CNS Drugs

pp 1–7 | Cite as

Current Drug Treatment of Acute Ischemic Stroke: Challenges and Opportunities

  • Dafin F. Muresanu
  • Stefan StrilciucEmail author
  • Adina Stan
Current Opinion


Patient-level health outcomes for acute ischemic stroke have significantly improved in the last decade primarily because of superior overall case management, availability of tailored drug interventions, and advances in endovascular procedures. Nevertheless, disease registries show a “quality gap” across social determinants of health and between in-hospital and community-onset strokes. Several factors, including financing and infrastructure constraints, limited expertise, and clinical uncertainty, still prevent adherence to evidence-based clinical guidelines and optimal care pathways. This paper critically appraises existing evidence on the use of drug therapies in acute ischemic stroke, in an attempt to resolve physician-related subjective barriers for effective acute management of the disease. We conclude that intravenous administration of rt-PA (recombinant tissue-type plasminogen activator, alteplase) is an essential component of acute-phase pharmacologic treatment and a driver for the improvement of overall ischemic stroke health outcomes. The safety profile of alteplase and similar treatments are well within the patient benefit zone of eligible patients when compared to non-treatment alternatives. Monomodal neuroprotective drugs with single or pleiotropic mechanisms of action have failed to support long-term sustainable results. Drugs with complex mechanisms of action that promote neurorecovery, such as cerebrolysin, are valid options for adjunctive treatment of acute ischemic stroke. Recent years have shown clear improvements in the methodology and design of clinical trials, with an increase in overall internal and external validity. A better understanding of study limitations has not hindered, but enhanced their potential to contribute, together with sometimes superior data sources, to health decision making.


Compliance with Ethical Standards


No funding was received for the preparation of this article.

Conflict of Interest

Dafin Muresanu has served as the coordinating investigator of the academic trial Cerebrolysin and Recovery After Stroke (CARS). Adina Stan has served as the principal investigator in the academic trials Cerebrolysin and early neurorehabilitation in patients with acute ischemic stroke and Cerebrolysin REGistry Study in Stroke - a High-quality Observational Study of Comparative Effectiveness (C-REGS 2). Stefan Strilciuc has no conflicts of interest that are directly relevant to the contents of this article.


