CNS Drugs

, Volume 33, Issue 4, pp 347–374 | Cite as

Expanding Role of NMDA Receptor Antagonists in the Management of Pain

  • Denise Kreutzwiser
  • Qutaiba A. TawficEmail author
Review Article


Pain management is complex regardless of whether the pain is acute or chronic in nature or non-cancer or cancer related. In addition, relatively few pain pharmacotherapy options with adequate efficacy and safety data currently exist. Consequently, interest in the role of NMDA receptor antagonists as a pharmacological pain management strategy has surfaced. This narrative review provides an overview of the NMDA receptor and elaborates on the pharmacotherapeutic profile and pain management literature findings for the following NMDA receptor antagonists: ketamine, memantine, dextromethorphan, and magnesium. The literature on this topic is characterized by small studies, many of which exhibit methodological flaws. To date, ketamine is the most studied NMDA receptor antagonist for both acute and chronic pain management. Although further research about NMDA receptor antagonists for analgesia is needed and the optimal dosage/administration regimens for these drugs have yet to be determined, ketamine appears to hold the most promise and may be of particular value in the perioperative pain management realm.



The authors acknowledge the role of Brad Dishan, BSc, MLIS, Medical Librarian, St. Joseph’s Health Care London, London, ON, Canada in the literature search during the preparation of this article.

Compliance with Ethical Standards


No sources of funding were received for the preparation of this article.

Conflict of interest

Denise Kreutzwiser and Qutaiba A. Tawfic have no conflicts of interest that are directly relevant to the content of this article.


  1. 1.
    Wu CL, Raja SN. Treatment of acute postoperative pain. Lancet. 2011;377(9784):2215–25.Google Scholar
  2. 2.
    Rawal N. Current issues in postoperative pain management. Eur J Anaesthesiol. 2016;33(3):160–71.Google Scholar
  3. 3.
    Chou R, Gordon DB, de Leon-Casasola OA, Rosenberg JM, Bickler S, Brennan T, et al. Management of postoperative pain: a clinical practice guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J Pain. 2016;17(2):131–57.Google Scholar
  4. 4.
    Schwenk ES, Viscusi ER, Buvanendran A, Hurley RW, Wasan AD, Narouze S, et al. Consensus guidelines on the use of intravenous ketamine infusions for acute pain management from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med. 2018;43(5):456–66.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Gorman AL, Elliott KJ, Inturrisi CE. The d- and l-isomers of methadone bind to the non-competitive site on the N-methyl-D-aspartate (NMDA) receptor in rat forebrain and spinal cord. Neurosci Lett. 1997;223(1):5–8.Google Scholar
  6. 6.
    Ebert B, Andersen S, Krogsgaard-Larsen P. Ketobemidone, methadone and pethidine are non-competitive N-methyl-D-aspartate (NMDA) antagonists in the rat cortex and spinal cord. Neurosci Lett. 1995;187(3):165–8.Google Scholar
  7. 7.
    Davis AM, Inturrisi CE. d-Methadone blocks morphine tolerance and N-methyl-D-aspartate-induced hyperalgesia. J Pharmacol Exp Ther. 1999;289(2):1048–53.PubMedGoogle Scholar
  8. 8.
    Dinis-Oliveira RJ. Metabolomics of methadone: clinical and forensic toxicological implications and variability of dose response. Drug Metab Rev. 2016;48(4):568–76.Google Scholar
  9. 9.
    Garrido MJ, Troconiz IF. Methadone: a review of its pharmacokinetic/pharmacodynamic properties. J Pharmacol Toxicol Methods. 1999;42(2):61–6.Google Scholar
  10. 10.
    Codd EE, Shank RP, Schupsky JJ, Raffa RB. Serotonin and norepinephrine uptake inhibiting activity of centrally acting analgesics: structural determinants and role in antinociception. J Pharmacol Exp Ther. 1995;274(3):1263–70.PubMedGoogle Scholar
  11. 11.
    Bozic M, Valdivielso JM. The potential of targeting NMDA receptors outside the CNS. Expert Opin Ther Targets. 2015;19(3):399–413.Google Scholar
  12. 12.
    Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383–400.Google Scholar
  13. 13.
    Hansen KB, Yi F, Perszyk RE, Menniti FS, Traynelis SF. NMDA receptors in the central nervous system. Methods Mol Biol. 2017;1677:1–80.Google Scholar
  14. 14.
    Scheetz AJ, Constantine-Paton M. Modulation of NMDA receptor function: implications for vertebrate neural development. FASEB J. 1994;8(10):745–52.Google Scholar
  15. 15.
    Hardingham GE. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans. 2009;37(Pt 6):1147–60.Google Scholar
  16. 16.
    Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg. 2003;97(4):1108–16.Google Scholar
  17. 17.
    Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.Google Scholar
  18. 18.
    Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl.):S2–15.Google Scholar
  19. 19.
    Shanthanna H. Intravenous therapies in the management of neuropathic pain: a review on the use of ketamine and lidocaine in chronic pain management. In: Chukwunonye Udeagha C, editor. neuropathic pain. Rijeka: InTech; 2012. p. 41–78.Google Scholar
  20. 20.
    Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(Suppl. 1):S191–203.PubMedGoogle Scholar
  21. 21.
    Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96.Google Scholar
  22. 22.
    Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992;256(5060):1217–21.Google Scholar
  23. 23.
    Ulbrich MH, Isacoff EY. Subunit counting in membrane-bound proteins. Nat Methods. 2007;4(4):319–21.Google Scholar
  24. 24.
    Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511(7508):191–7.Google Scholar
  25. 25.
    Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344(6187):992–7.Google Scholar
  26. 26.
    Kehoe LA, Bernardinelli Y, Muller D. GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast. 2013;2013:145387.Google Scholar
  27. 27.
    Pachernegg S, Strutz-Seebohm N, Hollmann M. GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci. 2012;35(4):240–9.Google Scholar
  28. 28.
    Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci. 2011;33(8):1351–65.Google Scholar
  29. 29.
    Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE. 2004;2004(255):re16.Google Scholar
  30. 30.
    Blanke ML, VanDongen AMJ. Activation mechanisms of the NMDA receptor. In: Van Dongen AM, editor. Biology of the NMDA receptor. Boca Raton: Frontiers in Neuroscience; 2009.Google Scholar
  31. 31.
    Strong KL, Jing Y, Prosser AR, Traynelis SF, Liotta DC. NMDA receptor modulators: an updated patent review (2013-2014). Expert Opin Ther Pat. 2014;24(12):1349–66.Google Scholar
  32. 32.
    Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006;5(2):160–70.Google Scholar
  33. 33.
    Vadivelu N, Whitney C, Sinatra R. Pain pathways and acute pain processing. In: Sinatra R, De Leon-Cassasola O, Viscusi E, Ginsberg B, editors. Acute pain management. Cambridge: Cambridge University Press; 2009. p. 3–20.Google Scholar
  34. 34.
    World Health Organization. Ketamine update review report. Expert Committee on Drug Dependence Thirty-Seventh Meeting; 2015 Nov 16–20; Geneva.Google Scholar
  35. 35.
    Peltoniemi MA, Hagelberg NM, Olkkola KT, Saari TI. Ketamine: a review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy. Clin Pharmacokinet. 2016;55(9):1059–77.Google Scholar
  36. 36.
    Gao M, Rejaei D, Liu H. Ketamine use in current clinical practice. Acta Pharmacol Sin. 2016;37(7):865–72.Google Scholar
  37. 37.
    Aroni F, Iacovidou N, Dontas I, Pourzitaki C, Xanthos T. Pharmacological aspects and potential new clinical applications of ketamine: reevaluation of an old drug. J Clin Pharmacol. 2009;49(8):957–64.Google Scholar
  38. 38.
    Mion G, Villevieille T. Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther. 2013;19(6):370–80.Google Scholar
  39. 39.
    Schmid RL, Sandler AN, Katz J. Use and efficacy of low-dose ketamine in the management of acute postoperative pain: a review of current techniques and outcomes. Pain. 1999;82(2):111–25.Google Scholar
  40. 40.
    Orser BA, Pennefather PS, MacDonald JF. Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology. 1997;86(4):903–17.Google Scholar
  41. 41.
    Mikkelsen S, Ilkjaer S, Brennum J, Borgbjerg FM, Dahl JB. The effect of naloxone on ketamine-induced effects on hyperalgesia and ketamine-induced side effects in humans. Anesthesiology. 1999;90(6):1539–45.Google Scholar
  42. 42.
    Koizuka S, Obata H, Sasaki M, Saito S, Goto F. Systemic ketamine inhibits hypersensitivity after surgery via descending inhibitory pathways in rats. Can J Anaesth. 2005;52(5):498–505.Google Scholar
  43. 43.
    Sinner B, Graf BM. Ketamine. Handb Exp Pharmacol. 2008;182:313–33.Google Scholar
  44. 44.
    Gordh T, Karlsten R, Kristensen J. Intervention with spinal NMDA, adenosine, and NO systems for pain modulation. Ann Med. 1995;27(2):229–34.Google Scholar
  45. 45.
    Dinis-Oliveira RJ. Metabolism and metabolomics of ketamine: a toxicological approach. Forensic Sci Res. 2017;2(1):2–10.Google Scholar
  46. 46.
    Niesters M, Martini C, Dahan A. Ketamine for chronic pain: risks and benefits. Br J Clin Pharmacol. 2014;77(2):357–67.Google Scholar
  47. 47.
    Pai A, Heining M. Ketamine: continuing Education in Anaesthesia. Critical Care & Pain. 2007;7(2):59–63.Google Scholar
  48. 48.
    Farag E, Argalious M, Tetzlaff JE, Sharma D, editor. Basic sciences in anesthesia. New York: Springer Berlin Heidelberg; 2017.Google Scholar
  49. 49.
    Calvey TN, Williams NE. Principles and practice of pharmacology for anaesthetists. 5th ed. Malden: Blackwell Publishing; 2008: vii, p. 366.Google Scholar
  50. 50.
    Dayton PG, Stiller RL, Cook DR, Perel JM. The binding of ketamine to plasma proteins: emphasis on human plasma. Eur J Clin Pharmacol. 1983;24(6):825–31.Google Scholar
  51. 51.
    Domino EF, Domino SE, Smith RE, Domino LE, Goulet JR, Domino KE, et al. Ketamine kinetics in unmedicated and diazepam-premedicated subjects. Clin Pharmacol Ther. 1984;36(5):645–53.Google Scholar
  52. 52.
    Ihmsen H, Geisslinger G, Schuttler J. Stereoselective pharmacokinetics of ketamine: R(−)-ketamine inhibits the elimination of S(+)-ketamine. Clin Pharmacol Ther. 2001;70(5):431–8.Google Scholar
  53. 53.
    Sigtermans M, Dahan A, Mooren R, Bauer M, Kest B, Sarton E, et al. S(+)-ketamine effect on experimental pain and cardiac output: a population pharmacokinetic-pharmacodynamic modeling study in healthy volunteers. Anesthesiology. 2009;111(4):892–903.Google Scholar
  54. 54.
