Advertisement

CNS Drugs

pp 1–17 | Cite as

Transdermal Delivery of Antipsychotics: Rationale and Current Status

  • Angela Abruzzo
  • Teresa Cerchiara
  • Barbara LuppiEmail author
  • Federica Bigucci
Leading Article

Abstract

The aim of this article is to provide the rationale for the development of transdermal formulations of antipsychotics by highlighting their main advantages, starting with an overview of the antipsychotic formulations that are currently available on the market. Progress regarding transdermal antipsychotic formulations was investigated by performing a search of papers, patents and clinical trials published in the last 10 years. Available data on antipsychotic transdermal formulations are reported and discussed, focusing on the characteristics of the dosage forms and their ability to promote drug absorption. Despite the current availability of a large number of antipsychotics, only a few of these drugs (e.g. aripiprazole, asenapine, blonanserin, chlorpromazine, haloperidol, olanzapine, prochlorperazine, quetiapine, and risperidone) have been developed as transdermal delivery systems. Several papers and patents show that transdermal formulations, such as creams, films, gels, nanosystems, patches, solutions, and sprays, have been evaluated with the aim of expanding the clinical utility of antipsychotic drugs. In particular, the employment of different strategies, such as the use of nanoparticles/vesicles, or permeation enhancers as well as microneedles with iontophoresis, may improve the absorption of antipsychotic drugs through the skin. However, few clinical trials on transdermal delivery of antipsychotic drugs are available and only delivery systems containing asenapine and blonanserin have shown interesting clinical results in terms of pharmacokinetic data, efficacy, and tolerability. Recently, the transdermal patch formulation of blonanserin was approved in Japan for the treatment of schizophrenia.

Notes

Compliance with Ethical Standards

Funding

The authors declare that no sources of funding were received for the preparation of this article.

Conflicts of interest

Angela Abruzzo, Teresa Cerchiara, Barbara Luppi and Federica Bigucci declare that they have no conflicts of interest directly relevant to the contents of this review.