  1. 1.
    Rodríguez-Castro E, López-Dequit I, Santamaría-Cadavid M, Arias-Rivas S, Rodríguez-Yáñez M, Pumar JM, et al. Trends in stroke outcomes in the last ten years in a European tertiary hospital. BMC Neurol. 2018;18(1):164.CrossRefGoogle Scholar
  2. 2.
    Hassan AE, Chaudhry Saqib A, Grigoryan M, Tekle WG, Qureshi AI. National trends in utilization and outcomes of endovascular treatment of acute ischemic stroke patients in the mechanical thrombectomy era. Stroke. 2012;43(11):3012–7.CrossRefGoogle Scholar
  3. 3.
    Paramasivam S. Current trends in the management of acute ischemic stroke. Neurol India. 2015;63(5):665–72.CrossRefGoogle Scholar
  4. 4.
    Marmot M. Social determinants of health inequalities. Lancet. 2005;365(9464):1099–104.CrossRefGoogle Scholar
  5. 5.
    Emmett ES, Douiri A, Marshall IJ, Wolfe CDA, Rudd AG, Bhalla A. A comparison of trends in stroke care and outcomes between in-hospital and community-onset stroke: the South London Stroke Register. PLoS One. 2019;14(2):e0212396.CrossRefGoogle Scholar
  6. 6.
    Stecksén A, Lundman B, Eriksson M, Glader E-L, Asplund K. Implementing thrombolytic guidelines in stroke care: perceived facilitators and barriers. Qual Health Res. 2014;24(3):412–9.CrossRefGoogle Scholar
  7. 7.
    Eissa A, Krass I, Bajorek BV. Barriers to the utilization of thrombolysis for acute ischaemic stroke. J Clin Pharm Ther. 2012;37(4):399–409.CrossRefGoogle Scholar
  8. 8.
    Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–99.CrossRefGoogle Scholar
  9. 9.
    US FDA. Drug approval package: Alteplase. Accessed 19 Aug 2019.
  10. 10.
    Hoffman JR. Should physicians give tPA to patients with acute ischemic stroke? Against: and just what is the emperor of stroke wearing? West J Med. 2000;173(3):149–50.CrossRefGoogle Scholar
  11. 11.
    Ingall TJ, O’Fallon WM, Asplund K, Goldfrank LR, Hertzberg VS, Louis TA, et al. Findings from the reanalysis of the NINDS tissue plasminogen activator for acute ischemic stroke treatment trial. Stroke. 2004;35(10):2418–24.CrossRefGoogle Scholar
  12. 12.
    Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet Lond Engl. 2014;384(9958):1929–35.CrossRefGoogle Scholar
  13. 13.
    Shekhar H, Kleven RT, Peng T, Palaniappan A, Karani KB, Huang S, et al. In vitro characterization of sonothrombolysis and echocontrast agents to treat ischemic stroke. Sci Rep. 2019;9(1):9902.CrossRefGoogle Scholar
  14. 14.
    Alper BS, Malone-Moses M, McLellan JS, Prasad K, Manheimer E. Thrombolysis in acute ischaemic stroke: time for a rethink? BMJ. 2015;17(350):h1075.CrossRefGoogle Scholar
  15. 15.
    Sandercock PAG, Ricci S. Controversies in thrombolysis. Curr Neurol Neurosci Rep. 2017;17(8):60.CrossRefGoogle Scholar
  16. 16.
    Messé SR, Khatri P, Reeves MJ, Smith EE, Saver JL, Bhatt DL, et al. Why are acute ischemic stroke patients not receiving IV tPA? Results from a national registry. Neurology. 2016;87(15):1565–74.CrossRefGoogle Scholar
  17. 17.
    Khatri P, Conaway MR, Johnston KC, Acute Stroke Accurate Prediction Study (ASAP) Investigators. Ninety-day outcome rates of a prospective cohort of consecutive patients with mild ischemic stroke. Stroke. 2012;43(2):560–2.CrossRefGoogle Scholar
  18. 18.
    Khatri P, Kleindorfer DO, Devlin T, Sawyer RN, Starr M, Mejilla J, et al. Effect of alteplase vs aspirin on functional outcome for patients with acute ischemic stroke and minor nondisabling neurologic deficits: the PRISMS randomized clinical trial. JAMA. 2018;320(2):156–66.CrossRefGoogle Scholar
  19. 19.
    You S, Saxena A, Wang X, Tan W, Han Q, Cao Y, et al. Efficacy and safety of intravenous recombinant tissue plasminogen activator in mild ischaemic stroke: a meta-analysis. Stroke Vasc Neurol. 2018;3(1):22–7.CrossRefGoogle Scholar
