Advertisement

CNS Drugs

, Volume 33, Issue 7, pp 659–676 | Cite as

Drug Treatment of Clinically Isolated Syndrome

  • Moritz Förster
  • Jonas Graf
  • Jan Mares
  • Orhan Aktas
  • Hans-Peter HartungEmail author
  • David Kremer
Review Article

Abstract

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that leads to inflammation, demyelination and ultimately axonal degeneration. In most cases, it is preceded by its precursor, clinically isolated syndrome (CIS) with conversion rates to clinically definite MS (CDMS) of roughly 20–75%. Neurologists are therefore faced with the challenge of initiating a disease-modifying therapy (DMT) as early as possible to favorably influence the course of the disease. During the past 20 years, a multitude of drugs have been incorporated into our therapeutic armamentarium for MS and CIS. Choosing the right drug for an individual patient is complex and should be based not only on the drug’s overall efficacy to prevent disease progression but also its specific adverse reaction profile, the severity of individual disease courses and, finally, patient compliance in order to adequately weigh associated risks and benefits. Here, we review the available data on the efficacy, safety and tolerability of DMTs tested for CIS and discuss their value regarding a delay of progression to CDMS.

Notes

Compliance with Ethical Standards

Conflict of interest

Moritz Förster, Jan Mares and David Kremer have no conflicts of interest that are directly relevant to the content of this article. Jonas Graf has received expenses from Biogen, Merck Serono, and Sanofi Genzyme. Orhan Aktas has received grant support from Bayer, Biogen, Novartis, and Sanofi and consultancy or speaking fees and fees for serving on steering committees from Bayer, Biogen, Celgene, Medimmune, Merck, Novartis, Roche, Sanofi, and Teva. Hans-Peter Hartung has received fees for consulting, speaking, and serving on steering committees from Bayer Healthcare, Biogen, GeNeuro, MedImmune, Merck, Novartis, Opexa, Receptos Celgene, Roche, Sanofi Genzyme, CSL Behring, Octapharma, and Teva, with approval from the Rector of Heinrich-Heine-University.

Funding

None of the authors received funding for preparation of this manuscript. The MS Center at the Department of Neurology in Düsseldorf is supported in part by the Walter and Ilse Rose Foundation and the James and Elisabeth Cloppenburg, Peek, and Cloppenburg Düsseldorf Stiftung.

