boehringer Ingelheim and the Clifford Craig Foundation. Philip M. Hansbro has no conflicts of interest related to this manuscript, aside from the fact that this article relates to mouse models of lung cancer and COPD, which we regularly use. Yet H. Khor reports grants from the National Health and Medical Research Council and Boehringer Ingelheim, and non-financial support from Air Liquide, as well as honorarium from Boehringer Ingelheim, Roche and Astra Zeneca, outside the submitted work. Christine F. McDonald has received speakers fees from, and participated in advisory boards for, GSK, Pfizer and Novartis, and has donated speaker fees from Menarini to her hospital.


The preparation of this review was not supported by any external funding.


  1. 1.
    Quaderi SA, Hurst JR. The unmet global burden of COPD. Glob Health Epidemiol Genom. 2018;3:e4.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Brenner D, McLaughlin J, Hung R. Previous lung diseases and lung cancer risk: a systemic review and meta-analysis. PLoS ONE. 2011;6:e17479.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Tammemagi C, Neslund-Dudas C, Simoff M, Kvale P. Impact of comorbidity on lung cancer survival. Int J Cancer. 2003;103:792–802.PubMedGoogle Scholar
  4. 4.
    Lόpez-Encuentra A, Astudillo J, Cerezal J, Gonzalez-Aragoneses F, Novoa N, Sánchez-Palencia A, et al. Prognostic value of chronic obstructive pulmonary disease in 2994 cases of lung cancer. Eur J Cardiothorac Surg. 2005;27:8–13.Google Scholar
  5. 5.
    Kiri V, Soriano J, Visick G, Fabbri L. Recent trends in lung cancer and its association with COPD: an analysis using the UK GP Research Database. Prim Care Respir J. 2010;19:57–61.PubMedGoogle Scholar
  6. 6.
    Didkowska J, Wojciechowska U, Mańczuk M, Łobaszewski J. Lung cancer epidemiology: contemporary and future challenges worldwide. Ann Transl Med. 2016;4(8):150.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Wong MCS, Lao XQ, Ho K-F, Goggins WB, Tse SLA. Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep. 2017;7(1):14300.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Islami F, Torre LA, Jemal A. Global trends of lung cancer mortality and smoking prevalence. Transl Lung Cancer Res. 2015;4(4):327–38.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Oberg M, Jaakkola MS, Woodward A, Peruga A, Pruss-Ustun A. Worldwide burden of disease from exposure to second-hand smoke: a retrospective analysis of data from 192 countries. Lancet (London, England). 2011;377(9760):139–46.Google Scholar
  10. 10.
    Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014;122(9):906–11.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Australian Institute of Health and Welfare. Cancer in Australia 2017. Canberra: Australian Institute of Health and Welfare; 2017.Google Scholar
  12. 12.
    Inamura K. Lung cancer: understanding its molecular pathology and the 2015 WHO Classification. Front Oncol. 2017;7:193.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The World Health Organization classification of lung tumors. J Thorac Oncol. 2015;10(9):1243–60.PubMedGoogle Scholar
  14. 14.
    Derman BA, Mileham KF, Bonomi PD, Batus M, Fidler MJ. Treatment of advanced squamous cell carcinoma of the lung: a review. Transl Lung Cancer Res. 2015;4(5):524–32.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hanna JM, Onaitis MW. Cell of origin of lung cancer. J Carcinog. 2013;12:6.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Weissferdt A. Large cell carcinoma of lung: on the verge of extinction? Semin Diagn Pathol. 2014;31(4):278–88.PubMedGoogle Scholar
  17. 17.
    Leary AR. Lung cancer: a multidisciplinary approach. Chichester: Wiley-Blackwell; 2011.Google Scholar
  18. 18.
    Shepherd FA, Crowley J, Van Houtte P, Postmus PE, Carney D, Chansky K, et al. The International Association for the Study of Lung Cancer Lung Cancer Staging Project: proposals regarding the clinical staging of small cell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. J Thorac Oncol. 2007;2(12):1067–77.PubMedGoogle Scholar
  19. 19.
    Solcia E, Klöppel G, Sobin LH. World Health Organization international histological classification of tumours: histological typing of endocrine tumours: second edition. Clin Endocrinol. 2000;53(2):259.Google Scholar
  20. 20.
    Anthonisen N, Skeans M, Wise R, Manfreda J, Kanner R, Connett J. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med. 2005;142:299–301.Google Scholar
  21. 21.
    Godtfredsen N, Prescott E, Osler M. Effect of smoking reduction on lung cancer risk. JAMA. 2005;294:1505–10.PubMedGoogle Scholar
  22. 22.
    Dragnev K, Stover D, Dmitrovsky E. Lung cancer prevention: the guidelines. Chest. 2003;123:60S–71S.PubMedGoogle Scholar
  23. 23.
    Parimon T, Chien J, Bryson C, McDonell M, Udris E, Au D. Inhaled corticosteroids and risk of lung cancer among patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175:712–9.PubMedGoogle Scholar
  24. 24.
    Kiri V, Fabbri L, Davis K, Soriano J. Inhaled corticosteroids and risk of lung cancer among COPD patients who quit smoking. Respir Med. 2009;103:85–90.PubMedGoogle Scholar
  25. 25.
    Liu S, Kuo H, Lin M, Ho S, Tu M, Chen Y, et al. Inhaled corticosteroids have a protective effect against lung cancer in female patients with chronic obstructive pulmonary disease: a nationwide population-based cohort study. Oncotarget. 2017;8:29711–21.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Sin D, Wu L, Anderson J, Anthonisen N, Buist A, Burge P, et al. Inhaled corticosteroids and mortality in chronic obstructive pulmonary disease. Thorax. 2005;60:992–7.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Lam S, leRiche J, McWilliams A, Macaulay C, Dyachkova Y, Szabo E, et al. A randomized phase IIb trial of pulmicort turbuhaler (budesonide) in people with dysplasia of the bronchial epithelium. Clin Cancer Res. 2004;10:6502–11.PubMedGoogle Scholar
  28. 28.
    van den Berg R, Teertstra H, van Zandwijk N, van Tinteren H, Visser C, Pasic A, et al. CT detected indeterminate pulmonary nodules in a chemoprevention trial of fluticasone. Lung Cancer. 2008;60:57–61.PubMedGoogle Scholar
  29. 29.
    Young RP, Hopkins RJ. Effect of statins on cancer in chronic obstructive pulmonary disease. Thorax. 2011;66(4):354–5 (author reply 5–6).PubMedGoogle Scholar
  30. 30.
    Liu J, Yang T, Hsu Y, Hao W, Kao P, Sung L, et al. Statins dose-dependently exert a chemopreventive effect against lung cancer in COPD patients: a population-based cohort study. Oncotarget. 2016;7:59618–29.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Myung S, Kim Y, Ju W, Choi H, Bae W. Effects of antioxidant supplements on cancer prevention: meta-analysis of randomized controlled trials. Ann Oncol. 2010;21:166–79.PubMedGoogle Scholar
  32. 32.
    Alpha-Tocopherol BCCPSG. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med. 1994;330:1029–35.Google Scholar
  33. 33.
    Omenn G, Goodman G, Thornquist M, Balmes J, Cullen M, Glass A, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996;334:1150–5.PubMedGoogle Scholar
  34. 34.
    Brasky T, White E, Chen C. Long-term, supplemental, one-carbon metabolism-related vitamin B use in relation to lung cancer risk in the vitamins and lifestyle (VITAL) cohort. J Clin Oncol. 2017;35:3440–8.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):e13–64.PubMedGoogle Scholar
  36. 36.
    Jones LW, Eves ND, Haykowsky M, Joy AA, Douglas PS. Cardiorespiratory exercise testing in clinical oncology research: systematic review and practice recommendations. Lancet Oncol. 2008;9(8):757–65.PubMedGoogle Scholar
  37. 37.
    Jones LW, Watson D, Herndon JE 2nd, Eves ND, Haithcock BE, Loewen G, et al. Peak oxygen consumption and long-term all-cause mortality in nonsmall cell lung cancer. Cancer. 2010;116(20):4825–32.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Oga T, Nishimura K, Tsukino M, Sato S, Hajiro T. Analysis of the factors related to mortality in chronic obstructive pulmonary disease: role of exercise capacity and health status. Am J Respir Crit Care Med. 2003;167(4):544–9.PubMedGoogle Scholar
  39. 39.
    Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1447–78.PubMedGoogle Scholar
  40. 40.
    Irie M, Nakanishi R, Yasuda M, Fujino Y, Hamada K, Hyodo M. Risk factors for short-term outcomes after thoracoscopic lobectomy for lung cancer. Eur Respir J. 2016;48(2):495–503.PubMedGoogle Scholar
  41. 41.
    Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e166S–90S.PubMedGoogle Scholar
  42. 42.
    From the Global strategy for the diagnosis, management and prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2017. Accessed 13 Dec 2017.
  43. 43.
    Cavalheri V, Jenkins S, Cecins N, Gain K, Phillips MJ, Sanders LH, et al. Exercise training for people following curative intent treatment for non-small cell lung cancer: a randomized controlled trial. Braz J Phys Ther. 2017;21(1):58–68.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Cavalheri V, Granger C. Preoperative exercise training for patients with non-small cell lung cancer. Cochrane Database Syst Rev. 2017;(6):CD012020.Google Scholar
  45. 45.
    Edvardsen E, Skjonsberg OH, Holme I, Nordsletten L, Borchsenius F, Anderssen SA. High-intensity training following lung cancer surgery: a randomised controlled trial. Thorax. 2015;70(3):244–50.PubMedGoogle Scholar
  46. 46.