  20. 20.
    Seners P, Delepierre J, Turc G, Henon H, Piotin M, Arquizan C, et al. Thrombus length predicts lack of post-thrombolysis early recanalization in minor stroke with large vessel occlusion. Stroke. 2019;50(3):761–4.CrossRefGoogle Scholar
  21. 21.
    Shaw GJ, Meunier JM, Lindsell CJ, Pancioli AM, Holland CK. Making the right choice: optimizing rt-PA and eptifibatide lysis, an in vitro study. Thromb Res. 2010;126(4):e305–11.CrossRefGoogle Scholar
  22. 22.
    Cheng J-W, Zhang X-J, Cheng L-S, Li G-Y, Zhang L-J, Ji K-X, et al. Low-dose tissue plasminogen activator in acute ischemic stroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2018;27(2):381–90.CrossRefGoogle Scholar
  23. 23.
    Anderson CS, Robinson T, Lindley RI, Arima H, Lavados PM, Lee T-H, et al. Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke. N Engl J Med. 2016;374(24):2313–23.CrossRefGoogle Scholar
  24. 24.
    Wang X, Robinson TG, Lee T-H, Li Q, Arima H, Bath PM, et al. Low-dose vs standard-dose alteplase for patients with acute ischemic stroke. JAMA Neurol. 2017;74(11):1328–35.CrossRefGoogle Scholar
  25. 25.
    Robinson TG, Wang X, Arima H, Bath PM, Billot L, Broderick JP, et al. Low-versus standard-dose alteplase in patients on prior antiplatelet therapy: the ENCHANTED Trial (Enhanced Control of Hypertension and Thrombolysis Stroke Study). Stroke. 2017;48(7):1877–83.CrossRefGoogle Scholar
  26. 26.
    Malhotra K, Ahmed N, Filippatou A, Katsanos AH, Goyal N, Tsioufis K, et al. Association of elevated blood pressure levels with outcomes in acute ischemic stroke patients treated with intravenous thrombolysis: a systematic review and meta-analysis. J Stroke. 2019;21(1):78–90.CrossRefGoogle Scholar
  27. 27.
    Anderson CS, Huang Y, Lindley RI, Chen X, Arima H, Chen G, et al. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an international, randomised, open-label, blinded-endpoint, phase 3 trial. Lancet. 2019;393(10174):877–88.CrossRefGoogle Scholar
  28. 28.
    Behrouz R. Intravenous tenecteplase in acute ischemic stroke: an updated review. J Neurol. 2014;261(6):1069–72.CrossRefGoogle Scholar
  29. 29.
    Vishnu VY, Padma Srivastava MP. Innovations in acute stroke reperfusion strategies. Ann Indian Acad Neurol. 2019;22(1):6–12.CrossRefGoogle Scholar
  30. 30.
    Campbell BCV, Mitchell PJ, Churilov L, Yassi N, Kleinig TJ, Dowling RJ, et al. Tenecteplase versus alteplase before thrombectomy for ischemic stroke. N Engl J Med. 2018;378(17):1573–82.CrossRefGoogle Scholar
  31. 31.
    Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22.CrossRefGoogle Scholar
  32. 32.
    Krebs S, Posekany A, Ferrari J, Lang W, Sommer P, Gattringer T, et al. Intravenous thrombolysis in wake-up stroke: real-world data from the Austrian Stroke Unit Registry. Eur J Neurol. 2019;26(5):754–9.CrossRefGoogle Scholar
  33. 33.
    Leira EC, Muir KW. EXTEND Trial. Stroke. 2019;50(9):2637–9.CrossRefGoogle Scholar
  34. 34.
    Churilov L, Ma H, Campbell BC, Davis SM, Donnan GA. Statistical analysis plan for EXtending the time for Thrombolysis in Emergency Neurological Deficits (EXTEND) trial. Int J Stroke. 2018;7:1747493018816101.Google Scholar
  35. 35.
    Wasserstein RL, Schirm AL, Lazar NA. Moving to a world beyond “p < 0.05”. Am Stat. 2019;73(Suppl 1):1–19.CrossRefGoogle Scholar
  36. 36.
    Lachin JM, Bebu I. Application of the Wei–Lachin multivariate one-directional test to multiple event-time outcomes. Clin Trials. 2015;12(6):627–33.CrossRefGoogle Scholar
  37. 37.
    Muresanu DF. Management of acute stroke: neuroprotection. In: Bornstein NM, editor. Stroke. Basel: Karger; 2009. p. 128–36. Scholar
  38. 38.
