Advertisement

Drugs

, Volume 78, Issue 12, pp 1197–1209 | Cite as

Metastatic Melanoma: Recent Therapeutic Progress and Future Perspectives

  • Nausicaa Malissen
  • Jean-Jacques Grob
Review Article

Abstract

The prognosis of patients with metastatic melanoma has dramatically improved in recent years with the introduction of two new therapeutic strategies. BRAF and MEK inhibitors are small molecules that are able to block the mitogen-activated protein kinase (MAPK) pathway, which is constitutively activated by recurrent BRAF V600 mutations in 45% of melanoma patients. These agents were shown to provide a rapid and strong response but are often limited by a high rate of secondary resistance. Monoclonal antibodies against the immune checkpoints cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) can restore an efficient and durable anti-tumor immunity, even following treatment discontinuation. Anti-PD-1 antibodies were shown to prolong survival of metastatic melanoma patients and a real cure seems to be obtainable in some patients. Many more therapies are currently under investigation, given that 50% of patients still do not have long-term benefits from approved treatments. The main goal is to avoid or circumvent primary or secondary immune resistance to anti-PD-1 therapy not only by targeting other players in the tumor microenvironment but also by optimizing treatment sequencing and combining anti-PD-1 with other treatments, especially with BRAF and MEK inhibitors. The unexpected major successes of immunotherapies in melanoma have opened the way for the development of these treatments in other cancers. In this review, we describe the different available treatments, their toxicities, and the key components of our decisional algorithms, and give an overview of what we expect to be the near future of melanoma treatment.

Notes

Compliance with Ethical Standards

Funding

No external funding was used in the preparation of this review.

Conflict of interest

Jean-Jacques Grob has received consulting fees or honorarium for Bristol-Myers Squibb, Roche, Novartis, Amgen, and Pierre-Fabre. Nausicaa Malissen has received consulting fees from Bristol-Myers Squibb and payment for lectures from Bristol-Myers Squibb, Amgen, and MSD.