References

  1. 1.
    Stroup TS, Gray N. Management of common adverse effects of antipsychotic medications. World Psychiatry. 2018;17(3):341–56.Google Scholar
  2. 2.
    Krause M, Huhn M, Schneider-Thoma J, Rothe P, Smith RC, Leucht S. Antipsychotic drugs for elderly patients with schizophrenia: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2018;28(12):1360–70.Google Scholar
  3. 3.
    Kelleher JP, Centorrino F, Albert MJ, Baldessarini RJ. Advances in atypical antipsychotics for the treatment of schizophrenia: new formulations and new agents. CNS Drugs. 2002;16(4):249–61.Google Scholar
  4. 4.
    Haddad PM, Brain C, Scott J. Nonadherence with antipsychotic medication in schizophrenia: challenges and management strategies. Patient Relat Outcome Meas. 2014;5:43–62.Google Scholar
  5. 5.
    Kane JM, Schooler NR, Marcy P, Achtyes ED, Correll CU, Robinson DG. Patients with early-phase schizophrenia will accept treatment with sustained-release medication (long-acting injectable antipsychotics): results from the recruitment phase of the PRELAPSE Trial. J Clin Psychiatry. 2019;80(3):18m12546.Google Scholar
  6. 6.
    Zeller SL, Citrome L. Managing agitation associated with schizophrenia and bipolar disorder in the emergency setting. West J Emerg Med. 2016;17(2):165–72.Google Scholar
  7. 7.
    Rauch AS, Fleischhacker WW. Long-acting injectable formulations of new-generation antipsychotics: a review from a clinical perspective. CNS Drugs. 2013;27(8):637–52.Google Scholar
  8. 8.
    Cario Altamura A, Sassella F, Santini A, Montresor C, Fumagalli S, Mundo E. Intramuscular preparations of antipsychotics uses and relevance in clinical practice. Drugs. 2003;63:493–512.Google Scholar
  9. 9.
    Kim Y, Oksanen DA, Massefski JW, Blake JF, Duffy EM, Chrunyk B. Inclusion complexation of ziprasidone mesylate with β-cyclodextrin sulfobutyl ether. J Pharm Sci. 1998;87:1560–7.Google Scholar
  10. 10.
    Kalicharan RW, Schot P, Vromans H. Fundamental understanding of drug absorption from a parenteral oil depot. Eur J Pharm Sci. 2016;83:19–27.Google Scholar
  11. 11.
    Samtani MN, Vermeulen A, Stuyckens K. Population pharmacokinetics of intramuscular paliperidone palmitate in patients with schizophrenia: a novel once-monthly, long-acting formulation of an atypical antipsychotic. Clin Pharmacokinet. 2009;48:585–600.Google Scholar
  12. 12.
    Farwick S, Hickey M, Vandiver J, Weiden PJ. Formulation properties of long-acting injectable antipsychotics and the impact on administration: focus on aripiprazole lauroxil. CNS Spectr. 2019;24(1):213–4.Google Scholar
  13. 13.
    Jonathan M. Meyer, MD. Aripiprazole lauroxil nanocrystal suspension. Curr Psychiatry. 2018;17(11):34–36,38–40.Google Scholar
  14. 14.
    Emsley R, Kilian S. Efficacy and safety profile of paliperidone palmitate injections in the management of patients with schizophrenia: an evidence-based review. Neuropsychiatr Dis Treat. 2018;14:205–23.Google Scholar
  15. 15.
    Kaminsky BM, Bostwick JR, Guthrie SK. Alternate routes of administration of antidepressant and antipsychotic medications. Ann Pharmacother. 2015;49(7):808–17.Google Scholar
  16. 16.
    Conley R, Gupta SK, Sathyan G. Clinical spectrum of the osmotic-controlled release oral delivery system (OROS*), an advanced oral delivery form. Curr Med Res Opin. 2006;22:1879–92.Google Scholar
  17. 17.
    Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, Pae CU. Asenapine, blonanserin, iloperidone, lurasidone, and sertindole: distinctive clinical characteristics of 5 novel atypical antipsychotics. Clin Neuropharmacol. 2013;36(6):223–38.Google Scholar
  18. 18.