References

  1. 1.
    Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622–36.  https://doi.org/10.1016/S0140-6736(18)30481-1.Google Scholar
  2. 2.
    Pugliatti M, Rosati G, Carton H, Riise T, Drulovic J, Vecsei L, et al. The epidemiology of multiple sclerosis in Europe. Eur J Neurol. 2006;13(7):700–22.  https://doi.org/10.1111/j.1468-1331.2006.01342.x.Google Scholar
  3. 3.
    Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007;61(4):288–99.Google Scholar
  4. 4.
    Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann Neurol. 2007;61(6):504–13.  https://doi.org/10.1002/ana.21141.Google Scholar
  5. 5.
    Sadovnick A, Dyment D, Ebers G, Risch N, Group CCS. Evidence for genetic basis of multiple sclerosis. Lancet. 1996;347(9017):1728–30.Google Scholar
  6. 6.
    Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25.Google Scholar
  7. 7.
    Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86.  https://doi.org/10.1212/WNL.0000000000000560.Google Scholar
  8. 8.
    Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13(3):227–31.  https://doi.org/10.1002/ana.410130302.Google Scholar
  9. 9.
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.  https://doi.org/10.1016/S1474-4422(17)30470-2.Google Scholar
  10. 10.
    Brex PA, O’Riordan JI, Miszkiel KA, Moseley IF, Thompson AJ, Plant GT, et al. Multisequence MRI in clinically isolated syndromes and the early development of MS. Neurology. 1999;53(6):1184–90.Google Scholar
  11. 11.
    McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121–7.Google Scholar
  12. 12.
    Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005;58(6):840–6.  https://doi.org/10.1002/ana.20703.Google Scholar
  13. 13.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302.  https://doi.org/10.1002/ana.22366.Google Scholar
  14. 14.
    Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol. 2012;11(2):157–69.  https://doi.org/10.1016/S1474-4422(11)70274-5.Google Scholar
  15. 15.
    Kremenchutzky M, Rice GPA, Baskerville J, Wingerchuk DM, Ebers GC. The natural history of multiple sclerosis: a geographically based study 9: Observations on the progressive phase of the disease. Brain J Neurol. 2006;129(3):584–94.  https://doi.org/10.1093/brain/awh721.Google Scholar
  16. 16.
    Thompson A, Polman C, Miller D, McDonald W, Brochet B, Filippi M, Montalban X, et al. Primary progressive multiple sclerosis. Brain J Neurol. 1999;120(6):1085–96.Google Scholar
  17. 17.
    Kaufman DW, Reshef S, Golub HL, Peucker M, Corwin MJ, Goodin DS, et al. Survival in commercially insured multiple sclerosis patients and comparator subjects in the US. Mult Scler Relat Disord. 2014;3(3):364–71.  https://doi.org/10.1016/j.msard.2013.12.003.Google Scholar
  18. 18.
    Lunde HMB, Assmus J, Myhr KM, Bo L, Grytten N. Survival and cause of death in multiple sclerosis: a 60-year longitudinal population study. J Neurol Neurosurg Psychiatry. 2017;88(8):621–5.  https://doi.org/10.1136/jnnp-2016-315238.Google Scholar
  19. 19.
    Kappos L, Polman CH, Freedman MS, Edan G, Hartung HP, Miller DH, et al. Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology. 2006;67(7):1242–9.  https://doi.org/10.1212/01.wnl.0000237641.33768.8d.Google Scholar
  20. 20.
    Comi G, De Stefano N, Freedman MS, Barkhof F, Polman CH, Uitdehaag BM, et al. Comparison of two dosing frequencies of subcutaneous interferon beta-1a in patients with a first clinical demyelinating event suggestive of multiple sclerosis (REFLEX): a phase 3 randomised controlled trial. Lancet Neurol. 2012;11(1):33–41.  https://doi.org/10.1016/S1474-4422(11)70262-9.Google Scholar
  21. 21.
    Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ, et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med. 2000;343(13):898–904.  https://doi.org/10.1056/nejm200009283431301.Google Scholar
  22. 22.
    Miller AE, Wolinsky JS, Kappos L, Comi G, Freedman MS, Olsson TP, et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(10):977–86.  https://doi.org/10.1016/S1474-4422(14)70191-7.Google Scholar
  23. 23.
    Leist TP, Comi G, Cree BA, Coyle PK, Freedman MS, Hartung HP, et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 2014;13(3):257–67.  https://doi.org/10.1016/S1474-4422(14)70005-5.Google Scholar