References

  1. 1.
    Karimkhani C, Green AC, Nijsten T, Weinstock MA, Dellavalle RP, Naghavi M, et al. The global burden of melanoma: results from the Global Burden of Disease Study 2015. Br J Dermatol. 2017;177(1):134–40.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dennis LK, Vanbeek MJ, Beane Freeman LE, Smith BJ, Dawson DV, Coughlin JA. Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis. Ann Epidemiol. 2008;18(8):614–27.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tucker MA, Elder DE, Curry M, Fraser MC, Pichler V, Zametkin D, et al. Risks of melanoma and other cancers in melanoma-prone families over four decades. J Investig Dermatol. 2018.  https://doi.org/10.1016/j.jid.2018.01.021.PubMedGoogle Scholar
  4. 4.
    Thomas NE, Edmiston SN, Alexander A, Millikan RC, Groben PA, Hao H, et al. Number of nevi and early-life ambient UV exposure are associated with BRAF-mutant melanoma. Cancer Epidemiol Biomark Prev. 2007;16(5):991–7.CrossRefGoogle Scholar
  5. 5.
    Korn EL, Liu P-Y, Lee SJ, Chapman J-AW, Niedzwiecki D, Suman VJ, et al. Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol. 2008;26(4):527–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Ascierto PA, Kirkwood JM, Grob J-J, Simeone E, Grimaldi AM, Maio M, et al. The role of BRAF V600 mutation in melanoma. J Transl Med. 2012;9(10):85.CrossRefGoogle Scholar
  8. 8.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19:603–15.CrossRefPubMedGoogle Scholar
  11. 11.
    Long GV, Flaherty KT, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol. 2017;28(7):1631–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Ascierto PA, McArthur GA, Dréno B, Atkinson V, Liszkay G, Di Giacomo AM, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17(9):1248–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–76.CrossRefPubMedGoogle Scholar
  15. 15.
    Boussemart L, Malka-Mahieu H, Girault I, Allard D, Hemmingsson O, Tomasic G, et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature. 2014;513(7516):105–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci. 2013;1284:1–5.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat A, Barba L, et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J Clin Investig. 2011;121(6):2350–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.CrossRefPubMedGoogle Scholar
  20. 20.
    Maio M, Grob J-J, Aamdal S, Bondarenko I, Robert C, Thomas L, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 2015;33(10):1191–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMedGoogle Scholar
  22. 22.
    Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Weber JS, Dummer R, de Pril V, Lebbé C, Hodi FS. MDX010-20 Investigators. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer. 2013;119(9):1675–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.CrossRefPubMedGoogle Scholar
  25. 25.
    Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.CrossRefPubMedGoogle Scholar
  26. 26.
    Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jessurun CAC, Vos JAM, Limpens J, Luiten RM. Biomarkers for response of melanoma patients to immune checkpoint inhibitors: a systematic review. Front Oncol. 2017;7:233.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Blank CU, Haanen JB, Ribas A, Schumacher TN. Cancer immunology. The “cancer immunogram”. Science. 2016;352(6286):658–60.CrossRefPubMedGoogle Scholar
  31. 31.
    Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Ugurel S, Röhmel J, Ascierto PA, Flaherty KT, Grob JJ, Hauschild A, et al. Survival of patients with advanced metastatic melanoma: the impact of novel therapies-update 2017. Eur J Cancer. 1990;2017(83):247–57.Google Scholar
  33. 33.
    Grob JJ, Long GV, Schadendorf D, Flaherty K. Disease kinetics for decision-making in advanced melanoma: a call for scenario-driven strategy trials. Lancet Oncol. 2015;16(13):e522–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Long GV, Grob J-J, Nathan P, Ribas A, Robert C, Schadendorf D, et al. Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol. 2016;17(12):1743–54.CrossRefPubMedGoogle Scholar
  35. 35.
    Davies MA, Liu P, McIntyre S, Kim KB, Papadopoulos N, Hwu W-J, et al. Prognostic factors for survival in melanoma patients with brain metastases. Cancer. 2011;117(8):1687–96.CrossRefPubMedGoogle Scholar
  36. 36.
    Davies MA, Saiag P, Robert C, Grob J-J, Flaherty KT, Arance A, et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017;18(7):863–73.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lond GV, Atkinson V, Menzies AM, Lo S, Guminski AD, Brown MP, et al. A randomized phase II study of nivolumab or nivolumab combined with ipilimumab in patients (pts) with melanoma brain metastases (mets): the Anti-PD1 Brain Collaboration (ABC) [abstract]. J Clin Oncol. 2017;35(15_suppl):9508.CrossRefGoogle Scholar
  38. 38.
    Gaudy-Marqueste C, Dussouil AS, Carron R, Troin L, Malissen N, Loundou A, et al. Survival of melanoma patients treated with targeted therapy and immunotherapy after systematic upfront control of brain metastases by radiosurgery. Eur J Cancer. 1990;2017(84):44–54.Google Scholar
  39. 39.
    Kerr KM, Nicolson MC. Non-small cell lung cancer, PD-L1, and the pathologist. Arch Pathol Lab Med. 2016;140(3):249–54.CrossRefPubMedGoogle Scholar
  40. 40.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res. 2016;22(22):5487–96.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nakamura Y, Kitano S, Takahashi A, Tsutsumida A, Namikawa K, Tanese K, et al. Nivolumab for advanced melanoma: pretreatment prognostic factors and early outcome markers during therapy. Oncotarget. 2016;7(47):77404–15.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 2018;24:144–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Sanmamed MF, Perez-Gracia JL, Schalper KA, Fusco JP, Gonzalez A, Rodriguez-Ruiz ME, et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann Oncol. 2017;28(8):1988–95.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Daniotti M, Vallacchi V, Rivoltini L, Patuzzo R, Santinami M, Arienti F, et al. Detection of mutated BRAFV600E variant in circulating DNA of stage III–IV melanoma patients. Int J Cancer. 2007;120(11):2439–44.CrossRefPubMedGoogle Scholar
  46. 46.
    Lee JH, Long GV, Boyd S, Lo S, Menzies AM, Tembe V, et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol. 2017;28(5):1130–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103.CrossRefPubMedGoogle Scholar
  52. 52.
    Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Carlino MS, Vanella V, Girgis C, Giannarelli D, Guminski A, Festino L, et al. Cessation of targeted therapy after a complete response in BRAF-mutant advanced melanoma: a case series. Br J Cancer. 2016;115(11):1280–4.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tolk H, Satzger I, Mohr P, Zimmer L, Weide B, Schäd S, et al. Complete remission of metastatic melanoma upon BRAF inhibitor treatment—what happens after discontinuation? Melanoma Res. 2015;25(4):362–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Robert C, Ribas A, Hamid O, Daud A, Wolchok JD, Joshua AM, et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J Clin Oncol. 2018;36(17):1668–74.CrossRefPubMedGoogle Scholar