    Gil E, Garcia-Alonso F, Boldeanu A, Baleeiro Teixeira T; Loxapine Inhaled Home Use study investigator’s team. Safety and efficacy of self-administered inhaled loxapine (ADASUVE) in agitated patients outside the hospital setting: protocol for a phase IV, single-arm, open-label trial. BMJ Open. 2018;8(10):e020242.Google Scholar
  19. 19.
    Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.Google Scholar
  20. 20.
    Wiedersberg S, Guy RH. Transdermal drug delivery: 30 + years of war and still fighting! J Control Rel. 2014;190:150–6.Google Scholar
  21. 21.
    Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21.Google Scholar
  22. 22.
    Borovinskaya M, Robert B, Plakogiannis FM. Evaluation of in vitro percutaneous absorption of olanzapine and fluoxetine HCl: enhancement properties of olanzapine. Drug Dev Ind Pharm. 2012;38(2):227–34.Google Scholar
  23. 23.
    Mendes M, Nunes SCC, Sousa JJ, Pais AACC, Vitorino C. Expanding transdermal delivery with lipid nanoparticles: a new drug-in-NLC-in-adhesive design. Mol Pharm. 2017;14(6):2099–115.Google Scholar
  24. 24.
    Guy RH. Transdermal drug delivery. In: Schäfer-Korting M, editor. Drug delivery, handbook of experimental pharmacology. Berlin: Springer; 2010. p. 399–410.Google Scholar
  25. 25.
    Cerchiara T, Bigucci F, Luppi B. Hydrogel vehicles for hydrophilic compounds. In: Dragicevic N, Mainbach HI, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement: drug manipulation strategies and vehicle effects. Berlin: Springer; 2015. p. 285–97.Google Scholar
  26. 26.
    Ng KW. Penetration enhancement of topical formulations. Pharmaceutics. 2018;10(2):E51.Google Scholar
  27. 27.
    Kayhart B, Lapid MI, Nelson S, Cunningham JL, Thompson VH, Leung JG. A lack of systemic absorption following the repeated application of topical quetiapine in healthy adults. Am J Hosp Palliat Care. 2018;35(8):1076–80.Google Scholar
  28. 28.
    Mayo Clinic. Pharmacokinetic study comparing topical, rectal, and oral quetiapine. ClinicalTrials.gov identifier NCT02131545; 2014. https://clinicaltrials.gov/ct2/show/NCT02131545?term=NCT02131545&rank=1.
  29. 29.
    Luppi B, Bigucci F, Baldini M, Abruzzo A, Cerchiara T, Corace G, Zecchi V. Hydroxypropylmethylcellulose films for prolonged delivery of the antipsychotic drug chlorpromazine. J Pharm Pharmacol. 2010;62(3):305–9.Google Scholar
  30. 30.
    Hossain MA, Ahmed SU, Plakogiannis FM. Effect of vehicle systems, pH and enhancers on the permeation of highly lipophilic aripiprazole from Carbopol 971P gel systems across human cadaver skin. Drug Dev Ind Pharm. 2012;38(3):323–30.Google Scholar
  31. 31.
    Plakogiannis FM, Hossain MA, inventors. Aequus Pharmaceuticals Inc., Vancouver, BC, CA, applicant. Aripiprazole compositions and methods for its transdermal delivery. WO2012058091A2, 2012.Google Scholar
  32. 32.
    Plakogiannis FM, Hossain MA, inventors. Alpha to Omega Pharmaceutical Consultants, Inc., Whirestone, NY, USA, applicant. Aripiprazole compositions and methods for its transdermal delivery. WO2017025912A1; 2017.Google Scholar
  33. 33.
    Jain AK, Lee ES, Singh P, inventors. Corium International, Inc., Menlo Park, CA, USA, applicant. Formulations for aripiprazole delivery transdermally. WO2016200830A1; 2016.Google Scholar
  34. 34.
    Alsaab H, Alzhrani RM, Boddu SH. Evaluation of the percutaneous absorption of chlorpromazine from PLO gels across porcine ear and human abdominal skin. Drug Dev Ind Pharm. 2016;42(8):1258–66.Google Scholar
  35. 35.
    Weiland AM, Protus BM, Kimbrel J, Grauer PA, Hirsh J. Chlorpromazine bioavailability from a topical gel formulation in volunteers. J Support Oncol. 2013;11(3):144–8.Google Scholar
  36. 36.
    Obata Y, Otake Y, Takayama K. Feasibility of transdermal delivery of prochlorperazine. Biol Pharm Bull. 2010;33(8):1454–7.Google Scholar