    Rao LK, Flaker AM, Friedel CC, Kharasch ED. Role of cytochrome P4502B6 polymorphisms in ketamine metabolism and clearance. Anesthesiology. 2016;125(6):1103–12.Google Scholar
  55. 55.
    Hijazi Y, Boulieu R. Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2002;30(7):853–8.Google Scholar
  56. 56.
    Yanagihara Y, Kariya S, Ohtani M, Uchino K, Aoyama T, Yamamura Y, et al. Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2001;29(6):887–90.PubMedGoogle Scholar
  57. 57.
    Peltoniemi MA, Saari TI, Hagelberg NM, Reponen P, Turpeinen M, Laine K, et al. Exposure to oral S-ketamine is unaffected by itraconazole but greatly increased by ticlopidine. Clin Pharmacol Ther. 2011;90(2):296–302.Google Scholar
  58. 58.
    Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Kurkinen KJ, Neuvonen PJ, et al. Rifampicin has a profound effect on the pharmacokinetics of oral S-ketamine and less on intravenous S-ketamine. Basic Clin Pharmacol Toxicol. 2012;111(5):325–32.Google Scholar
  59. 59.
    Aida S, Yamakura T, Baba H, Taga K, Fukuda S, Shimoji K. Preemptive analgesia by intravenous low-dose ketamine and epidural morphine in gastrectomy: a randomized double-blind study. Anesthesiology. 2000;92(6):1624–30.Google Scholar
  60. 60.
    Adriaenssens G, Vermeyen KM, Hoffmann VL, Mertens E, Adriaensen HF. Postoperative analgesia with i.v. patient-controlled morphine: effect of adding ketamine. Br J Anaesth. 1999;83(3):393–6.Google Scholar
  61. 61.
    Safavi MHA, Nematollahy Z. Pre-incisional analgesia with intravenous or subcutaneous infiltration of ketamine reduces postoperative pain in patients after open cholecystectomy: a randomized, double-blind, placebo-controlled study. Pain Med. 2011;12(9):1418–26.Google Scholar
  62. 62.
    Behdad A, Hosseinpour M, Khorasani P. Preemptive use of ketamine on post operative pain of appendectomy. Korean J Pain. 2011;24(3):137–40.Google Scholar
  63. 63.
    Parikh B, Maliwad J, Shah VR. Preventive analgesia: effect of small dose of ketamine on morphine requirement after renal surgery. J Anaesthesiol Clin Pharmacol. 2011;27(4):485–8.Google Scholar
  64. 64.
    Kararmaz A, Kaya S, Karaman H, Turhanoglu S, Ozyilmaz MA. Intraoperative intravenous ketamine in combination with epidural analgesia: postoperative analgesia after renal surgery. Anesth Analg. 2003;97(4):1092–6.Google Scholar
  65. 65.
    Kwok RF, Lim J, Chan MT, Gin T, Chiu WK. Preoperative ketamine improves postoperative analgesia after gynecologic laparoscopic surgery. Anesth Analg. 2004;98(4):1044–9.Google Scholar
  66. 66.
    Lahtinen P, Kokki H, Hakala T, Hynynen M. S(+)-ketamine as an analgesic adjunct reduces opioid consumption after cardiac surgery. Anesth Analg. 2004;99(5):1295–301.Google Scholar
  67. 67.
    Remerand F, Le Tendre C, Baud A, Couvret C, Pourrat X, Favard L, et al. The early and delayed analgesic effects of ketamine after total hip arthroplasty: a prospective, randomized, controlled, double-blind study. Anesth Analg. 2009;109(6):1963–71.Google Scholar
  68. 68.
    Aveline C, Gautier JF, Vautier P, Cognet F, Hetet HL, Attali JY, et al. Postoperative analgesia and early rehabilitation after total knee replacement: a comparison of continuous low-dose intravenous ketamine versus nefopam. Eur J Pain. 2009;13(6):613–9.Google Scholar
  69. 69.
    Yamauchi M, Asano M, Watanabe M, Iwasaki S, Furuse S, Namiki A. Continuous low-dose ketamine improves the analgesic effects of fentanyl patient-controlled analgesia after cervical spine surgery. Anesth Analg. 2008;107(3):1041–4.Google Scholar
  70. 70.
    Loftus RW, Yeager MP, Clark JA, Brown JR, Abdu WA, Sengupta DK, et al. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology. 2010;113(3):639–46.PubMedGoogle Scholar
  71. 71.
    Subramaniam K, Subramaniam B, Steinbrook RA. Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg. 2004;99(2):482–95.Google Scholar
  72. 72.
    Elia N, Tramer MR. Ketamine and postoperative pain: a quantitative systematic review of randomised trials. Pain. 2005;113(1–2):61–70.Google Scholar
  73. 73.
    Carstensen M, Moller AM. Adding ketamine to morphine for intravenous patient-controlled analgesia for acute postoperative pain: a qualitative review of randomized trials. Br J Anaesth. 2010;104(4):401–6.Google Scholar
  74. 74.
    Laskowski K, Stirling A, McKay WP, Lim HJ. A systematic review of intravenous ketamine for postoperative analgesia. Can J Anaesth. 2011;58(10):911–23.Google Scholar
  75. 75.
    Assouline B, Tramer MR, Kreienbuhl L, Elia N. Benefit and harm of adding ketamine to an opioid in a patient-controlled analgesia device for the control of postoperative pain: systematic review and meta-analyses of randomized controlled trials with trial sequential analyses. Pain. 2016;157(12):2854–64.Google Scholar
  76. 76.