    Karenovics W, Licker M, Ellenberger C, Christodoulou M, Diaper J, Bhatia C, et al. Short-term preoperative exercise therapy does not improve long-term outcome after lung cancer surgery: a randomized controlled study dagger. Eur J Cardiothorac Surg. 2017;52(1):47–54.PubMedGoogle Scholar
  47. 47.
    Alison JA, McKeough ZJ, Johnston K, McNamara RJ, Spencer LM, Jenkins SC, et al. Australian and New Zealand Pulmonary Rehabilitation Guidelines. Respirology. 2017;22(4):800–19.PubMedGoogle Scholar
  48. 48.
    McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2015;(2):CD003793.Google Scholar
  49. 49.
    Puhan MA, Gimeno-Santos E, Cates CJ, Troosters T. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2016;(12):CD005305.Google Scholar
  50. 50.
    Cavalheri V, Tahirah F, Nonoyama M, Jenkins S, Hill K. Exercise training for people following lung resection for non-small cell lung cancer: a Cochrane systematic review. Cancer Treat Rev. 2014;40(4):585–94.PubMedGoogle Scholar
  51. 51.
    Cavalheri V, Jenkins S, Hill K. Physiotherapy practice patterns for patients undergoing surgery for lung cancer: a survey of hospitals in Australia and New Zealand. Intern Med J. 2013;43(4):394–401.PubMedGoogle Scholar
  52. 52.
    Mujovic N, Mujovic N, Subotic D, Marinkovic M, Milovanovic A, Stojsic J, et al. Preoperative pulmonary rehabilitation in patients with non-small cell lung cancer and chronic obstructive pulmonary disease. Arch Med Sci. 2014;10:68–75.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Saito H, Hatakeyama K, Konno H, Matsunaga T, Shimada Y, Minamiya Y. Impact of pulmonary rehabilitation on postoperative complications in patients with lung cancer and chronic obstructive pulmonary disease. Thorac Cancer. 2017;8:451–60.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Licker M, Karenovics W, Diaper J, Fresard I, Triponez F, Ellenberger C et al. Short-term preoperative high-intensity interval training in patients awaiting lung cancer surgery: a randomized controlled trial . J Thorac Oncol. 2017;12(2):323–33.PubMedGoogle Scholar
  55. 55.
    Wang JS, Abboud RT, Wang LM. Effect of lung resection on exercise capacity and on carbon monoxide diffusing capacity during exercise. Chest. 2006;129(4):863–72.PubMedGoogle Scholar
  56. 56.
    Cavalheri V, Jenkins S, Cecins N, Gain K, Phillips M, Sanders LH, et al. Impairments after curative intent treatment for non-small cell lung cancer: a comparison with age and gender-matched healthy controls. Respir Med. 2015;109(10):1332–9.PubMedGoogle Scholar
  57. 57.
    Wiskemann J, Hummler S, Diepold C, Keil M, Abel U, Steindorf K, et al. POSITIVE study: physical exercise program in non-operable lung cancer patients undergoing palliative treatment. BMC Cancer. 2016;16:499.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Quist M, Langer SW, Rorth M, Christensen KB, Adamsen L. “EXHALE”: exercise as a strategy for rehabilitation in advanced stage lung cancer patients: a randomized clinical trial comparing the effects of 12 weeks supervised exercise intervention versus usual care for advanced stage lung cancer patients. BMC Cancer. 2013;13:477.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Edbrooke L, Aranda S, Granger CL, McDonald CF, Krishnasamy M, Mileshkin L, et al. Benefits of home-based multidisciplinary exercise and supportive care in inoperable non-small cell lung cancer—protocol for a phase II randomised controlled trial. BMC Cancer. 2017;17(1):663.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Quist M, Rorth M, Langer S, Jones LW, Laursen JH, Pappot H, et al. Safety and feasibility of a combined exercise intervention for inoperable lung cancer patients undergoing chemotherapy: a pilot study. Lung Cancer. 2012;75(2):203–8.PubMedGoogle Scholar
  61. 61.
    Markos J, Mullan B, Hillman D, Musk A, Antico V, Lovegrove F, et al. Preoperative assessment as a predictor and mortality and morbidity after lung resection. Am Rev Respir Dis. 1989;139:902–10.PubMedGoogle Scholar
  62. 62.
    Sekine Y, Behnia M, Fujisawa T. Impact of COPD on pulmonary complications and on long-term survival of patients undergoing surgery for NSCLC. Lung Cancer. 2002;37:95–101.PubMedGoogle Scholar
  63. 63.
    Sekine Y, Kesler K, Behnia M, Brooks-Brunn J, Sekine E, Brown J. COPD may increase the incidence of refractory supraventricular arrhythmias following pulmonary resection for non-small cell lung cancer. Chest. 2001;120:1783–90.PubMedGoogle Scholar
  64. 64.
    Win T, Jackson A, Sharples L, Groves A, Wells F, Ritchie A, et al. Relationship between pulmonary function and lung cancer surgical outcomes. Eur Respir J. 2005;25:594–9.PubMedGoogle Scholar
  65. 65.
    Vogelmeier C, Criner G, Martinez F, Anzueto A, Barnes P, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195:557–82.PubMedGoogle Scholar
  66. 66.
    Yang I, Brown J, George J, Jenkins S, McDonald C, McDonald V, et al. COPD-X Australian and New Zealand guidelines for the diagnosis and management of chronic obstructive pulmonary disease: 2017 update. Med J Aust. 2017;207:436–42.PubMedGoogle Scholar
  67. 67.
    Kobayashi S, Suzuki S, Niikawa H, Sugawara T, Yanai M. Preoperative use of inhaled tiotropium in lung cancer patients with untreated COPD. Respirology. 2009;14:675–9.PubMedGoogle Scholar
  68. 68.
    Bölükbas S, Eberlein M, Eckhoff J, Schirren J. Short-term effects of inhalative tiotropium/formoterol/budesonide versus tiotropium/formoterol in patients with newly diagnosed chronic obstructive pulmonary disease requiring surgery for lung cancer: a prospective randomized trial. Eur J Cardio Thorac Surg. 2011;39:995–1000.Google Scholar
  69. 69.
    Nojiri T, Inoue M, Yamamoto K, Maeda H, Takeuchi Y, Nakagiri T, et al. Inhaled tiotropium to prevent postoperative cardiopulmonary complications in patients with newly diagnosed chronic obstructive pulmonary disease requiring lung cancer surgery. Surg Today. 2014;44:285–90.PubMedGoogle Scholar
  70. 70.
    Takegahara K, Usuda J, Inoue T, Ibi T, Sato A. Preoperative management using inhalation therapy for pulmonary complications in lung cancer patients with chronic obstructive pulmonary disease. Gen Thorac Cardiovasc Surg. 2017;65:388–91.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Suzuki H, Sekine Y, Yoshida S, Suzuki M, Shibuya K, Takiguchi Y, et al. Efficacy of perioperative administration of long-acting bronchodilator on postoperative pulmonary function and quality of life in lung cancer patients with chronic obstructive pulmonary disease. Preliminary results of a randomized control study. Surg Today. 2010;40:923–30.PubMedGoogle Scholar
  72. 72.
    Nojiri T, Maeda H, Takeuchi Y, Funakoshi Y, Maekura R, Yamamoto K, et al. Predictive value of preoperative tissue Doppler echocardiographic analysis for postoperative atrial fibrillation after pulmonary resection for lung cancer. J Thorac Cardiovasc Surg. 2010;140:764–848.PubMedGoogle Scholar
  73. 73.
    Yamanashi K, Marumo S, Sumitomo R, Shoji T, Fukui M, Katayama T, et al. Long-acting ß2-adrenoceptor agonists are not associated with atrial arrhythmias after pulmonary resection. J Cardiothorac Surg. 2017;12:35.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Crim C, Calverley P, Anderson J, Celli B, Ferguson G, Jenkins C, et al. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur Respir J. 2009;34:641–7.PubMedGoogle Scholar
  75. 75.
    Calverley P, Stockley R, Seemungal T, Hagan G, Willits L, Riley J, et al. Reported pneumonia in patients with COPD: findings from the INSPIRE study. Chest. 2011;139:505–12.PubMedGoogle Scholar
  76. 76.
    Drummond M, Dasenbrook E, Pitz M, Murphy D, Fan E. Inhaled corticosteroids in patients with stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA. 2008;300:2407–16.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Eapen MS, Sohal SS. Understanding novel mechanisms of microbial pathogenesis in chronic lung disease: implications for new therapeutic targets. Clin Sci (Lond). 2018;132(3):375–9.PubMedGoogle Scholar
  78. 78.
    Sohal SS. Fluticasone propionate and increased risk of pneumonia in COPD: is it PAFR-dependent? Int J Chron Obstruct Pulmon Dis. 2017;12:3425–7.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Sohal SS. Inhaled corticosteroids and increased microbial load in COPD: potential role of epithelial adhesion molecules. Eur Respir J. 2018;51(2):1702257.PubMedGoogle Scholar
  80. 80.
    Sohal SS, Eapen MS, Ward C, Walters EH. Airway inflammation and inhaled corticosteroids in COPD. Eur Respir J. 2017;49(6):1700289.PubMedGoogle Scholar
  81. 81.
    Yamanashi K, Marumo S, Shoji T, Fukui T, Sumitomo R, Otake Y, et al. The relationship between perioperative administration of inhaled corticosteroid and postoperative respiratory complications after pulmonary resection for non-small-cell lung cancer in patients with chronic obstructive pulmonary disease. Gen Thorac Cardiovasc Surg. 2015;63:652–9.PubMedGoogle Scholar
  82. 82.
    Warner MA, Offord KP, Warner ME, Lennon RL, Conover MA, Jansson-Schumacher U. Role of preoperative cessation of smoking and other factors in postoperative pulmonary complications: a blinded prospective study of coronary artery bypass patients. Mayo Clin Proc. 1989;64(6):609–16.PubMedGoogle Scholar
  83. 83.