  24. 24.
    Metz LM, Li DK, Traboulsee AL, Duquette P, Eliasziw M, Cerchiaro G, et al. Trial of minocycline in a clinically isolated syndrome of multiple sclerosis. N Engl J Med. 2017;376(22):2122–33.Google Scholar
  25. 25.
    Group IMSS. Interferon beta-1b is effective in relapsing–remitting multiple sclerosis I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43(4):655.Google Scholar
  26. 26.
    Paty D, Li DB, Group UMMS, Group IMSS. Interferon beta-1b is effective in relapsing–remitting multiple sclerosis II MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43(4):662.Google Scholar
  27. 27.
    Polman C, Kappos L, Freedman MS, Edan G, Hartung HP, Miller DH, et al. Subgroups of the BENEFIT study: risk of developing MS and treatment effect of interferon beta-1b. J Neurol. 2008;255(4):480–7.  https://doi.org/10.1007/s00415-007-0733-2.Google Scholar
  28. 28.
    Kappos L, Freedman MS, Polman CH, Edan G, Hartung HP, Miller DH, et al. Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet. 2007;370(9585):389–97.  https://doi.org/10.1016/S0140-6736(07)61194-5.Google Scholar
  29. 29.
    Kappos L, Freedman MS, Polman CH, Edan G, Hartung HP, Miller DH, et al. Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol. 2009;8(11):987–97.  https://doi.org/10.1016/S1474-4422(09)70237-6.Google Scholar
  30. 30.
    Edan G, Kappos L, Montalban X, Polman CH, Freedman MS, Hartung HP, et al. Long-term impact of interferon beta-1b in patients with CIS: 8-year follow-up of BENEFIT. J Neurol Neurosurg Psychiatry. 2014;85(11):1183–9.  https://doi.org/10.1136/jnnp-2013-306222.Google Scholar
  31. 31.
    Kappos L, Edan G, Freedman MS, Montalban X, Hartung HP, Hemmer B, et al. The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. Neurology. 2016;87(10):978–87.  https://doi.org/10.1212/WNL.0000000000003078.Google Scholar
  32. 32.
    Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, et al. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain J Neurol. 2010;133(Pt 7):1914–29.  https://doi.org/10.1093/brain/awq118.Google Scholar
  33. 33.
    Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain J Neurol. 2010;133(Pt 7):1900–13.  https://doi.org/10.1093/brain/awq076.Google Scholar
  34. 34.
    Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol. 1996;39(3):285–94.Google Scholar
  35. 35.
    O’Connor P, Kinkel RP, Kremenchutzky M. Efficacy of intramuscular interferon beta-1a in patients with clinically isolated syndrome: analysis of subgroups based on new risk criteria. Mult Scler J. 2009;15(6):728–34.  https://doi.org/10.1177/1352458509103173.Google Scholar
  36. 36.
    O’Connor P. The effects of intramuscular interferon beta-Ia in patients at high risk for development of multiple sclerosis: a post hoc analysis of data from CHAMPS. Clin Ther. 2003;25(11):2865–74.Google Scholar
  37. 37.
    Beck RW, Chandler DL, Cole SR, Simon JH, Jacobs LD, Kinkel RP, et al. Interferon beta-1a for early multiple sclerosis: CHAMPS trial subgroup analyses. Ann Neurol. 2002;51(4):481–90.Google Scholar
  38. 38.
    Group CS. IM interferon β-1a delays definite multiple sclerosis 5 years after a first demyelinating event. Neurology. 2006;66(5):678–84.Google Scholar
  39. 39.
    Kinkel RP, Dontchev M, Kollman C, Skaramagas TT, O’connor PW, Simon JH, et al. Association between immediate initiation of intramuscular interferon beta-1a at the time of a clinically isolated syndrome and long-term outcomes: a 10-year follow-up of the Controlled High-Risk Avonex Multiple Sclerosis Prevention Study in Ongoing Neurological Surveillance. Arch Neurol. 2012;69(2):183–90.Google Scholar
  40. 40.
    Comi G, Filippi M, Barkhof F, Durelli L, Edan G, Fernández O, et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet. 2001;357(9268):1576–82.Google Scholar
  41. 41.
    Giovannoni G. The REFLEX study: a missed opportunity? Lancet Neurol. 2012;11(1):22–4.  https://doi.org/10.1016/S1474-4422(11)70282-4.Google Scholar
  42. 42.