  57. 57.
    Schachter J, Ribas A, Long GV, Arance A, Grob J-J, Mortier L, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390(10105):1853–62.CrossRefPubMedGoogle Scholar
  58. 58.
    Chesney J, Awasthi S, Curti B, Hutchins L, Linette G, Triozzi P, et al. Phase IIIb safety results from an expanded-access protocol of talimogene laherparepvec for patients with unresected, stage IIIB-IVM1c melanoma. Melanoma Res. 2018;28(1):44–51.CrossRefPubMedGoogle Scholar
  59. 59.
    Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–19.CrossRefPubMedGoogle Scholar
  60. 60.
    Amgen. Pembrolizumab with or without talimogene laherparepvec or talimogene laherparepvec placebo in unresected melanoma (KEYNOTE-034) [ClinicalTrials.gov identifier NCT02263508]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.
  61. 61.
    University of Utah. Neoadjuvant trial of nivolumab in combination with HF10 oncolytic viral therapy in resectable stage IIIB, IIIC, IVM1a melanoma [ClinicalTrials.gov identifier NCT03259425]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.
  62. 62.
    Viralytics. Intratumoral CAVATAK (CVA21) and pembrolizumab in patients with advanced melanoma (VLA-011 CAPRA) (CAPRA) [ClinicalTrials.gov identifier NCT02565992]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.
  63. 63.
    Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11(9):509–24.CrossRefPubMedGoogle Scholar
  64. 64.
    Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348(6236):803–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9(10):1269–74.CrossRefPubMedGoogle Scholar
  66. 66.
    Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Incyte Corporation. A phase 3 study of pembrolizumab + epacadostat or placebo in subjects with unresectable or metastatic melanoma (Keynote-252/ECHO-301) [ClinicalTrials.gov identifier NCT02752074]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.
  68. 68.
    Long GV, Dummer R, Hamid O, Gajewski T, Caglevic C, Dalle S, et al. Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: results of the phase 3 ECHO-301/KEYNOTE-252 study [abstract no. 108]. 2018 ASCO Annual Meeting; 1–5 Jun 2018; Chicago.Google Scholar
  69. 69.
    Young A, Mittal D, Stagg J, Smyth MJ. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov. 2014;4(8):879–88.CrossRefPubMedGoogle Scholar
  70. 70.
    Corvus Pharmaceuticals, Inc. Phase 1/1b study to evaluate the safety and tolerability of CPI-444 alone and in combination with atezolizumab in advanced cancers [ClinicalTrials.gov identifier NCT02655822]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.Google Scholar
  71. 71.
    Hu-Lieskovan S, Robert L, Homet Moreno B, Ribas A. Combining targeted therapy with immunotherapy in BRAF-mutant melanoma: promise and challenges. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(21):2248–54.CrossRefGoogle Scholar
  72. 72.
    Hu-Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med. 2015;7(279):279ra41.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hoffmann-La Roche. Cobimetinib (targeted therapy) plus atezolizumab (immunotherapy) in participants with advanced melanoma whose cancer has worsened during or after treatment with previous immunotherapy and atezolizumab monotherapy in participants with previously untreated advanced melanoma [ClinicalTrials.gov identifier NCT03178851]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.
  74. 74.
    Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Minor DR, Puzanov I, Callahan MK, Hug BA, Hoos A. Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab. Pigment Cell Melanoma Res. 2015;28(5):611–2.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kong Y, Si L, Zhu Y, Xu X, Corless CL, Flaherty KT, et al. Large-scale analysis of KIT aberrations in Chinese patients with melanoma. Clin Cancer Res. 2011;17(7):1684–91.CrossRefPubMedGoogle Scholar
  77. 77.
    Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol. 2013;31(26):3182–90.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Aboudaram A, Modesto A, Chaltiel L, Gomez-Roca C, Boulinguez S, Sibaud V, et al. Concurrent radiotherapy for patients with metastatic melanoma and receiving anti-programmed-death 1 therapy: a safe and effective combination. Melanoma Res. 2017;27(5):485–91.CrossRefPubMedGoogle Scholar
  79. 79.
    Pike LRG, Bang A, Ott P, Balboni T, Taylor A, Catalano P, et al. Radiation and PD-1 inhibition: favorable outcomes after brain-directed radiation. Radiother Oncol. 2017;124(1):98–103.CrossRefPubMedGoogle Scholar
  80. 80.
    Merhavi-Shoham E, Itzhaki O, Markel G, Schachter J, Besser MJ. Adoptive cell therapy for metastatic melanoma. Cancer J. 2017;23(1):48–53.CrossRefPubMedGoogle Scholar
  81. 81.
    Novartis Pharmaceuticals. Phase I/Ib study of NIS793 in combination with PDR001 in patients with advanced malignancies [ClinicalTrials.gov identifier NCT02947165]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.
  82. 82.
    EMD Serono Research & Development Institute, Inc. MSB0011359C (M7824) in metastatic or locally advanced solid tumors [ClinicalTrials.gov identifier NCT02517398]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.
  83. 83.
    Postow MA, Luke JJ, Bluth MJ, Ramaiya N, Panageas KS, Lawrence DP, et al. Ipilimumab for patients with advanced mucosal melanoma. Oncologist. 2013;18(6):726–32.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Shoushtari AN, Munhoz RR, Kuk D, Ott PA, Johnson DB, Tsai KK, et al. The efficacy of anti-PD-1 agents in acral and mucosal melanoma. Cancer. 2016;122(21):3354–62.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Luke JJ, Callahan MK, Postow MA, Romano E, Ramaiya N, Bluth M, et al. Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience. Cancer. 2013;119(20):3687–95.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Algazi AP, Tsai KK, Shoushtari AN, Munhoz RR, Eroglu Z, Piulats JM, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer. 2016;122(21):3344–53.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Long GV, Hauschild A, Santinami M, Atkinson V, Mandalà M, Chiarion-Sileni V, et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med. 2017;377(19):1813–23.CrossRefPubMedGoogle Scholar
  88. 88.
    Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35.CrossRefPubMedGoogle Scholar
  89. 89.
    Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789–801.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dermatology and Skin Cancer DepartmentAix-Marseille UniversityMarseilleFrance

Personalised recommendations