    Kuri M, Nakagawa M, Tanaka H, Hasuo S, Kishi Y. Determination of the duration of preoperative smoking cessation to improve wound healing after head and neck surgery. Anesthesiology. 2005;102(5):892–6.PubMedGoogle Scholar
  84. 84.
    Graham M, Purdy J, Emami B, Harms W, Bosch W, Lockett M, et al. Clinical dose volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999;45:323–9.PubMedGoogle Scholar
  85. 85.
    Das S, Misra S, Munshi A, Rathod S, Purandare N, Tandon S, et al. A prospective study to evaluate clinical radiation induced pneumonitis in lung cancer patients and its dose response relationship with radiotherapy. J Lung Cancer Diagn Treat. 2016;1:1.Google Scholar
  86. 86.
    Chun S, Hu C, Choy H, Komaki R, Timmerman R, Schild S, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG Oncology RTOG 0617 randomized clinical trial. J Clin Oncol. 2017;35:56–62.PubMedGoogle Scholar
  87. 87.
    Verma V, Shostrom V, Zhen W, Zhang M, Braunstein S, Holland J, et al. Influence of fractionation scheme and tumor location on toxicities after stereotactic body radiation therapy for large (≥ 5 cm) non-small cell lung cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys. 2017;97:778–85.PubMedGoogle Scholar
  88. 88.
    Verma V, Simone CB, Allen P, Gajjar S, Shah C, Zhen W, et al. Multi-institutional experience of stereotactic ablative radiation therapy for stage I small cell lung cancer. Int J Radiat Oncol Biol Phys. 2017;97(2):362–371.PubMedGoogle Scholar
  89. 89.
    Rancati T, Ceresoli G, Gagliardi G, Schipani S, Cattaneo G. Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study. Radiother Oncol. 2003;67:275–83.PubMedGoogle Scholar
  90. 90.
    Inoue T, Shiomi H, Oh R. Stereotactic body radiotherapy for stage I lung cancer with chronic obstructive pulmonary disease: special reference to survival and radiation-induced pneumonitis. J Radiat Res. 2015;56:727–34.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Takeda A, Lunieda E, Ohashi T, Aoki Y, Oku Y, Enomoto T, et al. Severe COPD is correlated with mild radiation pneumonitis following stereotactic body radiotherapy. Chest. 2012;141:858–66.PubMedGoogle Scholar
  92. 92.
    Wang J, Cao J, Yuan S, Ji W, Arenberg D, Dai J, et al. Poor baseline pulmonary function may not increase the risk of radiation-induced lung toxicity. Int J Radiat Oncol Biol Phys. 2013;85:798–804.PubMedGoogle Scholar
  93. 93.
    Henkenberens C, Janssen S, Lavae-Mokhtari M, Leni K, Meyer A, Christiansen H, et al. Inhalative steroids as an individual treatment in symptomatic lung cancer patients with radiation pneumonitis grade II after radiotherapy—a single-centre experience. Radiat Oncol. 2016;11:12.PubMedPubMedCentralGoogle Scholar
  94. 94.
    de Baere T, Tselikas L, Gravel G, Deschamps F. Lung ablation: best practice/results/response assessment/role alongside other ablative therapies. Clin Radiol. 2017;72(8):657–64.PubMedGoogle Scholar
  95. 95.
    Shi F, Li G, Zhou Z, Xu R, Li W, Zhuang W et al. Microwave ablation versus radiofrequency ablation for the treatment of pulmonary tumors. Oncotarget. 2017;8(65):109791–8PubMedPubMedCentralGoogle Scholar
  96. 96.
    Mu L, Pan T, Lyu N, Sun L, Li S, Xie Q, et al. CT-guided percutaneous radiofrequency ablation for lung neoplasms adjacent to the pericardium. Lung Cancer. 2018;122:25–31.PubMedGoogle Scholar
  97. 97.
    Gerard C, Debruyne C. Immunotherapy in the landscape of new targeted treatments for non-small cell lung cancer. Mol Oncol. 2009;3(5–6):409–24.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Shi L, Tang J, Tong L, Liu Z. Risk of interstitial lung disease with gefitinib and erlotinib in advanced non-small cell lung cancer: a systematic review and meta-analysis of clinical trials. Lung Cancer. 2014;83:231–9.PubMedGoogle Scholar
  99. 99.
    Pellegrino B, Facchinetti F, Bordi P, Silva M, Gnetti L, Tiseo M. Lung toxicity in non-small-cell lung cancer patients exposed to ALK inhibitors: report of a peculiar case and systematic review of the literature. Clin Lung Cancer. 2017;19:e151.PubMedGoogle Scholar
  100. 100.
    Khunger M, Rakshit S, Pasupuleti V, Hernandez A, Mazzone P, Stevenson J, et al. Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: a systematic review and meta-analysis of trials. Chest. 2017;152:271–81.PubMedGoogle Scholar
  101. 101.
    Fujimoto D, Kato R, Morimoto T, Shimizu R, Sato Y, Kogo M, et al. Characteristics and prognostic impact of pneumonitis during systemic anti-cancer therapy in patients with advanced non-small-cell lung cancer. PLoS One. 2016;11:e0168465.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Dimopoulou I, Bamias A, Lyberopoulos P, Dimopoulos M. Pulmonary toxicity from novel antineoplastic agents. Ann Oncol. 2006;17:372–9.PubMedGoogle Scholar
  103. 103.
    Msaad S, Yangui I, Bahloul N, Abid N, Koubaa M, Hentati Y, et al. Do inhaled corticosteroids increase the risk of Pneumocystis pneumonia in people with lung cancer? World J Clin Cases. 2015;3:843–7.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Tsai S, Lin Y, Wu Y, Chu S, Wu C. Pulmonary opportunistic infections in a lung cancer patient treated by inhaled corticosteroid. J Intern Med Taiwan. 2009;20:92–6.Google Scholar
  105. 105.
    Wilkinson T. Immune checkpoints in chronic obstructive pulmonary disease. Eur Respir Rev. 2017;26:170045.PubMedGoogle Scholar
  106. 106.
    Sohal SS. Chronic obstructive pulmonary disease (COPD) and lung cancer: epithelial mesenchymal transition (EMT), the missing link? EBioMedicine. 2015;2(11):1578–9.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Barnes P, Adcock I. Chronic obstructive pulmonary disease and lung cancer: a lethal association. Am J Respir Crit Care Med. 2011;184(8):866–7.PubMedGoogle Scholar
  108. 108.
    Morlá M, Busquets X, Pons J, Sauleda J, MacNee W, Agustí AGN. Telomere shortening in smokers with and without COPD. Eur Respir J. 2006;27(3):525–8.PubMedGoogle Scholar
  109. 109.
    Ceylan E, Kocyigit A, Gencer M, Aksoy N, Selek S. Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass. Respir Med. 2006;100(7):1270–6.PubMedGoogle Scholar
  110. 110.
    Eapen MS, Sharma P, Moodley YP, Hansbro PM, Sohal SS. Dysfunctional immunity and microbial adhesion molecules in smoking-induced pneumonia. Am J Respir Crit Care Med. 2018. (Epub 5 Oct 2018).CrossRefPubMedGoogle Scholar
  111. 111.
    Eapen MS, Hansbro PM, McAlinden K, Kim RY, Ward C, Hackett TL, et al. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci Rep. 2017;7(1):13392.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Eapen MS, McAlinden K, Tan D, Weston S, Ward C, Muller HK, et al. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD. Respirology. 2017;22(6):1125–32.PubMedGoogle Scholar
  113. 113.
    Eapen MS, Myers S, Walters EH, Sohal SS. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Rev Respir Med. 2017;11(10):827–39.PubMedGoogle Scholar
  114. 114.
    Bernardo I, Bozinovski S, Vlahos R. Targeting oxidant-dependent mechanisms for the treatment of COPD and its comorbidities. Pharmacol Ther. 2015;155:60–79.PubMedGoogle Scholar
  115. 115.
    Wang L-E, Gorlova OY, Ying J, Qiao Y, Weng S-F, Lee AT, et al. Genome-wide association study reveals novel genetic determinants of DNA repair capacity in lung cancer. Cancer Res. 2013;73(1):256–64.PubMedGoogle Scholar
  116. 116.
    Wei Q, Cheng L, Hong WK, Spitz MR. Reduced DNA repair capacity in lung cancer patients. Cancer Res. 1996;56(18):4103–7.PubMedGoogle Scholar
  117. 117.
    Aoshiba K, Tsuji T, Yamaguchi K, Itoh M, Nakamura H. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD. Eur Respir J. 2013;42(6):1689–95.PubMedGoogle Scholar
  118. 118.
    Freund A, Orjalo AV, Desprez P-Y, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16(5):238–46.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Qu Z, Sun F, Zhou J, Li L, Shapiro SD, Xiao G. Interleukin-6 prevents the initiation but enhances the progression of lung cancer. Cancer Res. 2015;75(16):3209–15.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Ojo O, Lagan AL, Rajendran V, Spanjer A, Chen L, Sohal SS, et al. Pathological changes in the COPD lung mesenchyme—novel lessons learned from in vitro and in vivo studies. Pulm Pharmacol Ther. 2014;29(2):121–8.PubMedGoogle Scholar
  121. 121.
    Sohal SS, Reid D, Soltani A, Weston S, Muller HK, Wood-Baker R, et al. Changes in airway histone deacetylase2 in smokers and COPD with inhaled corticosteroids: a randomized controlled trial. PLoS One. 2013;8(5):e64833.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Stathopoulos GT, Sherrill TP, Han W, Sadikot RT, Yull FE, Blackwell TS, et al. Host nuclear factor-κB activation potentiates lung cancer metastasis. Mol Cancer Res. 2008;6(3):364–71.PubMedGoogle Scholar
  123. 123.