    Comi G, De Stefano N, Freedman MS, Barkhof F, Uitdehaag BM, de Vos M, et al. Subcutaneous interferon β-1a in the treatment of clinically isolated syndromes: 3-year and 5-year results of the phase III dosing frequency-blind multicentre REFLEXION study. J Neurol Neurosurg Psychiatry. 2017;88(4):285–94.Google Scholar
  43. 43.
    Freedman MS, De Stefano N, Barkhof F, Polman CH, Comi G, Uitdehaag BM, et al. Patient subgroup analyses of the treatment effect of subcutaneous interferon β-1a on development of multiple sclerosis in the randomized controlled REFLEX study. J Neurol. 2014;261(3):490–9.Google Scholar
  44. 44.
    Sorensen PS. Neutralizing antibodies against interferon-beta. Ther Adv Neurol Disord. 2008;1(2):125–41.  https://doi.org/10.1177/1756285608095144.Google Scholar
  45. 45.
    Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing–remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1995;45(7):1268–76.Google Scholar
  46. 46.
    Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1998;50(3):701–8.Google Scholar
  47. 47.
    Comi G, Martinelli V, Rodegher M, Moiola L, Bajenaru O, Carra A, et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9700):1503–11.  https://doi.org/10.1016/S0140-6736(09)61259-9.Google Scholar
  48. 48.
    Comi G, Martinelli V, Rodegher M, Moiola L, Leocani L, Bajenaru O, et al. Effects of early treatment with glatiramer acetate in patients with clinically isolated syndrome. Mult Scler J. 2012;19(8):1074–83.  https://doi.org/10.1177/1352458512469695.Google Scholar
  49. 49.
    Bell C, Anderson J, Ganguly T, Prescott J, Capila I, Lansing JC, et al. Development of glatopa(R) (glatiramer acetate): the first FDA-approved generic disease-modifying therapy for relapsing forms of multiple sclerosis. J Pharm Pract. 2018;31(5):481–8.  https://doi.org/10.1177/0897190017725984.Google Scholar
  50. 50.
    Cohen J, Belova A, Selmaj K, Wolf C, Sormani MP, Oberye J, et al. Equivalence of generic glatiramer acetate in multiple sclerosis: a randomized clinical trial. JAMA Neurol. 2015;72(12):1433–41.  https://doi.org/10.1001/jamaneurol.2015.2154.Google Scholar
  51. 51.
    Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Sørensen PS, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):416–26.Google Scholar
  52. 52.
    Pakpoor J, Disanto G, Altmann DR, Pavitt S, Turner BP, Marta M, et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e158.Google Scholar
  53. 53.
    Giovannoni G, Soelberg Sorensen P, Cook S, Rammohan K, Rieckmann P, Comi G, et al. Safety and efficacy of cladribine tablets in patients with relapsing–remitting multiple sclerosis: results from the randomized extension trial of the CLARITY study. Mult Scler J. 2018;24(12):1594–604.Google Scholar
  54. 54.
    Cook S, Vermersch P, Comi G, Giovannoni G, Rammohan K, Rieckmann P, et al. Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallY) study. Mult Scler J. 2011;17(5):578–93.Google Scholar
  55. 55.
    Freedman MS, Leist TP, Comi G, Cree BA, Coyle PK, Hartung HP, et al. The efficacy of cladribine tablets in CIS patients retrospectively assigned the diagnosis of MS using modern criteria: results from the ORACLE-MS study. Mult Scler J. 2017;3(4):2055217317732802.  https://doi.org/10.1177/2055217317732802.Google Scholar
  56. 56.
    O’Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365(14):1293–303.  https://doi.org/10.1056/NEJMoa1014656.Google Scholar
  57. 57.
    Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(3):247–56.  https://doi.org/10.1016/S1474-4422(13)70308-9.Google Scholar
  58. 58.
    Miller AE, Freedman MS, Oh J, de Seze J, Truffinet P, Benamor M, et al. Outcomes of the TOPIC Extension Study of Teriflunomide in patients with early multiple sclerosis: up to 7 years of clinical results (P2.103). Neurology. 2017;88(16 Supplement):P2.103.Google Scholar
  59. 59.
    Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain J Neurol. 2002;125(6):1297–308.Google Scholar
  60. 60.
    Metz LM, Eliasziw M. Trial of minocycline in clinically isolated syndrome of multiple sclerosis. N Engl J Med. 2017;377(8):789.  https://doi.org/10.1056/NEJMc1708486.Google Scholar
  61. 61.
    Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator. Nat Med. 2000;6(12):1399–402.  https://doi.org/10.1038/82219.Google Scholar