    Wang L, Johnston B, Kaushal A, Cheng D, Zhu F, Martin J. Ketamine added to morphine or hydromorphone patient-controlled analgesia for acute postoperative pain in adults: a systematic review and meta-analysis of randomized trials. Can J Anaesth. 2016;63(3):311–25.Google Scholar
  77. 77.
    Dahmani S, Michelet D, Abback PS, Wood C, Brasher C, Nivoche Y, et al. Ketamine for perioperative pain management in children: a meta-analysis of published studies. Paediatr Anaesth. 2011;21(6):636–52.Google Scholar
  78. 78.
    Pendi A, Field R, Farhan SD, Eichler M, Bederman SS. Perioperative ketamine for analgesia in spine surgery: a meta-analysis of randomized controlled trials. Spine (Phila Pa 1976). 2018;43(5):E299–307.Google Scholar
  79. 79.
    Dahi-Taleghani M, Fazli B, Ghasemi M, Vosoughian M, Dabbagh A. Effect of intravenous patient controlled ketamine analgesiaon postoperative pain in opium abusers. Anesth Pain Med. 2014;4(1):e14129.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Tawfic QA. A review of the use of ketamine in pain management. J Opioid Manag. 2013;9(5):379–88.Google Scholar
  81. 81.
    Guignard B, Coste C, Costes H, Sessler DI, Lebrault C, Morris W, et al. Supplementing desflurane-remifentanil anesthesia with small-dose ketamine reduces perioperative opioid analgesic requirements. Anesth Analg. 2002;95(1):103–8.Google Scholar
  82. 82.
    Sen H, Sizlan A, Yanarates O, Emirkadi H, Ozkan S, Dagli G, et al. A comparison of gabapentin and ketamine in acute and chronic pain after hysterectomy. Anesth Analg. 2009;109(5):1645–50.Google Scholar
  83. 83.
    McNicol ED, Schumann R, Haroutounian S. A systematic review and meta-analysis of ketamine for the prevention of persistent post-surgical pain. Acta Anaesthesiol Scand. 2014;58(10):1199–213.Google Scholar
  84. 84.
    Klatt E, Zumbrunn T, Bandschapp O, Girard T, Ruppen W. Intra- and postoperative intravenous ketamine does not prevent chronic pain: a systematic review and meta-analysis. Scand J Pain. 2015;7(1):42–54.Google Scholar
  85. 85.
    Chaparro LE, Smith SA, Moore RA, Wiffen PJ, Gilron I. Pharmacotherapy for the prevention of chronic pain after surgery in adults. Cochrane Database Syst Rev. 2013;(7):CD008307.Google Scholar
  86. 86.
    Cohen SP, Bhatia A, Buvanendran A, Schwenk ES, Wasan AD, Hurley RW, et al. Consensus guidelines on the use of intravenous ketamine infusions for chronic pain from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med. 2018;43(5):521–46.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Blonk MI, Koder BG, van den Bemt PM, Huygen FJ. Use of oral ketamine in chronic pain management: a review. Eur J Pain. 2010;14(5):466–72.Google Scholar
  88. 88.
    Marchetti F, Coutaux A, Bellanger A, Magneux C, Bourgeois P, Mion G. Efficacy and safety of oral ketamine for the relief of intractable chronic pain: a retrospective 5-year study of 51 patients. Eur J Pain. 2015;19(7):984–93.Google Scholar
  89. 89.
    Rabi J. Topical ketamine: a review of the history, mechanisms, uses, safety, and future Int J Pharm Compd. 2016;20(2):107–13.Google Scholar
  90. 90.
    Kopsky DJ, Keppel Hesselink JM, Bhaskar A, Hariton G, Romanenko V, Casale R. Analgesic effects of topical ketamine. Minerva Anestesiol. 2015;81(4):440–9.PubMedGoogle Scholar
  91. 91.
    Finch PM, Knudsen L, Drummond PD. Reduction of allodynia in patients with complex regional pain syndrome: a double-blind placebo-controlled trial of topical ketamine. Pain. 2009;146(1–2):18–25.Google Scholar
  92. 92.
    Rabi J, Minori J, Abad H, Lee R, Gittler M. Topical ketamine 10% for neuropathic pain in spinal cord injury patients: an open-label trial. Int J Pharm Compd. 2016;20(6):517–20.PubMedGoogle Scholar
  93. 93.
    Morley-Forster P, Rajaratinam M, Railton C, Urquhart B, Freeman D, editors. Uptake of topical 10% ketamine gel over 7 days: a pilot study (poster presentation no. 1341423); 2012 Canadian Anesthesiologists’ Annual Meeting. Quebec City (QC). Accessed 16 Dec 2018.
  94. 94.
    Jonkman K, van de Donk T, Dahan A. Ketamine for cancer pain: what is the evidence? Curr Opin Support Palliat Care. 2017;11(2):88–92.Google Scholar
  95. 95.
    Chung WJ, Pharo GH. Successful use of ketamine infusion in the treatment of intractable cancer pain in an outpatient. J Pain Symptom Manage. 2007;33(1):2–5.Google Scholar
  96. 96.
    Ripamonti CI, Santini D, Maranzano E, Berti M, Roila F, Group EGW. Management of cancer pain: ESMO clinical practice guidelines. Ann Oncol. 2012;23(Suppl. 7):vii139–54.Google Scholar
  97. 97.