  37. 37.
    Kolli CS, Xiao J, Parsons DL, Babu RJ. Microneedle assisted iontophoretic transdermal delivery of prochlorperazine edisylate. Drug Dev Ind Pharm. 2012;38(5):571–6.Google Scholar
  38. 38.
    Shreya AB, Managuli RS, Menon J, Kondapalli L, Hegde AR, Avadhani K, et al. Nano-transfersomal formulations for transdermal delivery of asenapine maleate: in vitro and in vivo performance evaluations. J Liposome Res. 2016;26(3):221–32.Google Scholar
  39. 39.
    Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: entrapment efficiency vs. particle size. AAPS PharmSciTech. 2019;20(3):95.Google Scholar
  40. 40.
    Fahmy AM, El-Setouhy DA, Ibrahim AB, Habib BA, Tayel SA, Bayoumi NA. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: in vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv. 2018;25(1):12–22.Google Scholar
  41. 41.
    Azarbayjani AF, Tan EH, Chan YW, Chan SY. Transdermal delivery of haloperidol by proniosomal formulations with non-ionic surfactants. Biol Pharm Bull. 2009;32(8):1453–8.Google Scholar
  42. 42.
    Iqbal N, Vitorino C, Taylor KM. How can lipid nanocarriers improve transdermal delivery of olanzapine? Pharm Dev Technol. 2017;22(4):587–96.Google Scholar
  43. 43.
    Vitorino C, Almeida A, Sousa J, Lamarche I, Gobin P, Marchand S, et al. Passive and active strategies for transdermal delivery using co-encapsulating nanostructured lipid carriers: in vitro vs. in vivo studies. Eur J Pharm Biopharm. 2014;86(2):133–44.Google Scholar
  44. 44.
    Vitorino C, Almeida J, Gonçalves LM, Almeida AJ, Sousa JJ, Pais AA. Co-encapsulating nanostructured lipid carriers for transdermal application: from experimental design to the molecular detail. J Control Rel. 2013;167(3):301–14.Google Scholar
  45. 45.
    Imam SS, Ahad A, Aqil M, Akhtar M, Sultana Y, Ali A. Formulation by design based risperidone nano soft lipid vesicle as a new strategy for enhanced transdermal drug delivery: in vitro characterization, and in vivo appraisal. Mater Sci Eng C Mater Biol Appl. 2017;75:1198–205.Google Scholar
  46. 46.
    Imam SS, Aqil M, Akhtar M, Sultana Y, Ali A. Formulation by design-based proniosome for accentuated transdermal delivery of risperidone: in vitro characterization and in vivo pharmacokinetic study. Drug Deliv. 2015;22(8):1059–70.Google Scholar
  47. 47.
    Mohr P, Rietscher R, Eifler R, Bourquain O, inventors. LTS Lohmann Therapie-Systeme AG, Andernach, Germany, applicant. Transdermal therapeutic system containing asenapine and polysiloxane or polyisobutylene. WO2018115010A1; 2018.Google Scholar
  48. 48.
    Mohr P, Rietscher R, Eifler R, Bourquain O, inventors. LTS Lohmann Therapie-Systeme AG, Andernach, Germany, applicant. Transdermal therapeutic system containing asenapine and silicone acrylic hybrid polymer. WO2019002204A1; 2019.Google Scholar
  49. 49.
    Mohr P, Rietscher R, Eifler R, Bourquain O, inventors. LTS Lohmann Therapie-Systeme AG, Andernach, Germany, applicant. Transdermal therapeutic system containing asenapine. WO2018115001A1; 2018.Google Scholar
  50. 50.
    Sonobe A, Yasukochi T, Takada Y, inventors. Hisamitsu Pharmaceutical Co., Inc., Tosu-shi, Japan, assignee. Patch US20180289631A1; 2018.Google Scholar
  51. 51.
    Sonobe A, Yasukochi T, inventors. Hisamitsu Pharmaceutical Co., Inc., Tosu-shi, Saga, Japan, applicant. Method for Manufacturing Asenapine-Containing Patch. US20180207108A1; 2018.Google Scholar
  52. 52.
    Suzuki M, Okutsu H, Yasukochi T, Takada Y, inventors. Hisamitsu Pharmaceutical Co., Inc., Tosu-shi, Japan, assignee. Patch US20180360968A1; 2018.Google Scholar
  53. 53.
    Suzuki M, Okutsu H, Yasukochi T, Takada Y, inventors. Hisamitsu Pharmaceutical Co., Inc., Tosu-shi, Japan, assignee. Patch. US20170172981A1; 2017.Google Scholar