  62. 62.
    Zipp F, Waiczies S, Aktas O, Neuhaus O, Hemmer B, Schraven B, et al. Impact of HMG-CoA reductase inhibition on brain pathology. Trends Pharmacol Sci. 2007;28(7):342–9.  https://doi.org/10.1016/j.tips.2007.05.001.Google Scholar
  63. 63.
    Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420(6911):78–84.  https://doi.org/10.1038/nature01158.Google Scholar
  64. 64.
    Nath N, Giri S, Prasad R, Singh AK, Singh I. Potential targets of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for multiple sclerosis therapy. J Immunol. 2004;172(2):1273–86.Google Scholar
  65. 65.
    Aktas O, Waiczies S, Smorodchenko A, Dorr J, Seeger B, Prozorovski T, et al. Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J Exp Med. 2003;197(6):725–33.  https://doi.org/10.1084/jem.20021425.Google Scholar
  66. 66.
    Waiczies S, Prozorovski T, Infante-Duarte C, Hahner A, Aktas O, Ullrich O, et al. Atorvastatin induces T cell anergy via phosphorylation of ERK1. J Immunol. 2005;174(9):5630–5.Google Scholar
  67. 67.
    Pihl-Jensen G, Tsakiri A, Frederiksen JL. Statin treatment in multiple sclerosis: a systematic review and meta-analysis. CNS Drugs. 2015;29(4):277–91.  https://doi.org/10.1007/s40263-015-0239-x.Google Scholar
  68. 68.
    Birnbaum G, Cree B, Altafullah I, Zinser M, Reder AT. Combining beta interferon and atorvastatin may increase disease activity in multiple sclerosis. Neurology. 2008;71(18):1390–5.  https://doi.org/10.1212/01.wnl.0000319698.40024.1c.Google Scholar
  69. 69.
    Lanzillo R, Orefice G, Quarantelli M, Rinaldi C, Prinster A, Ventrella G, et al. Atorvastatin combined to interferon to verify the efficacy (ACTIVE) in relapsing–remitting active multiple sclerosis patients: a longitudinal controlled trial of combination therapy. Mult Scler. 2010;16(4):450–4.  https://doi.org/10.1177/1352458509358909.Google Scholar
  70. 70.
    Togha M, Karvigh SA, Nabavi M, Moghadam NB, Harirchian MH, Sahraian MA, et al. Simvastatin treatment in patients with relapsing–remitting multiple sclerosis receiving interferon beta 1a: a double-blind randomized controlled trial. Mult Scler. 2010;16(7):848–54.  https://doi.org/10.1177/1352458510369147.Google Scholar
  71. 71.
    Sorensen PS, Lycke J, Eralinna JP, Edland A, Wu X, Frederiksen JL, et al. Simvastatin as add-on therapy to interferon beta-1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study): a placebo-controlled randomised phase 4 trial. Lancet Neurol. 2011;10(8):691–701.  https://doi.org/10.1016/S1474-4422(11)70144-2.Google Scholar
  72. 72.
    Kamm CP, El-Koussy M, Humpert S, Findling O, von Bredow F, Burren Y, et al. Atorvastatin added to interferon beta for relapsing multiple sclerosis: a randomized controlled trial. J Neurol. 2012;259(11):2401–13.  https://doi.org/10.1007/s00415-012-6513-7.Google Scholar
  73. 73.
    Lanzillo R, Quarantelli M, Pozzilli C, Trojano M, Amato MP, Marrosu MG, et al. No evidence for an effect on brain atrophy rate of atorvastatin add-on to interferon beta1b therapy in relapsing–remitting multiple sclerosis (the ARIANNA study). Mult Scler. 2016;22(9):1163–73.  https://doi.org/10.1177/1352458515611222.Google Scholar
  74. 74.
    Kamm CP, El-Koussy M, Humpert S, Findling O, Burren Y, Schwegler G, et al. Atorvastatin added to interferon beta for relapsing multiple sclerosis: 12-month treatment extension of the randomized multicenter SWABIMS trial. PLoS One. 2014;9(1):e86663.  https://doi.org/10.1371/journal.pone.0086663.Google Scholar
  75. 75.
    Chataway J, Schuerer N, Alsanousi A, Chan D, MacManus D, Hunter K, et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet. 2014;383(9936):2213–21.  https://doi.org/10.1016/S0140-6736(13)62242-4.Google Scholar
  76. 76.
    Chan D, Binks S, Nicholas JM, Frost C, Cardoso MJ, Ourselin S, et al. Effect of high-dose simvastatin on cognitive, neuropsychiatric, and health-related quality-of-life measures in secondary progressive multiple sclerosis: secondary analyses from the MS-STAT randomised, placebo-controlled trial. Lancet Neurol. 2017;16(8):591–600.  https://doi.org/10.1016/S1474-4422(17)30113-8.Google Scholar
  77. 77.