    Mercadante S, Arcuri E, Tirelli W, Casuccio A. Analgesic effect of intravenous ketamine in cancer patients on morphine therapy: a randomized, controlled, double-blind, crossover, double-dose study. J Pain Symptom Manage. 2000;20(4):246–52.Google Scholar
  98. 98.
    Salas S, Frasca M, Planchet-Barraud B, Burucoa B, Pascal M, Lapiana JM, et al. Ketamine analgesic effect by continuous intravenous infusion in refractory cancer pain: considerations about the clinical research in palliative care. J Palliat Med. 2012;15(3):287–93.Google Scholar
  99. 99.
    Bell RF, Eccleston C, Kalso EA. Ketamine as an adjuvant to opioids for cancer pain. Cochrane Database Syst Rev. 2017;6:CD003351.Google Scholar
  100. 100.
    Bai X, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Zaja I, et al. Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg. 2013;116(4):869–80.Google Scholar
  101. 101.
    Curran HV, Monaghan L. In and out of the K-hole: a comparison of the acute and residual effects of ketamine in frequent and infrequent ketamine users. Addiction. 2001;96(5):749–60.Google Scholar
  102. 102.
    Hayashi H, Dikkes P, Soriano SG. Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Paediatr Anaesth. 2002;12(9):770–4.Google Scholar
  103. 103.
    Soriano SG, Liu Q, Li J, Liu JR, Han XH, Kanter JL, et al. Ketamine activates cell cycle signaling and apoptosis in the neonatal rat brain. Anesthesiology. 2010;112(5):1155–63.Google Scholar
  104. 104.
    Proescholdt M, Heimann A, Kempski O. Neuroprotection of S(+) ketamine isomer in global forebrain ischemia. Brain Res. 2001;904(2):245–51.Google Scholar
  105. 105.
    Yan J, Li YR, Zhang Y, Lu Y, Jiang H. Repeated exposure to anesthetic ketamine can negatively impact neurodevelopment in infants: a prospective preliminary clinical study. J Child Neurol. 2014;29(10):1333–8.Google Scholar
  106. 106.
    Morgan CJ, Curran HV. Acute and chronic effects of ketamine upon human memory: a review. Psychopharmacology. 2006;188(4):408–24.Google Scholar
  107. 107.
    Chu PS, Ma WK, Wong SC, Chu RW, Cheng CH, Wong S, et al. The destruction of the lower urinary tract by ketamine abuse: a new syndrome? BJU Int. 2008;102(11):1616–22.Google Scholar
  108. 108.
    Sear JW. Ketamine hepato-toxicity in chronic pain management: another example of unexpected toxicity or a predicted result from previous clinical and pre-clinical data? Pain. 2011;152(9):1946–7.Google Scholar
  109. 109.
    Witt A, Macdonald N, Kirkpatrick P. Memantine hydrochloride. Nat Rev Drug Discov. 2004;3(2):109–10.Google Scholar
  110. 110.
    Ebixa (memantine hydrochloride) [product monograph]. Montreal (QC): Lundbeck Canada Inc.; Last updated 14 May 2015.Google Scholar
  111. 111.
    Johnson JW, Kotermanski SE. Mechanism of action of memantine. Curr Opin Pharmacol. 2006;6(1):61–7.Google Scholar
  112. 112.
    Kavirajan H. Memantine: a comprehensive review of safety and efficacy. Expert Opin Drug Saf. 2009;8(1):89–109.Google Scholar
  113. 113.
    Kornhuber J, Quack G, Danysz W, Jellinger K, Danielczyk W, Gsell W, et al. Therapeutic brain concentration of the NMDA receptor antagonist amantadine. Neuropharmacology. 1995;34(7):713–21.Google Scholar
  114. 114.
    Morel V, Etienne M, Wattiez AS, Dupuis A, Privat AM, Chalus M, et al. Memantine, a promising drug for the prevention of neuropathic pain in rat. Eur J Pharmacol. 2013;721(1–3):382–90.Google Scholar
  115. 115.
    Rahimzadeh P, Imani F, Nikoubakht N, Koleini Z, Faiz SHR, Sayarifard A. A comparative study on the efficacy of oral memantine and placebo for acute postoperative pain in patients undergoing dacryocystorhinostomy (DCR). Anesth Pain Med. 2017;7(3):e45297.Google Scholar
  116. 116.
    Morel V, Joly D, Villatte C, Dubray C, Durando X, Daulhac L, et al. Memantine before mastectomy prevents post-surgery pain: a randomized, blinded clinical trial in surgical patients. PLoS One. 2016;11(4):e0152741.Google Scholar
  117. 117.
    Schley M, Topfner S, Wiech K, Schaller HE, Konrad CJ, Schmelz M, et al. Continuous brachial plexus blockade in combination with the NMDA receptor antagonist memantine prevents phantom pain in acute traumatic upper limb amputees. Eur J Pain. 2007;11(3):299–308.Google Scholar
  118. 118.
    Eisenberg E, Kleiser A, Dortort A, Haim T, Yarnitsky D. The NMDA (N-methyl-D-aspartate) receptor antagonist memantine in the treatment of postherpetic neuralgia: a double-blind, placebo-controlled study. Eur J Pain. 1998;2(4):321–7.Google Scholar
  119. 119.
    Fayed N, Olivan-Blazquez B, Herrera-Mercadal P, Puebla-Guedea M, Perez-Yus MC, Andres E, et al. Changes in metabolites after treatment with memantine in fibromyalgia: a double-blind randomized controlled trial with magnetic resonance spectroscopy with a 6-month follow-up. CNS Neurosci Ther. 2014;20(11):999–1007.Google Scholar
  120. 120.