    Kaku Y, Imaoka H, Morimatsu Y, Komohara Y, Ohnishi K, Oda H, et al. Overexpression of CD163, CD204 and CD206 on alveolar macrophages in the lungs of patients with severe chronic obstructive pulmonary disease. PLoS One. 2014;9(1):e87400.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Ma J, Liu L, Che G, Yu N, Dai F, You Z. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer. 2010;10(1):112.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Mei J, Xiao Z, Guo C, Pu Q, Ma L, Liu C, et al. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: a systemic review and meta-analysis. Oncotarget. 2016;7(23):34217–28.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Almatroodi SA, McDonald CF, Darby IA, Pouniotis DS. Characterization of M1/M2 tumour-associated macrophages (TAMs) and Th1/Th2 cytokine profiles in patients with NSCLC. Cancer Microenviron. 2016;9(1):1–11.PubMedGoogle Scholar
  127. 127.
    McKendry RT, Spalluto CM, Burke H, Nicholas B, Cellura D, Al-Shamkhani A, et al. Dysregulation of antiviral function of CD8(+) T cells in the chronic obstructive pulmonary disease lung. Role of the PD-1-PD-L1 axis. Am J Respir Crit Care Med. 2016;193(6):642–51.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, et al. Proliferation of PD-1 + CD8 T cells in peripheral blood after PD-1–targeted therapy in lung cancer patients. Proc Natl Acad Sci USA. 2017;114(19):4993–8.PubMedGoogle Scholar
  129. 129.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Kubo H. Extracellular vesicles in lung disease. Chest. 2017;153(1):210–6.PubMedGoogle Scholar
  131. 131.
    Fujita Y, Kosaka N, Araya J, Kuwano K, Ochiya T. Extracellular vesicles in lung microenvironment and pathogenesis. Trends Mol Med. 2015;21(9):533–42.PubMedGoogle Scholar
  132. 132.
    Wu K, Xing F, Wu S-Y, Watabe K. Extracellular vesicles as emerging targets in cancer: recent development from bench to bedside. Biochim Biophys Acta (BBA) Rev Cancer. 2017;1868(2):538–63.Google Scholar
  133. 133.
    McCready J, Sims JD, Chan D, Jay DG. Secretion of extracellular hsp90α via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer. 2010;10(1):294.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Hacker S, Lambers C, Hoetzenecker K, Pollreisz A, Aigner C, Lichtenauer M, et al. Elevated HSP27, HSP70 and HSP90 alpha in chronic obstructive pulmonary disease: markers for immune activation and tissue destruction. Clin Lab. 2009;55(1–2):31–40.PubMedGoogle Scholar
  135. 135.
    Nagaraju GP, Long TE, Park W, Landry JC, Taliaferro-Smith L, Farris AB, et al. Heat shock protein 90 promotes epithelial to mesenchymal transition, invasion, and migration in colorectal cancer. Mol Carcinog. 2015;54(10):1147–58.PubMedGoogle Scholar
  136. 136.
    Brown D, Rahman M, Nana-Sinkam SP. MicroRNAs in respiratory disease. A clinician’s overview. Ann Am Thorac Soc. 2014;11(8):1277–85.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.PubMedGoogle Scholar
  138. 138.
    Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E. MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci USA. 2013;110(45):18144–9.PubMedGoogle Scholar
  139. 139.
    Zaravinos A. The regulatory role of microRNAs in EMT and cancer. J Oncol. 2015;2015:865816.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Mongroo PS, Rustgi AK. The role of the miR-200 family in epithelial–mesenchymal transition. Cancer Biol Ther. 2010;10(3):219–22.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10(1):42–6.PubMedGoogle Scholar
  142. 142.
    Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10(10):712–23.PubMedGoogle Scholar
  143. 143.
    Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J. 2017;50(1):1601805.PubMedGoogle Scholar
  144. 144.
    Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix—the under-recognised element in lung disease? J Pathol. 2016;240(4):397–409.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–200.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Sethi T, Rintoul RC, Moore SM, MacKinnon AC, Salter D, Choo C, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med. 1999;5(6):662–8.PubMedGoogle Scholar
  147. 147.
    Whipple CA. Tumor talk: understanding the conversation between the tumor and its microenvironment. Cancer Cell Microenviron. 2015;2(2):e773.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Annoni R, Lancas T, Yukimatsu Tanigawa R, de Medeiros Matsushita M, de Morais Fernezlian S, Bruno A, et al. Extracellular matrix composition in COPD. Eur Respir J. 2012;40(6):1362–73.PubMedGoogle Scholar
  149. 149.
    Hallgren O, Nihlberg K, Dahlback M, Bjermer L, Eriksson LT, Erjefalt JS, et al. Altered fibroblast proteoglycan production in COPD. Respir Res. 2010;11:55.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Larsson-Callerfelt AK, Hallgren O, Andersson-Sjoland A, Thiman L, Bjorklund J, Kron J, et al. Defective alterations in the collagen network to prostacyclin in COPD lung fibroblasts. Respir Res. 2013;14:21.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Willenbrock F, Crabbe T, Slocombe PM, Sutton CW, Docherty AJ, Cockett MI, et al. The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: a kinetic analysis of the inhibition of gelatinase A. Biochemistry. 1993;32(16):4330–7.PubMedGoogle Scholar
  152. 152.
    Polette M, Nawrocki-Raby B, Gilles C, Clavel C, Birembaut P. Tumour invasion and matrix metalloproteinases. Crit Rev Oncol Hematol. 2004;49(3):179–86.PubMedGoogle Scholar
  153. 153.
    Djekic UV, Gaggar A, Weathington NM. Attacking the multi-tiered proteolytic pathology of COPD: new insights from basic and translational studies. Pharmacol Ther. 2009;121(2):132–46.PubMedGoogle Scholar
  154. 154.
    Murakami J, Ueda K, Sano F, Hayashi M, Nishimoto A, Hamano K. Pulmonary emphysema and tumor microenvironment in primary lung cancer. J Surg Res. 2016;200(2):690–7.PubMedGoogle Scholar
  155. 155.
    Theocharis AD, Gialeli C, Bouris P, Giannopoulou E, Skandalis SS, Aletras AJ, et al. Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS J. 2014;281(22):5023–42.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Mocchegiani E, Giacconi R, Costarelli L. Metalloproteases/anti-metalloproteases imbalance in chronic obstructive pulmonary disease: genetic factors and treatment implications. Curr Opin Pulm Med. 2011;17(Suppl 1):S11–9.PubMedGoogle Scholar
  157. 157.
    Sohal S, Reid D, Soltani A, Ward C, Weston S, Muller H, et al. Reticular basement membrane fragmentation and potential epithelial mesenchymal transition is exaggerated in the airways of smokers with chronic obstructive pulmonary disease. Respirology. 2010;15(6):930–8.PubMedGoogle Scholar
  158. 158.
    Daijo H, Hoshino Y, Kai S, Suzuki K, Nishi K, Matsuo Y, et al. Cigarette smoke reversibly activates hypoxia-inducible factor 1 in a reactive oxygen species-dependent manner. Sci Rep. 2016;6:34424.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Zhang D, Li B, Shi J, Zhao L, Zhang X, Wang C, et al. Suppression of tumor growth and metastasis by simultaneously blocking vascular endothelial growth factor (VEGF)-A and VEGF-C with a receptor-immunoglobulin fusion protein. Cancer Res. 2010;70(6):2495–503.PubMedGoogle Scholar
  160. 160.
    Zhang Q, Tang X, Zhang ZF, Velikina R, Shi S, Le AD. Nicotine induces hypoxia-inducible factor-1alpha expression in human lung cancer cells via nicotinic acetylcholine receptor-mediated signaling pathways. Clin Cancer Res. 2007;13(16):4686–94.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Harkness LM, Kanabar V, Sharma HS, Westergren-Thorsson G, Larsson-Callerfelt AK. Pulmonary vascular changes in asthma and COPD. Pulm Pharmacol Ther. 2014;29(2):144–55.PubMedGoogle Scholar
  162. 162.
    Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Kamlah F, Eul BG, Li S, Lang N, Marsh LM, Seeger W, et al. Intravenous injection of siRNA directed against hypoxia-inducible factors prolongs survival in a Lewis lung carcinoma cancer model. Cancer Gene Ther. 2009;16(3):195–205.PubMedGoogle Scholar
  164. 164.
    De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–74.PubMedGoogle Scholar
  165. 165.
    Wang J, Ikeda R, Che XF, Ooyama A, Yamamoto M, Furukawa T, et al. VEGF expression is augmented by hypoxiainduced PGIS in human fibroblasts. Int J Oncol. 2013;43(3):746–54.PubMedGoogle Scholar
  166. 166.
    Faner R, Cruz T, Lopez-Giraldo A, Agusti A. Network medicine, multimorbidity and the lung in the elderly. Eur Respir J. 2014;44(3):775–88.PubMedGoogle Scholar
  167. 167.
    Siafakas NM, Antoniou KM, Tzortzaki EG. Role of angiogenesis and vascular remodeling in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2007;2(4):453–62.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Westergren-Thorsson G, Bagher M, Andersson-Sjoland A, Thiman L, Lofdahl CG, Hallgren O, et al. VEGF synthesis is induced by prostacyclin and TGF-beta in distal lung fibroblasts from COPD patients and control subjects: implications for pulmonary vascular remodelling. Respirology. 2018;23(1):68–75.PubMedGoogle Scholar
  169. 169.
    Santos S, Peinado VI, Ramirez J, Morales-Blanhir J, Bastos R, Roca J, et al. Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167(9):1250–6.PubMedGoogle Scholar
  170. 170.