  54. 54.
    Yasukochi T, Sonobe A, Amano S, inventors. Hisamitsu Pharmaceutical Co., Inc., Tosu-shi, Saga, Japan, assignee. Asenapine-containing patch. US 20190000775A1; 2019.Google Scholar
  55. 55.
    Noven Pharmaceuticals, Inc. A randomized, double-blind, placebo-controlled, fixed-dose, 6-week, in-patient study to assess efficacy and safety of HP-3070 in subjects diagnosed with schizophrenia. Aug 2016. ClinicalTrials.gov identifier NCT02876900. https://clinicaltrials.gov/ct2/show/NCT02876900?term=NCT02876900&rank=1.
  56. 56.
    Citrome L, Walling D, Zeni C, Komaroff M, Park A. Efficacy and safety of an asenapine transdermal patch (Asenapine Transdermal System, HP-3070) in the treatment of adults with schizophrenia: a phase 3 randomized, double-blind, placebo-controlled, 6-week, in patient study. Neuropsychopharmacol. 2018;43(1):S116–7.Google Scholar
  57. 57.
    Okada J, Okada K, Nishimura M, inventors. Dainippon Sumitomo Pharma Co., Ltd, Japan, Nitto Denko Corporation, Japan, applicants. Patch preparation. US20190000775A1; 2019.Google Scholar
  58. 58.
    Dainippon Sumitomo Pharma Co., Ltd. Repeated administration of DSP-5423P in patients with schizophrenia. ClinicalTrials.jp identifier JapicCTI-142423. https://www.clinicaltrials.jp/cti-user/trial/ShowDirect.jsp?japicId=JapicCTI-142423.
  59. 59.
    Dainippon Sumitomo Pharma Co., Ltd. Dopamine D2 receptor occupancy in patients with schizophrenia treated with DSP-5423P using PET (Phase 2). ClinicalTrials.jp. identifier JapicCTI-121914. https://www.clinicaltrials.jp/cti-user/trial/ShowDirect.jsp?japicId=JapicCTI-121914.
  60. 60.
    Sumitomo Dainippon Pharma Co., Ltd., Confirmatory study of DSP-5423P in patients with schizophrenia. Aug 2014. ClinicalTrials.gov identifier NCT02287584. https://clinicaltrials.gov/ct2/show/record/NCT02287584?term=NCT02287584&rank=1.
  61. 61.
    Sumitomo Dainippon Pharma Co., Ltd., Long-term study of DSP-5423P in Patients with Schizophrenia. Decr 2014. ClinicalTrials.gov identifier NCT02335658. https://clinicaltrials.gov/ct2/show/study/NCT02335658?term=DSP-5423P&cntry=JP&rank=1.
  62. 62.
    Zhao C, Quan P, Liu C, Li Q, Fang L. Effect of isopropyl myristate on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserin. Acta Pharm Sin B. 2016;6(6):623–8.Google Scholar
  63. 63.
    Li N, Quan P, Wan X, Liu C, Liu X, Fang L. Mechanistic insights of the enhancement effect of sorbitan monooleate on olanzapine transdermal patch both in release and percutaneous absorption processes. Eur J Pharm Sci. 2017;107:138–47.Google Scholar
  64. 64.
    Aggarwal G, Dhawan S, Harikumar SL. Formulation, in vitro, and in vivo evaluation of matrix-type transdermal patches containing olanzapine. Pharm Dev Technol. 2013;18(4):916–25.Google Scholar
  65. 65.
    Aggarwal G, Dhawan S, Harikumar SL. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation. Curr Drug Deliv. 2012;9:172–81.Google Scholar
  66. 66.
    Weng W, Quan P, Liu C, Zhao H, Fang L. Design of a drug-in-adhesive transdermal patch for risperidone: effect of drug-additive interactions on the crystallization inhibition and in vitro/in vivo correlation study. Pharm Sci. 2016;105(10):3153–61.Google Scholar
  67. 67.
    Siafaka PI, Barmpalexis P, Lazaridou M, Papageorgiou GZ, Koutris E, Karavas E, Kostoglou M, Bikiaris DN. Controlled release formulations of risperidone antipsychotic drug in novel aliphatic polyester carriers: data analysis and modelling. Eur J Pharm Biopharm. 2015;94:473–84.Google Scholar
  68. 68.
    Aggarwal G, Dhawan S, Hari Kumar SL. Formulation, in vitro and in vivo evaluation of transdermal patches containing risperidone. Drug Dev Ind Pharm. 2013;39(1):39–50.Google Scholar
  69. 69.