    Maier C, Dertwinkel R, Mansourian N, Hosbach I, Schwenkreis P, Senne I, et al. Efficacy of the NMDA-receptor antagonist memantine in patients with chronic phantom limb pain: results of a randomized double-blinded, placebo-controlled trial. Pain. 2003;103(3):277–83.Google Scholar
  121. 121.
    Nikolajsen L, Gottrup H, Kristensen AG, Jensen TS. Memantine (a N-methyl-D-aspartate receptor antagonist) in the treatment of neuropathic pain after amputation or surgery: a randomized, double-blinded, cross-over study. Anesth Analg. 2000;91(4):960–6.Google Scholar
  122. 122.
    Olivan-Blazquez B, Herrera-Mercadal P, Puebla-Guedea M, Perez-Yus MC, Andres E, Fayed N, et al. Efficacy of memantine in the treatment of fibromyalgia: a double-blind, randomised, controlled trial with 6-month follow-up. Pain. 2014;155(12):2517–25.Google Scholar
  123. 123.
    Sang CN, Booher S, Gilron I, Parada S, Max MB. Dextromethorphan and memantine in painful diabetic neuropathy and postherpetic neuralgia: efficacy and dose-response trials. Anesthesiology. 2002;96(5):1053–61.Google Scholar
  124. 124.
    Schifitto G, Yiannoutsos CT, Simpson DM, Marra CM, Singer EJ, Kolson DL, et al. A placebo-controlled study of memantine for the treatment of human immunodeficiency virus-associated sensory neuropathy. J Neurovirol. 2006;12(4):328–31.Google Scholar
  125. 125.
    Schwenkreis P, Maier C, Pleger B, Mansourian N, Dertwinkel R, Malin JP, et al. NMDA-mediated mechanisms in cortical excitability changes after limb amputation. Acta Neurol Scand. 2003;108(3):179–84.Google Scholar
  126. 126.
    Wiech K, Kiefer RT, Topfner S, Preissl H, Braun C, Unertl K, et al. A placebo-controlled randomized crossover trial of the N-methyl-d-aspartic acid receptor antagonist, memantine, in patients with chronic phantom limb pain. Anesth Analg. 2004;98(2):408–13.Google Scholar
  127. 127.
    Sinis N, Birbaumer N, Gustin S, Schwarz A, Bredanger S, Becker ST, et al. Memantine treatment of complex regional pain syndrome: a preliminary report of six cases. Clin J Pain. 2007;23(3):237–43.Google Scholar
  128. 128.
    Ahmad-Sabry MH, Shareghi G. Effects of memantine on pain in patients with complex regional pain syndrome: a retrospective study. Middle East J Anaesthesiol. 2015;23(1):51–4.PubMedGoogle Scholar
  129. 129.
    Loy BM, Britt RB, Brown JN. Memantine for the treatment of phantom limb pain: a systematic review. J Pain Palliat Care Pharmacother. 2016;30(4):276–83.Google Scholar
  130. 130.
    Alviar MJ, Hale T, Dungca M. Pharmacologic interventions for treating phantom limb pain. Cochrane Database Syst Rev. 2016;10:CD006380.Google Scholar
  131. 131.
    Pickering G, Morel V. Memantine for the treatment of general neuropathic pain: a narrative review. Fundam Clin Pharmacol. 2018;32(1):4–13.Google Scholar
  132. 132.
    Pickering G, Pereira B, Morel V, Tiberghien F, Martin E, Marcaillou F, et al. Rationale and design of a multicenter randomized clinical trial with memantine and dextromethorphan in ketamine-responder patients. Contemp Clin Trials. 2014;38(2):314–20.Google Scholar
  133. 133.
    Assarzadegan F, Sistanizad M. Tolerability and efficacy of memantine as add on therapy in patients with migraine. Iran J Pharm Res. 2017;16(2):791–7.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Bigal M, Rapoport A, Sheftell F, Tepper D, Tepper S. Memantine in the preventive treatment of refractory migraine. Headache. 2008;48(9):1337–42.Google Scholar
  135. 135.
    Lindelof K, Bendtsen L. Memantine for prophylaxis of chronic tension-type headache: a double-blind, randomized, crossover clinical trial. Cephalalgia. 2009;29(3):314–21.Google Scholar
  136. 136.
    Noruzzadeh R, Modabbernia A, Aghamollaii V, Ghaffarpour M, Harirchian MH, Salahi S, et al. Memantine for prophylactic treatment of migraine without aura: a randomized double-blind placebo-controlled study. Headache. 2016;56(1):95–103.Google Scholar
  137. 137.
    Nguyen L, Thomas KL, Lucke-Wold BP, Cavendish JZ, Crowe MS, Matsumoto RR. Dextromethorphan: an update on its utility for neurological and neuropsychiatric disorders. Pharmacol Ther. 2016;159:1–22.Google Scholar
  138. 138.
    Gudin J, Fudin J, Nalamachu S. Levorphanol use: past, present and future. Postgrad Med. 2016;128(1):46–53.Google Scholar
  139. 139.
    Taylor CP, Traynelis SF, Siffert J, Pope LE, Matsumoto RR. Pharmacology of dextromethorphan: relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol Ther. 2016;164:170–82.Google Scholar
  140. 140.
    Church J, Lodge D, Berry SC. Differential effects of dextrorphan and levorphanol on the excitation of rat spinal neurons by amino acids. Eur J Pharmacol. 1985;111(2):185–90.Google Scholar
  141. 141.