    Kanazawa H, Asai K, Hirata K, Yoshikawa J. Possible effects of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. Am J Med. 2003;114(5):354–8.PubMedGoogle Scholar
  171. 171.
    Valipour A, Schreder M, Wolzt M, Saliba S, Kapiotis S, Eickhoff P, et al. Circulating vascular endothelial growth factor and systemic inflammatory markers in patients with stable and exacerbated chronic obstructive pulmonary disease. Clin Sci (Lond). 2008;115(7):225–32.PubMedGoogle Scholar
  172. 172.
    Kranenburg AR, de Boer WI, Alagappan VK, Sterk PJ, Sharma HS. Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease. Thorax. 2005;60(2):106–13.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Kranenburg AR, De Boer WI, Van Krieken JH, Mooi WJ, Walters JE, Saxena PR, et al. Enhanced expression of fibroblast growth factors and receptor FGFR-1 during vascular remodeling in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2002;27(5):517–25.PubMedGoogle Scholar
  174. 174.
    Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med. 2001;163(3 Pt 1):737–44.PubMedGoogle Scholar
  175. 175.
    Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Investig. 2000;106(11):1311–9.PubMedGoogle Scholar
  176. 176.
    Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008;456(7223):809–13.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Segev A, Nili N, Strauss BH. The role of perlecan in arterial injury and angiogenesis. Cardiovasc Res. 2004;63(4):603–10.PubMedGoogle Scholar
  178. 178.
    Ashikari-Hada S, Habuchi H, Kariya Y, Kimata K. Heparin regulates vascular endothelial growth factor165-dependent mitogenic activity, tube formation, and its receptor phosphorylation of human endothelial cells. Comparison of the effects of heparin and modified heparins. J Biol Chem. 2005;280(36):31508–15.PubMedGoogle Scholar
  179. 179.
    Tufvesson E, Westergren-Thorsson G. Biglycan and decorin induce morphological and cytoskeletal changes involving signalling by the small GTPases RhoA and Rac1 resulting in lung fibroblast migration. J Cell Sci. 2003;116(Pt 23):4857–64.PubMedGoogle Scholar
  180. 180.
    Xing X, Gu X, Ma T, Ye H. Biglycan up-regulated vascular endothelial growth factor (VEGF) expression and promoted angiogenesis in colon cancer. Tumour Biol. 2015;36(3):1773–80.PubMedGoogle Scholar
  181. 181.
    Amir Soltani HKM, Sohal SS, Reid DW, Weston S, Wood-Baker R, Walters EH. The distinctive characteristics of bronchial reticular basement membrane and vessel remodelling in chronic obstructive pulmonary disease (COPD) versus asthma: they are not the same disease. Histopathology. 2012;60:964 (In press).PubMedPubMedCentralGoogle Scholar
  182. 182.
    Sohal SS, Soltani A, Reid D, Ward C, Wills KE, Muller HK, et al. A randomized controlled trial of inhaled corticosteroids (ICS) on markers of epithelial–mesenchymal transition (EMT) in large airway samples in COPD: an exploratory proof of concept study. Int J Chron Obstruct Pulmon Dis. 2014;9:533–42.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Soltani A, Reid DW, Sohal SS, Wood-Baker R, Weston S, Muller HK, et al. Basement membrane and vascular remodelling in smokers and chronic obstructive pulmonary disease: a cross-sectional study. Respir Res. 2010;11:105.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Soltani A, Sohal S, Reid D, Weston S, Wood-Baker R, Walters E. Vessel-associated transforming growth factor-Beta1 (TGF-beta1) is increased in the bronchial reticular basement membrane in COPD and normal smokers. PLoS One. 2012;7(6):e39736.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Soltani A, Wood-Baker R, Sohal SS, Muller HK, Reid D, Walters EH. Reticular basement membrane vessels are increased in COPD bronchial mucosa by both factor VIII and collagen IV immunostaining and are hyperpermeable. J Allergy (Cairo). 2012;2012:958383.PubMedCentralGoogle Scholar
  186. 186.
    Soltani A, Walters EH, Reid DW, Shukla SD, Nowrin K, Ward C, et al. Inhaled corticosteroid normalizes some but not all airway vascular remodeling in COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2359–67.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Sohal SS, Mahmood QM, Walters HE. Clinical significance of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD): potential target for prevention of airway fibrosis and lung cancer. Clin Transl Med. 2014;3(1):33.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Herbst RS, Onn A, Sandler A. Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol. 2005;23(14):3243–56.PubMedGoogle Scholar
  189. 189.
    Zoeller JJ, Whitelock JM, Iozzo RV. Perlecan regulates developmental angiogenesis by modulating the VEGF-VEGFR2 axis. Matrix Biol. 2009;28(5):284–91.PubMedPubMedCentralGoogle Scholar
  190. 190.
    Sharma B, Handler M, Eichstetter I, Whitelock JM, Nugent MA, Iozzo RV. Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J Clin Investig. 1998;102(8):1599–608.PubMedGoogle Scholar
  191. 191.
    Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell. 2011;147(3):539–53.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Franses JW, Baker AB, Chitalia VC, Edelman ER. Stromal endothelial cells directly influence cancer progression. Sci Transl Med. 2011;3(66):66ra5.PubMedPubMedCentralGoogle Scholar
  193. 193.
    Rooney C, Sethi T. The epithelial cell and lung cancer: the link between chronic obstructive pulmonary disease and lung cancer. Respiration. 2011;81(2):89–104.PubMedGoogle Scholar
  194. 194.
    Wu G, Luo J, Rana JS, Laham R, Sellke FW, Li J. Involvement of COX-2 in VEGF-induced angiogenesis via P38 and JNK pathways in vascular endothelial cells. Cardiovasc Res. 2006;69(2):512–9.PubMedGoogle Scholar
  195. 195.
    Chen Y, Chen P, Hanaoka M, Droma Y, Kubo K. Enhanced levels of prostaglandin E2 and matrix metalloproteinase-2 correlate with the severity of airflow limitation in stable COPD. Respirology. 2008;13(7):1014–21.PubMedGoogle Scholar
  196. 196.
    Campa D, Zienolddiny S, Maggini V, Skaug V, Haugen A, Canzian F. Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis. 2004;25(2):229–35.PubMedGoogle Scholar
  197. 197.
    Ruan D, So SP. Prostaglandin E2 produced by inducible COX-2 and mPGES-1 promoting cancer cell proliferation in vitro and in vivo. Life Sci. 2014;116(1):43–50.PubMedGoogle Scholar
  198. 198.
    Han S, Ritzenthaler JD, Wingerd B, Roman J. Activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) increases the expression of prostaglandin E2 receptor subtype EP4. The roles of phosphatidylinositol 3-kinase and CCAAT/enhancer-binding protein beta. J Biol Chem. 2005;280(39):33240–9.PubMedGoogle Scholar
  199. 199.
    Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190(4):693–706.PubMedPubMedCentralGoogle Scholar
  200. 200.
    Yokouchi H, Kanazawa K. Revisiting the role of COX-2 inhibitor for non-small cell lung cancer. Transl Lung Cancer Res. 2015;4(5):660–4.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13:233–45.PubMedGoogle Scholar
  202. 202.
    Yang IA, Holloway JW, Fong KM. Genetic susceptibility to lung cancer and co-morbidities. J Thorac Dis. 2013;5(Suppl 5):S454–62.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Ziółkowska-Suchanek I, Mosor M, Gabryel P, Grabicki M, Zurawek M, Fichna M, et al. Susceptibility loci in lung cancer and COPD: association of IREB2 and FAM13A with pulmonary diseases. Sci Rep. 2015;5:1–14.Google Scholar
  204. 204.
    Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, et al. Nicotine induces cell proliferation, invasion and epithelial–mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009;124(1):36–45.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Zou W, Zou Y, Zhao Z, Li B, Ran P. Nicotine-induced epithelial–mesenchymal transition via Wnt/beta-catenin signaling in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2013;304(4):L199–209.PubMedGoogle Scholar
  206. 206.
    Durham AL, Adcock IM. The relationship between COPD and lung cancer. Lung Cancer. 2015;90:121–7.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Wauters E, Janssens W, Vansteenkiste J, Decaluwe H, Heulens N, Thienpont B, et al. DNA methylation profiling of non-small cell lung cancer reveals a COPD-driven immune-related signature. Thorax. 2015;70(12):1113–22.PubMedGoogle Scholar
  208. 208.
    Sethi T. DNA methylation profiling of non-small cell lung cancer reveals a COPD-driven immune-related signature. Thorax. 2015;70(12):1110–1.PubMedGoogle Scholar
  209. 209.
    Sohal SS. Airway basal cell reprogramming and EMT: potential key to understanding early COPD. Am J Respir Crit Care Med. 2018;197(12):31.Google Scholar
  210. 210.
    George JT, Jolly MK, Xu S, Somarelli JA, Levine H. Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Cancer Res. 2017;77:6415–28.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY-J, et al. Epithelial–mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med. 2014;6:1279–93.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, et al. Epithelial–mesenchymal transition, a spectrum of states: role in lung development, homeostasis, and disease. Dev Dyn. 2017;247:346–358.PubMedGoogle Scholar
  213. 213.
    Mahmood MQ, Reid D, Ward C, Muller HK, Knight DA, Sohal SS, et al. Transforming growth factor (TGF) β1 and Smad signalling pathways: a likely key to EMT-associated COPD pathogenesis. Respirology. 2017;22(1):133–40.PubMedGoogle Scholar
  214. 214.