    Tsakiri A, Kallenbach K, Fuglo D, Wanscher B, Larsson H, Frederiksen J. Simvastatin improves final visual outcome in acute optic neuritis: a randomized study. Mult Scler. 2012;18(1):72–81.  https://doi.org/10.1177/1352458511415452.Google Scholar
  78. 78.
    Waubant E, Pelletier D, Mass M, Cohen JA, Kita M, Cross A, et al. Randomized controlled trial of atorvastatin in clinically isolated syndrome: the STAyCIS study. Neurology. 2012;78(15):1171–8.  https://doi.org/10.1212/WNL.0b013e31824f7fdd.Google Scholar
  79. 79.
    Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L, et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16(3):189–99.  https://doi.org/10.1016/S1474-4422(16)30377-5.Google Scholar
  80. 80.
    Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch LJ, et al. Predictors of response to opicinumab in acute optic neuritis. Ann Clin Transl Neurol. 2018;5(10):1154–62.  https://doi.org/10.1002/acn3.620.Google Scholar
  81. 81.
    Tremlett H, Zhao Y, Rieckmann P, Hutchinson M. New perspectives in the natural history of multiple sclerosis. Neurology. 2010;74(24):2004–15.Google Scholar
  82. 82.
    Grytten Torkildsen N, Lie S, Aarseth J, Nyland H, Myhr K. Survival and cause of death in multiple sclerosis: results from a 50-year follow-up in Western Norway. Mult Scler J. 2008;14(9):1191–8.Google Scholar
  83. 83.
    Brønnum-Hansen H, Koch-Henriksen N, Stenager E. Trends in survival and cause of death in Danish patients with multiple sclerosis. Brain : a journal of neurology. 2004;127(4):844–50.Google Scholar
  84. 84.
    Stankoff B, Mrejen S, Tourbah A, Fontaine B, Lyon-Caen O, Lubetzki C, et al. Age at onset determines the occurrence of the progressive phase of multiple sclerosis. Neurology. 2007;68(10):779–81.Google Scholar
  85. 85.
    Debouverie M, Pittion-Vouyovitch S, Louis S, Guillemin F, Group L. Natural history of multiple sclerosis in a population-based cohort. Eur J Neurol. 2008;15(9):916–21.Google Scholar
  86. 86.
    Tremlett H, Zhao Y, Devonshire V. Natural history of secondary-progressive multiple sclerosis. Mult Scler J. 2008;14(3):314–24.Google Scholar
  87. 87.
    Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain J Neurol. 2003;126(4):770–82.Google Scholar
  88. 88.
    Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain J Neurol. 2008;131(Pt 3):808–17.  https://doi.org/10.1093/brain/awm329.Google Scholar
  89. 89.
    Eriksson M, Andersen O, Runmarker B. Long-term follow up of patients with clinically isolated syndromes, relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler. 2003;9(3):260–74.  https://doi.org/10.1191/1352458503ms914oa.Google Scholar
  90. 90.
    Kuhle J, Disanto G, Dobson R, Adiutori R, Bianchi L, Topping J, et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Mult Scler. 2015;21(8):1013–24.  https://doi.org/10.1177/1352458514568827.Google Scholar
  91. 91.
    Mowry EM, Pesic M, Grimes B, Deen SR, Bacchetti P, Waubant E. Clinical predictors of early second event in patients with clinically isolated syndrome. J Neurol. 2009;256(7):1061–6.  https://doi.org/10.1007/s00415-009-5063-0.Google Scholar
  92. 92.
    Joseph FG, Hirst CL, Pickersgill TP, Ben-Shlomo Y, Robertson NP, Scolding NJ. CSF oligoclonal band status informs prognosis in multiple sclerosis: a case control study of 100 patients. J Neurol Neurosurg Psychiatry. 2009;80(3):292–6.Google Scholar
  93. 93.
    Masjuan J, Alvarez-Cermeno J, Garcia-Barragan N, Diaz-Sanchez M, Espiño M, Sadaba M, et al. Clinically isolated syndromes A new oligoclonal band test accurately predicts conversion to MS. Neurology. 2006;66(4):576–8.Google Scholar
  94. 94.
    Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatry. 2013;84(8):909–14.Google Scholar
  95. 95.
    Rasche L, Scheel M, Otte K, Althoff P, van Vuuren AB, Giess RM, et al. MRI markers and functional performance in patients with CIS and MS: a cross-sectional study. Front Neurol. 2018;9:718.  https://doi.org/10.3389/fneur.2018.00718.Google Scholar
  96. 96.
    Pérez-Miralles F, Sastre-Garriga J, Tintoré M, Arrambide G, Nos C, Perkal H, et al. Clinical impact of early brain atrophy in clinically isolated syndromes. Mult Scler J. 2013;19(14):1878–86.  https://doi.org/10.1177/1352458513488231.Google Scholar