    Church J, Jones MG, Davies SN, Lodge D. Antitussive agents as N-methylaspartate antagonists: further studies. Can J Physiol Pharmacol. 1989;67(6):561–7.Google Scholar
  142. 142.
    Franklin PH, Murray TF. High affinity [3H]dextrorphan binding in rat brain is localized to a noncompetitive antagonist site of the activated N-methyl-D-aspartate receptor-cation channel. Mol Pharmacol. 1992;41(1):134–46.PubMedGoogle Scholar
  143. 143.
    Netzer R, Pflimlin P, Trube G. Dextromethorphan blocks N-methyl-D-aspartate-induced currents and voltage-operated inward currents in cultured cortical neurons. Eur J Pharmacol. 1993;238(2–3):209–16.Google Scholar
  144. 144.
    Palmer GC. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies. Curr Drug Targets. 2001;2(3):241–71.Google Scholar
  145. 145.
    Nuedexta (dextromethorphan hydrobromide and quinidine sulfate) capsules [prescribing information]. Aliso Viejo (CA): Avanir Pharmaceuticals, Inc.; last updated Oct 2010.Google Scholar
  146. 146.
    Miller A, Pratt H, Schiffer RB. Pseudobulbar affect: the spectrum of clinical presentations, etiologies and treatments. Expert Rev Neurother. 2011;11(7):1077–88.Google Scholar
  147. 147.
    Hollander D, Pradas J, Kaplan R, McLeod HL, Evans WE, Munsat TL. High-dose dextromethorphan in amyotrophic lateral sclerosis: phase I safety and pharmacokinetic studies. Ann Neurol. 1994;36(6):920–4.Google Scholar
  148. 148.
    Siu A, Drachtman R. Dextromethorphan: a review of N-methyl-d-aspartate receptor antagonist in the management of pain. CNS Drug Rev. 2007;13(1):96–106.Google Scholar
  149. 149.
    Pender ES, Parks BR. Toxicity with dextromethorphan-containing preparations: a literature review and report of two additional cases. Pediatr Emerg Care. 1991;7(3):163–5.Google Scholar
  150. 150.
    Duedahl TH, Romsing J, Moiniche S, Dahl JB. A qualitative systematic review of peri-operative dextromethorphan in post-operative pain. Acta Anaesthesiol Scand. 2006;50(1):1–13.Google Scholar
  151. 151.
    Aiyer R, Mehta N, Gungor S, Gulati A. A systematic review of NMDA receptor antagonists for treatment of neuropathic pain in clinical practice. Clin J Pain. 2018;34(5):450–67.PubMedGoogle Scholar
  152. 152.
    Yu A, Haining RL. Comparative contribution to dextromethorphan metabolism by cytochrome P450 isoforms in vitro: can dextromethorphan be used as a dual probe for both CYP2D6 and CYP3A activities? Drug Metab Dispos. 2001;29(11):1514–20.PubMedGoogle Scholar
  153. 153.
    Shin EJ, Bach JH, Lee SY, Kim JM, Lee J, Hong JS, et al. Neuropsychotoxic and neuroprotective potentials of dextromethorphan and its analogs. J Pharmacol Sci. 2011;116(2):137–48.Google Scholar
  154. 154.
    Wu D, Otton SV, Kalow W, Sellers EM. Effects of route of administration on dextromethorphan pharmacokinetics and behavioral response in the rat. J Pharmacol Exp Ther. 1995;274(3):1431–7.PubMedGoogle Scholar
  155. 155.
    Capon DA, Bochner F, Kerry N, Mikus G, Danz C, Somogyi AA. The influence of CYP2D6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans. Clin Pharmacol Ther. 1996;60(3):295–307.Google Scholar
  156. 156.
    King MR, Ladha KS, Gelineau AM, Anderson TA. Perioperative dextromethorphan as an adjunct for postoperative pain: a meta-analysis of randomized controlled trials. Anesthesiology. 2016;124(3):696–705.Google Scholar
  157. 157.
    Nosotti M, Rosso L, Tosi D, Palleschi A, Mendogni P, Righi I, et al. Preventive analgesia in thoracic surgery: controlled, randomized, double-blinded study. Eur J Cardiothorac Surg. 2015;48(3):428–33 (discussion 34).Google Scholar
  158. 158.
    Carlsson KC, Hoem NO, Moberg ER, Mathisen LC. Analgesic effect of dextromethorphan in neuropathic pain. Acta Anaesthesiol Scand. 2004;48(3):328–36.Google Scholar
  159. 159.
    Dudgeon DJ, Bruera E, Gagnon B, Watanabe SM, Allan SJ, Warr DG, et al. A phase III randomized, double-blind, placebo-controlled study evaluating dextromethorphan plus slow-release morphine for chronic cancer pain relief in terminally ill patients. J Pain Symptom Manage. 2007;33(4):365–71.Google Scholar
  160. 160.
    Galer BS, Lee D, Ma T, Nagle B, Schlagheck TG. MorphiDex (morphine sulfate/dextromethorphan hydrobromide combination) in the treatment of chronic pain: three multicenter, randomized, double-blind, controlled clinical trials fail to demonstrate enhanced opioid analgesia or reduction in tolerance. Pain. 2005;115(3):284–95.Google Scholar
  161. 161.
    Gilron I, Booher SL, Rowan MS, Smoller MS, Max MB. A randomized, controlled trial of high-dose dextromethorphan in facial neuralgias. Neurology. 2000;55(7):964–71.Google Scholar
  162. 162.
    Heiskanen T, Hartel B, Dahl ML, Seppala T, Kalso E. Analgesic effects of dextromethorphan and morphine in patients with chronic pain. Pain. 2002;96(3):261–7.Google Scholar
  163. 163.