    Mahmood MQ, Sohal SS, Shukla SD, Ward C, Hardikar A, Noor WD, et al. Epithelial mesenchymal transition in smokers: large versus small airways and relation to airflow obstruction. Int J Chron Obstruct Pulmon Dis. 2015;10:1515–24.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Sohal S, Reid D, Soltani A, Ward C, Weston S, Muller H, et al. Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease. Respir Res. 2011;12:130. Scholar
  216. 216.
    Sohal S, Walters E. Epithelial mesenchymal transition (EMT) in small airways of COPD patients. Thorax. 2013;68(8):783–4.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Mahmood MQ, Walters EH, Shukla SD, Weston S, Muller HK, Ward C, et al. Beta-catenin, twist and snail: transcriptional regulation of EMT in smokers and COPD, and relation to airflow obstruction. Sci Rep. 2017;7(1):10832.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Sohal SS, Walters EH. Advanced non-small-cell lung cancer. N Engl J Med. 2017;377(20):1998–9.PubMedGoogle Scholar
  219. 219.
    Sohal S, Walters E. Role of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD). Respir Res. 2013;14(1):120.PubMedPubMedCentralGoogle Scholar
  220. 220.
    Sohal SS, Hansbro PM, Walters EH. Epithelial mesenchymal transition in chronic obstructive pulmonary disease, a precursor for epithelial cancers: understanding and translation to early therapy. Ann Am Thorac Soc. 2017;14(9):1491–2.PubMedGoogle Scholar
  221. 221.
    Mahmood MQ, Ward C, Muller HK, Sohal SS, Walters EH. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): a mutual association with airway disease. Med Oncol. 2017;34(3):45.PubMedGoogle Scholar
  222. 222.
    Sohal SS, Eapen MS, Ward C, Walters EH. Epithelial–mesenchymal transition: a necessary new therapeutic target in chronic obstructive pulmonary disease? Am J Respir Crit Care Med. 2017;196(3):393–4.PubMedGoogle Scholar
  223. 223.
    Sohal SS, Walters EH. Essential need for rethink of COPD airway pathology: implications for new drug approaches for prevention of lung cancer as well as small airway fibrosis. Int J Chron Obstruct Pulmon Dis. 2017;12:2677–9.PubMedPubMedCentralGoogle Scholar
  224. 224.
    Eapen MS, Kota A, Vindin H, McAlinden KD, Xenaki D, Oliver BG, et al. Apoptosis signal-regulating kinase 1 (ASK1) inhibition attenuates human airway smooth muscle growth and migration in chronic obstructive pulmonary disease (COPD). Clin Sci (Lond). 2018;132(14):1615–27.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Nishioka M, Venkatesan N, Dessalle K, Mogas A, Kyoh S, Lin TY, et al. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respir Res. 2015;16:1–12.Google Scholar
  226. 226.
    Bocci F, Jolly MK, Tripathi SC, Aguilar M, Onuchic N, Hanash SM, et al. Numb prevents a complete epithelial–mesenchymal transition by modulating Notch signalling. J R Soc Interface. 2017;14:20170512.PubMedPubMedCentralGoogle Scholar
  227. 227.
    Murray LA, Dunmore R, Camelo A, Da Silva CA, Gustavsson MJ, Habiel DM, et al. Acute cigarette smoke exposure activates apoptotic and inflammatory programs but a second stimulus is required to induce epithelial to mesenchymal transition in COPD epithelium. Respir Res. 2017;18:1–12.Google Scholar
  228. 228.
    Jia D, Jolly MK, Tripathi SC, Hollander PD, Huang B, Lu M, et al. Distinguishing mechanisms underlying EMT tristability. Cancer Converg. 2017;1:2.PubMedPubMedCentralGoogle Scholar
  229. 229.
    Leroy P, Mostov KE. Slug is required for cell survival during partial epithelial–mesenchymal transition of HGF-induced tubulogenesis. J Cell Sci. 2007;18:1943–52.Google Scholar
  230. 230.
    Giacomelli C, Daniele S, Romei C, Tavanti L, Neri T, Piano I, et al. The A2B adenosine receptor modulates the epithelial–mesenchymal transition through the balance of cAMP/PKA and MAPK/ERK pathway activation in human epithelial lung cells. Front Pharmacol. 2018;9:1–18.Google Scholar
  231. 231.
    Jolly MK, Boareto M, Debeb BG, Aceto N, Farach-Carson MC, Woodward WA, et al. Inflammatory breast cancer: a model for investigating cluster-based dissemination. NPJ Breast Cancer. 2017;3:21.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Dang TT, Esparza MA, Maine EA, Westcott JM, Pearson GW. DeltaNp63alpha promotes breast cancer cell motility through the selective activation of components of the epithelial-to-mesenchymal transition program. Cancer Res. 2015;75(18):3925–35.PubMedPubMedCentralGoogle Scholar
  233. 233.
    Fustaino V, Presutti D, Colombo T, Cardinali B, Papoff G, Brandi R, et al. Characterization of epithelial-mesenchymal transition intermediate/hybrid phenotypes associated to resistance to EGFR inhibitors in non-small cell lung cancer cell lines. Oncotarget. 2017;8:103340–63.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Jolly MK, Jia D, Boareto M, Mani SA, Pienta KJ, Ben-Jacob E, et al. Coupling the modules of EMT and stemness: a tunable ‘stemness window’ model. Oncotarget. 2015;6:25161–74.PubMedPubMedCentralGoogle Scholar
  235. 235.
    Grosse-Wilde A, Fouquier d’ Herouei A, McIntosh E, Ertaylan G, Skupin A, Kuestner RE, et al. Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS One. 2015;10:e0126522.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, et al. Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol. 2015;5:155.PubMedPubMedCentralGoogle Scholar
  237. 237.
    Eapen MS, Myers S, Lu W, Tanghe C, Sharma P, Sohal SS. sE-cadherin and sVE-cadherin indicate active epithelial/endothelial to mesenchymal transition (EMT and EndoMT) in smokers and COPD: implications for new biomarkers and therapeutics. Biomark Biochem Indic Expos Response Susceptibility Chem 2018:1-5.Google Scholar
  238. 238.
    Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation. 2012;125(14):1795–808.PubMedPubMedCentralGoogle Scholar
  239. 239.
    Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179(3):1074–80.PubMedPubMedCentralGoogle Scholar
  240. 240.
    Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67(21):10123–8.PubMedGoogle Scholar
  241. 241.
    Lin F, Wang N, Zhang TC. The role of endothelial–mesenchymal transition in development and pathological process. IUBMB Life. 2012;64(9):717–23.PubMedGoogle Scholar
  242. 242.
    Rieder F, Kessler SP, West GA, Bhilocha S, de la Motte C, Sadler TM, et al. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol. 2011;179(5):2660–73.PubMedPubMedCentralGoogle Scholar
  243. 243.
    Gurzu S, Turdean S, Kovecsi A, Contac AO, Jung I. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: an update. World J Clin Cases. 2015;3(5):393–404.PubMedPubMedCentralGoogle Scholar
  244. 244.
    Welch-Reardon KM, Wu N, Hughes CC. A role for partial endothelial-mesenchymal transitions in angiogenesis? Arterioscler Thromb Vasc Biol. 2015;35(2):303–8.PubMedGoogle Scholar
  245. 245.
    Sohal SS. Endothelial to mesenchymal transition (EndMT): an active process in Chronic Obstructive Pulmonary Disease (COPD)? Respir Res. 2016;17:4–7.Google Scholar
  246. 246.
    Sohal SS. Epithelial and endothelial cell plasticity in chronic obstructive pulmonary disease (COPD). Respir Investig. 2017;55(2):104–13.PubMedGoogle Scholar
  247. 247.
    Choi SH, Nam JK, Kim BY, Jang J, Jin YB, Lee HJ, et al. HSPB1 inhibits the endothelial-to-mesenchymal transition to suppress pulmonary fibrosis and lung tumorigenesis. Cancer Res. 2016;76:1019–30.PubMedGoogle Scholar
  248. 248.
    Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 2008;99:1375–9.PubMedPubMedCentralGoogle Scholar
  249. 249.
    Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 2008;99(9):1375–9.PubMedPubMedCentralGoogle Scholar
  250. 250.
    Sakao S, Voelkel NF, Tatsumi K. The vascular bed in COPD: pulmonary hypertension and pulmonary vascular alterations. Eur Respir Rev. 2014;23(133):350–5.PubMedGoogle Scholar
  251. 251.
    Soltani A, Muller H, Sohal S, Reid D, Weston S, Wood-Baker R, et al. Distinctive characteristics of bronchial reticular basement membrane and vessel remodelling in chronic obstructive pulmonary disease (COPD) and in asthma: they are not the same disease. Histopathology. 2012;60(6):964–70.PubMedPubMedCentralGoogle Scholar
  252. 252.
    Soltani A, Sohal SS, Reid D, Weston S, Muller HK, Wood-Baker R, et al. Basement membrane remodelling in COPD responds to inhaled corticosteroids. The Thoracic Society of Australia & New Zealand Annual Scientific Meeting; 2010; Brisbane, Australia. 2010.Google Scholar
  253. 253.
    Soltani A, Sohal SS, Reid D, Weston S, Wood-Baker R, Walters EH. Vessel-associated transforming growth factor-beta1 (TGF-beta1) is increased in the bronchial reticular basement membrane in COPD and normal smokers. PLoS One. 2012;7(6):1–5.Google Scholar
  254. 254.
    Zanini A, Chetta A, Imperatori AS, Spanevello A, Olivieri D. The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. Respir Res. 2010;11:132.PubMedPubMedCentralGoogle Scholar
  255. 255.
    Barbera JA, Peinado VI, Santos S. Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J. 2003;21(5):892–905.PubMedGoogle Scholar
  256. 256.