    Goto M, Hamada A, Akazawa M, Yamasaki K, Miyaji S, inventors. KM Transderm Ltd, Osaka-shi, Osaka, Japan, assignee. US20140303189A1; 2014.Google Scholar
  70. 70.
    Kuribayashi M, Suzuki M, Fukushima H, Shimizu E, inventors. Hisamitsu Pharmaceutical Co., Inc., Tosu-shi, Saga, Japan, assignee. Risperidone containing transdermal preparation and adhesive patch using name. US20120052112A1; 2012.Google Scholar
  71. 71.
    Hanma N, inventor. Medrx Co., Ltd, Higashikagawa-shi, Kagawa, Japan, assignee. Composition for external application comprising aripiprazole and organic acid as active ingredients. US20120184563A1; 2012.Google Scholar
  72. 72.
    Azarbayjani AF, Lin H, Yap CW, Chan YW, Chan SY. Surface tension and wettability in transdermal delivery: a study on the in vitro permeation of haloperidol with cyclodextrin across human epidermis. J Pharm Pharmacol. 2010;62(6):770–8.Google Scholar
  73. 73.
    Solomon WD, inventor. Sunin K/S, Copenhagen, Denmark, applicant. Transdermal Compositions of asenapinefor the treatment of psychiatric disorders. WO2010127674A1; 2010.Google Scholar
  74. 74.
    Ascher-Svanum H, Zhu B, Faries DE, Salkever D, Slade EP, Peng X, et al. The cost of relapse and the predictors of relapse in the treatment of schizophrenia. BMC Psychiatry. 2010;10:2.Google Scholar
  75. 75.
    Sun SX, Liu GG, Christensen DB, Fu AZ. Review and analysisof hospitalization costs associated with antipsychotic nonadherence in the treatment of schizophrenia in the United States. Curr Med Res Opin. 2007;23:2305–12.Google Scholar
  76. 76.
    Stevens JR, Justin Coffey M, Fojtik M, Kurtz K, Stern TA. The use of transdermal therapeutic systems in psychiatric care: a primer on patches. Psychosomatics. 2015;56(5):423–44.Google Scholar
  77. 77.
    Dharadhar S, Majumdar A, Dhoble S, Patravale V. Microneedles for transdermal drug delivery: a systematic review. Drug Dev Ind Pharm. 2019;45(2):188–201.Google Scholar
  78. 78.
    Dorwald FZ. Lead Optimization for Medicinal Chemists: Pharmacokinetic Properties of functional groups and organic compounds. ISBN:978-3-527-33226-7. Oxford: Wiley; 2012.Google Scholar
  79. 79.
    Maddileti D, Swapna B, Nangia A. High solubility crystalline pharmaceutical forms of blonanserin. Cryst Growth Des. 2014;14:2557–70.Google Scholar
  80. 80.
    Ghosh R, Bhatia MS, Bhattacharya SK. Blonanserin in management of schizophrenia. Delhi Psychiatry J. 2012;15(2):406–11.Google Scholar
  81. 81.
    Kudo S, Ishizaki T. Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet. 1999;37(6):435–56.Google Scholar
  82. 82.
    Jawahar N, Hingarh PK, Arun R, Selvaraj J, Anbarasan A, Sathianarayanan S, Nagaraju G. Enhanced oral bioavailability of an antipsychotic drug through nanostructured lipid carriers. Int J Biol Macromol. 2018;15(110):269–75.Google Scholar
  83. 83.
    Pather SI, Khankari RK, Eichman JD, Robinson JR, Hontz J, inventors. Cima Labs Inc., Eden Prairie, MN, USA, applicant. Sublingual buccal effervescent. US20030091629 A1; 2003.Google Scholar
  84. 84.
    Narala A, Veerabrahma K. Preparation, characterization and evaluation of quetiapine fumarate solid lipid nanoparticles to improve the oral bioavailability. J Pharm (Cairo). 2013;2013:265741.Google Scholar
  85. 85.
    He H, Richardson JS. A pharmacological, pharmacokinetic and clinical overview of risperidone, a new antipsychotic that blocks serotonin 5-HT2 and dopamine D2 receptors. Int Clin Psychopharmacol. 1995;10(1):19–30.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Angela Abruzzo
    • 1
  • Teresa Cerchiara
    • 1
  • Barbara Luppi
    • 1
    Email author
  • Federica Bigucci
    • 1
  1. 1.Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly

Personalised recommendations