    Katz NP. MorphiDex (MS:DM) double-blind, multiple-dose studies in chronic pain patients. J Pain Symptom Manage. 2000;19(1 Suppl.):S37–41.Google Scholar
  164. 164.
    McQuay HJ, Carroll D, Jadad AR, Glynn CJ, Jack T, Moore RA, et al. Dextromethorphan for the treatment of neuropathic pain: a double-blind randomised controlled crossover trial with integral n-of-1 design. Pain. 1994;59(1):127–33.Google Scholar
  165. 165.
    Mercadante S, Casuccio A, Genovese G. Ineffectiveness of dextromethorphan in cancer pain. J Pain Symptom Manage. 1998;16(5):317–22.Google Scholar
  166. 166.
    Nelson KA, Park KM, Robinovitz E, Tsigos C, Max MB. High-dose oral dextromethorphan versus placebo in painful diabetic neuropathy and postherpetic neuralgia. Neurology. 1997;48(5):1212–8.Google Scholar
  167. 167.
    Srebro D, Vuckovic S, Milovanovic A, Kosutic J, Vujovic KS, Prostran M. Magnesium in pain research: state of the art. Curr Med Chem. 2016 Dec 12. (Epub ahead of print).Google Scholar
  168. 168.
    Yousef AA, Al-deeb AE. A double-blinded randomised controlled study of the value of sequential intravenous and oral magnesium therapy in patients with chronic low back pain with a neuropathic component. Anaesthesia. 2013;68(3):260–6.Google Scholar
  169. 169.
    Bujalska-Zadrozny M, Tatarkiewicz J, Kulik K, Filip M, Naruszewicz M. Magnesium enhances opioid-induced analgesia: what we have learnt in the past decades? Eur J Pharm Sci. 2017;99:113–27.Google Scholar
  170. 170.
    Dube L, Granry JC. The therapeutic use of magnesium in anesthesiology, intensive care and emergency medicine: a review. Can J Anaesth. 2003;50(7):732–46.Google Scholar
  171. 171.
    De Oliveira GS, Jr Castro-Alves LJ, Khan JH, McCarthy RJ. Perioperative systemic magnesium to minimize postoperative pain: a meta-analysis of randomized controlled trials. Anesthesiology. 2013;119(1):178–90.Google Scholar
  172. 172.
    Albrecht E, Kirkham KR, Liu SS, Brull R. Peri-operative intravenous administration of magnesium sulphate and postoperative pain: a meta-analysis. Anaesthesia. 2013;68(1):79–90.Google Scholar
  173. 173.
    Murphy JD, Paskaradevan J, Eisler LL, Ouanes JP, Tomas VA, Freck EA, et al. Analgesic efficacy of continuous intravenous magnesium infusion as an adjuvant to morphine for postoperative analgesia: a systematic review and meta-analysis. Middle East J Anaesthesiol. 2013;22(1):11–20.PubMedGoogle Scholar
  174. 174.
    Sousa AM, Rosado GM, Neto Jde S, Guimaraes GM, Ashmawi HA. Magnesium sulfate improves postoperative analgesia in laparoscopic gynecologic surgeries: a double-blind randomized controlled trial. J Clin Anesth. 2016;34:379–84.Google Scholar
  175. 175.
    Choi H, Parmar N. The use of intravenous magnesium sulphate for acute migraine: meta-analysis of randomized controlled trials. Eur J Emerg Med. 2014;21(1):2–9.PubMedGoogle Scholar
  176. 176.
    Chiu HY, Yeh TH, Huang YC, Chen PY. Effects of intravenous and oral magnesium on reducing migraine: a meta-analysis of randomized controlled trials. Pain Physician. 2016;19(1):E97–112.PubMedGoogle Scholar
  177. 177.
    Fischer SG, Collins S, Boogaard S, Loer SA, Zuurmond WW, Perez RS. Intravenous magnesium for chronic complex regional pain syndrome type 1 (CRPS-1). Pain Med. 2013;14(9):1388–99.Google Scholar
  178. 178.
    van der Plas AA, Schilder JC, Marinus J, van Hilten JJ. An explanatory study evaluating the muscle relaxant effects of intramuscular magnesium sulphate for dystonia in complex regional pain syndrome. J Pain. 2013;14(11):1341–8.Google Scholar
  179. 179.
    Pickering G, Morel V, Simen E, Cardot JM, Moustafa F, Delage N, et al. Oral magnesium treatment in patients with neuropathic pain: a randomized clinical trial. Magnes Res. 2011;24(2):28–35.PubMedGoogle Scholar
  180. 180.
    Brill S, Sedgwick PM, Hamann W, Di Vadi PP. Efficacy of intravenous magnesium in neuropathic pain. Br J Anaesth. 2002;89(5):711–4.Google Scholar
  181. 181.
    Felsby S, Nielsen J, Arendt-Nielsen L, Jensen TS. NMDA receptor blockade in chronic neuropathic pain: a comparison of ketamine and magnesium chloride. Pain. 1996;64(2):283–91.Google Scholar
  182. 182.
    Kim YH, Lee PB, Oh TK. Is magnesium sulfate effective for pain in chronic postherpetic neuralgia patients comparing with ketamine infusion therapy? J Clin Anesth. 2015;27(4):296–300.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pain Management Program, St. Joseph’s HospitalSt. Joseph’s Health Care LondonLondonCanada
  2. 2.Department of Anesthesia and Perioperative MedicineLondon Health Science Centre and Western UniversityLondonCanada

Personalised recommendations