    Muresanu DF. Neuroplasticity and neurorecovery. In: Bornstein NM, editor. Stroke. Basel: Karger; 2009. p. 37–49. Scholar
  39. 39.
    Read SJ, Parsons AA, Harrison DC, Philpott K, Kabnick K, O’Brien S, et al. Stroke genomics: approaches to identify, validate, and understand ischemic stroke gene expression. J Cereb Blood Flow Metab. 2001;21(7):755–78.CrossRefGoogle Scholar
  40. 40.
    Muresanu DF. Neuromodulation with pleiotropic and multimodal drugs: future approaches to treatment of neurological disorders. Acta Neurochir Suppl. 2010;106:291–4.CrossRefGoogle Scholar
  41. 41.
    Muresanu DF, Buzoianu A, Florian SI, von Wild T, Muresanu D. Towards a roadmap in brain protection and recovery. J Cell Mol Med. 2012;16(12):2861–71.CrossRefGoogle Scholar
  42. 42.
    Muresanu D. Neurotrophic factors. Cluj-Napoca: Libripress; 2003.Google Scholar
  43. 43.
    Stan A, Birle C, Blesneag A, Iancu M. Cerebrolysin and early neurorehabilitation in patients with acute ischemic stroke: a prospective, randomized, placebo-controlled clinical study. J Med Life. 2017;10(4):216–22.Google Scholar
  44. 44.
    Guekht A, Vester J, Heiss W-D, Gusev E, Hoemberg V, Rahlfs VW, et al. Safety and efficacy of Cerebrolysin in motor function recovery after stroke: a meta-analysis of the CARS trials. Neurol Sci. 2017;38(10):1761–9.CrossRefGoogle Scholar
  45. 45.
    Wang Z, Shi L, Xu S, Zhang J. Cerebrolysin for functional recovery in patients with acute ischemic stroke: a meta-analysis of randomized controlled trials. Drug Des Devel Ther. 2017;11:1273–82.CrossRefGoogle Scholar
  46. 46.
    Ziganshina LE, Abakumova T, Vernay L. Cerebrolysin for acute ischaemic stroke. Cochrane Database Syst Rev. 2016;12:CD007026.Google Scholar
  47. 47.
    Muresanu DF, Heiss W-D, Hoemberg V, Bajenaru O, Popescu CD, Vester JC, et al. Cerebrolysin and recovery after stroke (CARS): a randomized, placebo-controlled, double-blind, multicenter trial. Stroke. 2016;47(1):151–9.CrossRefGoogle Scholar
  48. 48.
    Heiss W-D, Brainin M, Bornstein NM, Tuomilehto J, Hong Z, Cerebrolysin Acute Stroke Treatment in Asia (CASTA) Investigators. Cerebrolysin in patients with acute ischemic stroke in Asia: results of a double-blind, placebo-controlled randomized trial. Stroke. 2012;43(3):630–6.CrossRefGoogle Scholar
  49. 49.
    Bornstein NM, Guekht A, Vester J, Heiss W-D, Gusev E, Hömberg V, et al. Safety and efficacy of cerebrolysin in early post-stroke recovery: a meta-analysis of nine randomized clinical trials. Neurol Sci. 2018;39(4):629–40.CrossRefGoogle Scholar
  50. 50.
    Brainin M. Cerebrolysin: a multi-target drug for recovery after stroke. Expert Rev Neurother. 2018;18(8):681–7.CrossRefGoogle Scholar
  51. 51.
    Wilson JTL, Hareendran A, Hendry A, Potter J, Bone I, Muir KW. Reliability of the modified Rankin Scale across multiple raters: benefits of a structured interview. Stroke. 2005;36(4):777–81.CrossRefGoogle Scholar
  52. 52.
    Quinn TJ, Dawson J, Walters MR, Lees KR. Reliability of the modified Rankin Scale: a systematic review. Stroke. 2009;40(10):3393–5.CrossRefGoogle Scholar
  53. 53.
    Kidwell CS, Liebeskind DS, Starkman S, Saver JL. Trends in acute ischemic stroke trials through the 20th century. Stroke. 2001;32(6):1349–59.CrossRefGoogle Scholar
  54. 54.
    Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.CrossRefGoogle Scholar
  55. 55.
    Frieden TR. Evidence for health decision making: beyond randomized, controlled Trials. N Engl J Med. 2017;377(5):465–75.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of NeurosciencesIuliu Hatieganu University of Medicine and PharmacyCluj-NapocaRomania
  2. 2.RoNeuro Institute for Neurological Research and DiagnosticCluj-NapocaRomania

Personalised recommendations