    Reimann S, Fink L, Wilhelm J, Hoffmann J, Bednorz M, Seimetz M, et al. Increased S100A4 expression in the vasculature of human COPD lungs and murine model of smoke-induced emphysema. Respir Res. 2015;16:127.PubMedPubMedCentralGoogle Scholar
  257. 257.
    Coll-Bonfill N, Musri MM, Ivo V, Barbera JA, Tura-Ceide O. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodelling. Am J Stem Cells. 2015;4(1):13–21.PubMedPubMedCentralGoogle Scholar
  258. 258.
    Watanabe K, Villarreal-Ponce A, Sun P, Salmans ML, Fallahi M, Andersen B, et al. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by ovol2 transcriptional repressor. Dev Cell. 2014;29:59–74.PubMedPubMedCentralGoogle Scholar
  259. 259.
    Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M, Hanash SM, et al. Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget. 2016;7:27067–84.PubMedPubMedCentralGoogle Scholar
  260. 260.
    Hong T, Watanabe K, Ta CH, Villarreal-Ponce A, Nie Q, Dai X. An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. PLoS Comput Biol. 2015;11:e1004569.PubMedPubMedCentralGoogle Scholar
  261. 261.
    Regan ER, Aird WC. Dynamical systems approach to endothelial heterogeneity. Circ Res. 2012;111:110–30.PubMedPubMedCentralGoogle Scholar
  262. 262.
    Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol. 2017;11:755–69.PubMedPubMedCentralGoogle Scholar
  263. 263.
    Cheung KJ, Ewald AJ. Illuminating breast cancer invasion: diverse roles for cell–cell interactions. Curr Opin Cell Biol. 2015;30:99–111.Google Scholar
  264. 264.
    Jones B, Donovan C, Liu G, Gomez HM, Chimankar V, Harrison CL, et al. Animal models of COPD: what do they tell us? Respirology. 2017;22(1):21–32.PubMedGoogle Scholar
  265. 265.
    Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol. 2013;131(3):752–62.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Hansbro PM, Hamilton MJ, Fricker M, Gellatly SL, Jarnicki AG, Zheng D, et al. Importance of mast cell Prss31/transmembrane tryptase/tryptase-gamma in lung function and experimental chronic obstructive pulmonary disease and colitis. J Biol Chem. 2014;289(26):18214–27.PubMedPubMedCentralGoogle Scholar
  267. 267.
    Haw TJ, Starkey MR, Nair PM, Pavlidis S, Liu G, Nguyen DH, et al. A pathogenic role for tumor necrosis factor-related apoptosis-inducing ligand in chronic obstructive pulmonary disease. Mucosal Immunol. 2016;9(4):859–72.PubMedGoogle Scholar
  268. 268.
    Churg A, Cosio M, Wright JL. Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):L612–31.PubMedGoogle Scholar
  269. 269.
    Gaschler GJ, Bauer CM, Zavitz CC, Stampfli MR. Animal models of chronic obstructive pulmonary disease exacerbations. Contrib Microbiol. 2007;14:126–41.PubMedGoogle Scholar
  270. 270.
    Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science. 1997;277(5334):2002–4.PubMedGoogle Scholar
  271. 271.
    Bazett M, Biala A, Huff RD, Zeglinksi MR, Hansbro PM, Bosiljcic M, et al. Attenuating immune pathology using a microbial-based intervention in a mouse model of cigarette smoke-induced lung inflammation. Respir Res. 2017;18:92.PubMedPubMedCentralGoogle Scholar
  272. 272.
    Hsu AC, Starkey MR, Hanish I, Parsons K, Haw TJ, Howland LJ, et al. Targeting PI3K-p110alpha suppresses influenza virus infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(9):1012–23.PubMedGoogle Scholar
  273. 273.
    Liu G, Cooley MA, Jarnicki AG, Hsu ACY, Nair PM, Haw TJ, et al. Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight. 2016;1(9):e86380.PubMedPubMedCentralGoogle Scholar
  274. 274.
    Kedzierski L, Tate MD, Hsu AC, Kolesnik TB, Linossi EM, Dagley L, et al. Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling. eLife. 2017;6:e20444.PubMedPubMedCentralGoogle Scholar
  275. 275.
    Hsu AC, Dua K, Starkey MR, Haw TJ, Nair PM, Nichol K, et al. MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight. 2017;2(7):e90443.PubMedPubMedCentralGoogle Scholar
  276. 276.
    Fricker M, Goggins BJ, Mateer S, Jones B, Kim RY, Gellatly SL, et al. Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction. JCI Insight. 2018;3(3):94040.PubMedGoogle Scholar
  277. 277.
    Jarnicki AG, Schilter H, Liu G, Wheeldon K, Essilfie AT, Foot JS, et al. The inhibitor of semicarbazide-sensitive amine oxidase, PXS-4728A, ameliorates key features of chronic obstructive pulmonary disease in a mouse model. Br J Pharmacol. 2016;173(22):3161–75.PubMedPubMedCentralGoogle Scholar
  278. 278.
    Moheimani F, Roth HM, Cross J, Reid AT, Shaheen F, Warner SM, et al. Disruption of beta-catenin/CBP signaling inhibits human airway epithelial–mesenchymal transition and repair. Int J Biochem Cell Biol. 2015;68:59–69.PubMedGoogle Scholar
  279. 279.
    Barnes PJ. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov. 2013;12(7):543–59.PubMedGoogle Scholar
  280. 280.
    Churg A, Wang RD, Tai H, Wang X, Xie C, Wright JL. Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med. 2004;170(5):492–8.PubMedGoogle Scholar
  281. 281.
    D’Hulst AI, Bracke KR, Maes T, De Bleecker JL, Pauwels RA, Joos GF, et al. Role of tumour necrosis factor-alpha receptor p75 in cigarette smoke-induced pulmonary inflammation and emphysema. Eur Respir J. 2006;28(1):102–12.PubMedGoogle Scholar
  282. 282.
    Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, et al. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev. 2017;278(1):41–62.PubMedGoogle Scholar
  283. 283.
    Duong C, Seow HJ, Bozinovski S, Crack PJ, Anderson GP, Vlahos R. Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2010;299(3):L425–33.PubMedGoogle Scholar
  284. 284.
    Andrews CS, Matsuyama S, Lee B-C, Li J-D. Resveratrol suppresses NTHi-induced inflammation via up-regulation of the negative regulator MyD88 short. Sci Rep. 2016;6:34445.PubMedPubMedCentralGoogle Scholar
  285. 285.
    Medicherla S, Fitzgerald MF, Spicer D, Woodman P, Ma JY, Kapoun AM, et al. p38alpha-selective mitogen-activated protein kinase inhibitor SD-282 reduces inflammation in a subchronic model of tobacco smoke-induced airway inflammation. J Pharmacol Exp Ther. 2008;324(3):921–9.PubMedGoogle Scholar
  286. 286.
    Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–2.PubMedGoogle Scholar
  287. 287.
    Meja KK, Seldon PM, Nasuhara Y, Ito K, Barnes PJ, Lindsay MA, et al. p38 MAP kinase and MKK-1 co-operate in the generation of GM-CSF from LPS-stimulated human monocytes by an NF-kappa B-independent mechanism. Br J Pharmacol. 2000;131(6):1143–53.PubMedPubMedCentralGoogle Scholar
  288. 288.
    Kim RY, Horvat JC, Pinkerton JW, Starkey MR, Essilfie AT, Mayall JR, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol. 2017;139(2):519–32.PubMedGoogle Scholar
  289. 289.
    Duan W, Aguinaldo Datiles AM, Leung BP, Vlahos CJ, Wong WS. An anti-inflammatory role for a phosphoinositide 3-kinase inhibitor LY294002 in a mouse asthma model. Int Immunopharmacol. 2005;5(3):495–502.PubMedGoogle Scholar
  290. 290.
    Thomas MJ, Smith A, Head DH, Milne L, Nicholls A, Pearce W, et al. Airway inflammation: chemokine-induced neutrophilia and the class I phosphoinositide 3-kinases. Eur J Immunol. 2005;35(4):1283–91.PubMedGoogle Scholar
  291. 291.
    Owen CA. Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008;3(2):253–68.PubMedPubMedCentralGoogle Scholar
  292. 292.
    Walters EH, Reid D, Soltani A, Ward C. Angiogenesis: a potentially critical part of remodelling in chronic airway diseases? Pharmacol Ther. 2008;118(1):128–37.PubMedGoogle Scholar
  293. 293.
    Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15(1):55–63.PubMedGoogle Scholar
  294. 294.
    Kim RY, Pinkerton JW, Gibson PG, Cooper MA, Horvat JC, Hansbro PM. Inflammasomes in COPD and neutrophilic asthma. Thorax. 2015;70(12):1199–201.PubMedGoogle Scholar
  295. 295.
    Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ, Brown AC, et al. Role for NLRP3 inflammasome-mediated, IL-1beta-dependent responses in severe, steroid-resistant asthma. Am J Respir Crit Care Med. 2017;196(3):283–97.PubMedGoogle Scholar
  296. 296.
    Shukla SD, Budden KF, Neal R, Hansbro PM. Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunol. 2017;6(3):e133.Google Scholar
  297. 297.
    Mateer SW, Maltby S, Marks E, Foster PS, Horvat JC, Hansbro PM, et al. Potential mechanisms regulating pulmonary pathology in inflammatory bowel disease. J Leukoc Biol. 2015;98(5):727–37.PubMedGoogle Scholar
  298. 298.
    Starkey MR, Jarnicki AG, Essilfie A-T, Gellatly SL, Kim RY, Brown AC, et al. Murine models of infectious exacerbations of airway inflammation. Curr Opin Pharmacol. 2013;13(3):337–44.PubMedGoogle Scholar
  299. 299.
    Memon AA, Jakobsen S, Dagnaes-Hansen F, Sorensen BS, Keiding S, Nexo E. Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: a micro-PET study on mice with lung tumor xenografts. Cancer Res. 2009;69(3):873–8.Google Scholar
  300. 300.