  97. 97.
    Henry RG, Shieh M, Okuda DT, Evangelista A, Gorno-Tempini ML, Pelletier D. Regional grey matter atrophy in clinically isolated syndromes at presentation. J Neurol Neurosurg Psychiatry. 2008;79(11):1236–44.Google Scholar
  98. 98.
    Vidal-Jordana A, Sastre-Garriga J, Pareto D, Tur C, Arrambide G, Otero-Romero S, et al. Brain atrophy 15 years after CIS: baseline and follow-up clinico-radiological correlations. Mult Scler. 2018;24(6):721–7.  https://doi.org/10.1177/1352458517707070.Google Scholar
  99. 99.
    Håkansson I, Tisell A, Cassel P, Blennow K, Zetterberg H, Lundberg P, et al. Neurofilament light chain in cerebrospinal fluid and prediction of disease activity in clinically isolated syndrome and relapsing–remitting multiple sclerosis. Eur J Neurol. 2017;24(5):703–12.Google Scholar
  100. 100.
    Disanto G, Adiutori R, Dobson R, Martinelli V, Dalla Costa G, Runia T, et al. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. J Neurol Neurosurg Psychiatry. 2016;87(2):126–9.  https://doi.org/10.1136/jnnp-2014-309690.Google Scholar
  101. 101.
    Dalla Costa G, Martinelli V, Sangalli F, Moiola L, Colombo B, Radaelli M, et al. Prognostic value of serum neurofilaments in patients with clinically isolated syndromes. Neurology. 2019;78:89.  https://doi.org/10.1212/WNL.0000000000006902.Google Scholar
  102. 102.
    Tutuncu M, Tang J, Zeid NA, Kale N, Crusan DJ, Atkinson EJ, et al. Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult Scler J. 2013;19(2):188–98.Google Scholar
  103. 103.
    Penner IK, Stemper B, Calabrese P, Freedman MS, Polman CH, Edan G, et al. Effects of interferon beta-1b on cognitive performance in patients with a first event suggestive of multiple sclerosis. Mult Scler. 2012;18(10):1466–71.  https://doi.org/10.1177/1352458512442438.Google Scholar
  104. 104.
    Lebrun C, Bensa C, Debouverie M, Wiertlevski S, Brassat D, de Seze J, et al. Association between clinical conversion to multiple sclerosis in radiologically isolated syndrome and magnetic resonance imaging, cerebrospinal fluid, and visual evoked potential: follow-up of 70 patients. Arch Neurol. 2009;66(7):841–6.Google Scholar
  105. 105.
    Rossi S, Motta C, Studer V, Macchiarulo G, Germani G, Finardi A, et al. Subclinical central inflammation is risk for RIS and CIS conversion to MS. Mult Scler J. 2015;21(11):1443–52.  https://doi.org/10.1177/1352458514564482.Google Scholar
  106. 106.
    Amato MP, Hakiki B, Goretti B, Rossi F, Stromillo ML, Giorgio A, et al. Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology. 2012;78(5):309–14.  https://doi.org/10.1212/WNL.0b013e31824528c9.Google Scholar
  107. 107.
    Knier B, Berthele A, Buck D, Schmidt P, Zimmer C, Mühlau M, et al. Optical coherence tomography indicates disease activity prior to clinical onset of central nervous system demyelination. Mult Scler J. 2016;22(7):893–900.Google Scholar
  108. 108.
    Labiano-Fontcuberta A, Benito-León J. Radiologically isolated syndrome should be treated with disease-modifying therapy—no. Mult Scler J. 2017;23(14):1820–1.Google Scholar
  109. 109.
    Okuda DT. Radiologically isolated syndrome should be treated with disease-modifying therapy—yes. Mult Scler J. 2017;23(14):1818–9.Google Scholar
  110. 110.
    Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain J Neurol. 2002;125(10):2202–12.Google Scholar
  111. 111.
    Fialová L, Bartos A, Švarcová J, Zimova D, Kotoucova J, Malbohan I. Serum and cerebrospinal fluid light neurofilaments and antibodies against them in clinically isolated syndrome and multiple sclerosis. J Neuroimmunol. 2013;262(1–2):113–20.Google Scholar
  112. 112.
    Novakova L, Axelsson M, Khademi M, Zetterberg H, Blennow K, Malmeström C, et al. Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing–remitting multiple sclerosis. J Neurochem. 2017;141(2):296–304.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurology, Medical FacultyHeinrich-Heine-UniversityDüsseldorfGermany
  2. 2.Department of Neurology, University Hospital and Faculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic

Personalised recommendations