    Steiner P, Joynes C, Bassi R, Wang S, Tonra JR, Hadari YR, et al. Tumor growth inhibition with cetuximab and chemotherapy in non-small cell lung cancer xenografts expressing wild-type and mutated epidermal growth factor receptor. Clin Cancer Res. 2007;13(5):1540–51.PubMedGoogle Scholar
  301. 301.
    Sakuma Y, Matsukuma S, Nakamura Y, Yoshihara M, Koizume S, Sekiguchi H, et al. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells. Lab Investig. 2013;93:1137.PubMedGoogle Scholar
  302. 302.
    Akhtar S, Meeran SM, Katiyar N, Katiyar SK. Grape seed proanthocyanidins inhibit the growth of human non-small cell lung cancer xenografts by targeting insulin-like growth factor Binding protein-3, tumor cell proliferation, and angiogenic factors. Clin Cancer Res. 2009;15(3):821–31.PubMedGoogle Scholar
  303. 303.
    McLemore TL, Liu MC, Blacker PC, Gregg M, Alley MC, Abbott BJ, et al. Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res. 1987;47(19):5132–40.PubMedGoogle Scholar
  304. 304.
    Yamori T, Sato S, Chikazawa H, Kadota T. Anti-tumor efficacy of paclitaxel against human lung cancer xenografts. Jpn J Cancer Res. 1997;88(12):1205–10.PubMedPubMedCentralGoogle Scholar
  305. 305.
    Dong X, Guan J, English JC, Flint J, Yee J, Evans K, et al. Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin Cancer Res. 2010;16(5):1442–51.PubMedGoogle Scholar
  306. 306.
    Meuwissen R, Berns A. Mouse models for human lung cancer. Genes Dev. 2005;19(6):643–64.PubMedGoogle Scholar
  307. 307.
    Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903.PubMedGoogle Scholar
  308. 308.
    Cohen MH, Williams GA, Sridhara R, Chen G, McGuinn WD Jr, Morse D, et al. United States Food and Drug Administration Drug Approval summary: Gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res. 2004;10(4):1212–8.PubMedGoogle Scholar
  309. 309.
    Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet (London, England). 2005;366(9496):1527–37.Google Scholar
  310. 310.
    Perez-Soler R. The role of erlotinib (Tarceva, OSI 774) in the treatment of non-small cell lung cancer. Clin Cancer Res. 2004;10(12):4238s–40s.PubMedGoogle Scholar
  311. 311.
    Soda M, Takada S, Takeuchi K, Choi YL, Enomoto M, Ueno T, et al. A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci. 2008;105(50):19893–7.PubMedGoogle Scholar
  312. 312.
    Gerber DE, Minna JD. ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell. 2010;18(6):548–51.PubMedPubMedCentralGoogle Scholar
  313. 313.
    Zhao B, Magdaleno S, Chua S, et al. Transgenicmouse models for lung cancer. Exp Lung Res. 2000;26(8):567–79.PubMedGoogle Scholar
  314. 314.
    Ji H, Li D, Chen L, Shimamura T, Kobayashi S, McNamara K, et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell. 2006;9(6):485–95.PubMedGoogle Scholar
  315. 315.
    Sakai Y, Sasahira T, Ohmori H, Yoshida K, Kuniyasu H. Conjugated linoleic acid reduced metastasized LL2 tumors in mouse peritoneum. Virchows Arch. 2006;449(3):341–7.PubMedGoogle Scholar
  316. 316.
    Stoner GD, Greisiger EA, Schut HAJ, Pereira MA, Loeb TR, Klaunig JE, et al. A comparison of the lung adenoma response in strain A/J mice after intraperitoneal and oral administration of carcinogens. Toxicol Appl Pharmacol. 1984;72(2):313–23.PubMedGoogle Scholar
  317. 317.
    Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M. Tobacco smoke promotes lung tumorigenesis by triggering IKKβ- and JNK1-dependent inflammation. Cancer Cell. 2010;17(1):89–97.PubMedPubMedCentralGoogle Scholar
  318. 318.
    Rehm S, Lijinsky W, Singh G, Katyal SL. Mouse bronchiolar cell carcinogenesis. Histologic characterization and expression of Clara cell antigen in lesions induced by N-nitrosobis-(2-chloroethyl) ureas. Am J Pathol. 1991;139(2):413.PubMedPubMedCentralGoogle Scholar
  319. 319.
    de Seranno S, Meuwissen R. Progress and applications of mouse models for human lung cancer. Eur Respir J. 2010;35(2):426–43.PubMedGoogle Scholar
  320. 320.
    Nikitin AY, Alcaraz A, Anver MR, Bronson RT, Cardiff RD, Dixon D, et al. Classification of proliferative pulmonary lesions of the mouse. Cancer Res. 2004;64(7):2307–16.PubMedGoogle Scholar
  321. 321.
    Witschi H, Espiritu I, Peake JL, Wu K, Maronpot RR, Pinkerton KE. The carcinogenicity of environmental tobacco smoke. Carcinogenesis. 1997;18(3):575–86.PubMedGoogle Scholar
  322. 322.
    Shimkin MB, Stoner GD. Lung tumors in mice: application to carcinogenesis bioassay. Adv Cancer Res. 1975;21:1–58.PubMedGoogle Scholar
  323. 323.
    Malkinson AM. Primary lung tumors in mice as an aid for understanding, preventing, and treating human adenocarcinoma of the lung. Lung Cancer. 2001;32(3):265–79.PubMedGoogle Scholar
  324. 324.
    Malkinson AM. Genetic studies on lung tumor susceptibility and histogenesis in mice. Environ Health Perspect. 1991;93:149.PubMedPubMedCentralGoogle Scholar
  325. 325.
    Beer DG, Malkinson AM. Genetic influence on type 2 or Clara cell origin of pulmonary adenomas in urethan-treated mice. JNCI J Natl Cancer Inst. 1985;75(5):963–9.PubMedGoogle Scholar
  326. 326.
    Wang Y, Zhang Z, Yan Y, Lemon WJ, LaRegina M, Morrison C, et al. A chemically induced model for squamous cell carcinoma of the lung in mice. Cancer Res. 2004;64(5):1647–54.PubMedGoogle Scholar
  327. 327.
    Dooley AL, Winslow MM, Chiang DY, Banerji S, Stransky N, Dayton TL, et al. Nuclear factor I/B is an oncogene in small cell lung cancer. Genes Dev. 2011;25(14):1470–5.PubMedPubMedCentralGoogle Scholar
  328. 328.
    Park K-S, Liang M-C, Raiser DM, Zamponi R, Roach RR, Curtis SJ, et al. Characterization of the cell of origin for small cell lung cancer. Cell Cycle. 2011;10(16):2806–15.PubMedPubMedCentralGoogle Scholar
  329. 329.
    de Torres J, Marin J, Casanova C, Cote C, Carrizo S, Cordoba-Lanus E, et al. Lung cancer in patients with chronic obstructive pulmonary disease: incidence and predicting factors. Am J Respir Crit Care Med. 2011;184(8):913–9.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mathew Suji Eapen
    • 1
  • Philip M. Hansbro
    • 2
    • 3
  • Anna-Karin Larsson‑Callerfelt
    • 4
  • Mohit K. Jolly
    • 5
    • 17
  • Stephen Myers
    • 1
  • Pawan Sharma
    • 6
    • 7
  • Bernadette Jones
    • 2
    • 3
  • Md Atiqur Rahman
    • 2
    • 3
  • James Markos
    • 1
    • 8
  • Collin Chia
    • 1
    • 8
  • Josie Larby
    • 1
    • 8
  • Greg Haug
    • 1
    • 8
  • Ashutosh Hardikar
    • 1
    • 15
  • Heinrich C. Weber
    • 1
    • 16
  • George Mabeza
    • 1
    • 16
  • Vinicius Cavalheri
    • 9
    • 10
  • Yet H. Khor
    • 11
    • 12
    • 13
    • 14
  • Christine F. McDonald
    • 12
    • 13
    • 14
  • Sukhwinder Singh Sohal
    • 1
    Email author
  1. 1.Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and MedicineUniversity of TasmaniaLauncestonAustralia
  2. 2.School of Biomedical Sciences and Pharmacy, The University of NewcastleCallaghanAustralia
  3. 3.Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle and Centenary Institute and University of Technology SydneySydneyAustralia
  4. 4.Lung Biology, Department of Experimental Medical Science, Lund UniversityLundSweden
  5. 5.Center for Theoretical Biological Physics, Rice UniversityHoustonUSA
  6. 6.Discipline of Medical Sciences, School of Life SciencesUniversity of Technology SydneySydneyAustralia
  7. 7.Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of SydneySydneyAustralia
  8. 8.Department of Respiratory MedicineLaunceston General HospitalLauncestonAustralia
  9. 9.School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin UniversityPerthAustralia
  10. 10.Institute for Respiratory Health, Sir Charles Gairdner HospitalNedlandsAustralia
  11. 11.Department of Allergy, Immunology and Respiratory MedicineAlfred HealthMelbourneAustralia
  12. 12.Department of Respiratory and Sleep MedicineAustin HealthHeidelbergAustralia
  13. 13.Institute for Breathing and SleepHeidelbergAustralia
  14. 14.School of Medicine, University of MelbourneMelbourneAustralia
  15. 15.Department of Cardiothoracic SurgeryRoyal Hobart HospitalHobartAustralia
  16. 16.Department of Respiratory MedicineTasmanian Health Services (THS), North West HospitalBurnieAustralia
  17. 17.Centre for BioSystems Science and Engineering, Indian Institute of ScienceBangaloreIndia

Personalised recommendations