CNS Drugs

, Volume 32, Issue 12, pp 1131–1144 | Cite as

VMAT2 Inhibitors in Neuropsychiatric Disorders

  • Arjun Tarakad
  • Joohi Jimenez-ShahedEmail author
Review Article


The basal ganglia and dopaminergic pathways play a central role in hyperkinetic movement disorders. Vesicular monoamine transporter 2 (VMAT2) inhibitors, which deplete dopamine at presynaptic striatal nerve terminals, are a class of drugs that have long been used to treat hyperkinetic movement disorders, but have recently gained more attention following their development for specific indications in the United States. At present, there are three commercially available VMAT2 inhibitors: tetrabenazine, deutetrabenazine, and valbenazine. Pharmacokinetics, metabolism, and dosing vary significantly between the three drugs, and likely underlie the more favorable side effect profile of the newer agents (deutetrabenazine and valbenazine). Tetrabenazine and deutetrabenazine have demonstrated safety and efficacy in the treatment of chorea associated with Huntington’s disease, including in randomized controlled trials, although direct comparison studies are limited. Both deutetrabenazine and valbenazine have demonstrated safety and efficacy in the treatment of tardive dyskinesia, with multiple double-blind, placebo-controlled trials, whereas tetrabenazine has been studied less rigorously. There have been no blinded, prospective trials with tetrabenazine in Tourette’s syndrome (TS); however, double-blind, placebo-controlled trials in TS are ongoing for both deutetrabenazine and valbenazine. Given the favored side effect profile of newer VMAT2 inhibitors, clinicians should be aware of the distinctions between agents and become familiar with differences in their use, especially as there is potential for their utilization to increase across the range of hyperkinetic movement disorders.


Compliance with Ethical Standards


No funding was received for the preparation of this article.

Conflict of interest

Arjun Tarakad has no conflicts of interest relevant to the contents of this article. Joohi Jimenez-Shahed has received research funding and consulting fees from Auspex/Teva, and consulting fees from Nuvelution and Bracket.


  1. 1.
    Chen JJ, Ondo WG, Dashtipour K, Swope DM. Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther. 2012;34:1487–504.PubMedGoogle Scholar
  2. 2.
    Jimenez-Shahed J, Jankovic J. Tetrabenazine for treatment of chorea associated with Huntington’s disease and other potential indications. Expert Opin Orphan Drugs. 2013;1:423–36.Google Scholar
  3. 3.
    Leisman G, Braun-Benjamin O, Melillo R. Cognitive-motor interactions of the basal ganglia in development. Front Syst Neurosci Front. 2014;8:16.Google Scholar
  4. 4.
    Galvan L, André VM, Wang EA, Cepeda C, Levine MS. Functional differences between direct and indirect striatal output pathways in Huntington’s disease. J Huntingt Dis. 2012;1:17–25.Google Scholar
  5. 5.
    Armstrong MJ, Miyasaki JM. Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2012;79:597–603.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Bhidayasiri R, Fahn S, Weiner WJ, Gronseth GS, Sullivan KL, Zesiewicz TA, et al. Evidence-based guideline: treatment of tardive syndromes: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;81:463–9.PubMedGoogle Scholar
  7. 7.
    Burgunder J-M, Guttman M, Perlman S, Goodman N, van Kammen DP, Goodman L. An international survey-based algorithm for the pharmacologic treatment of chorea in Huntington’s disease. PLoS Curr. 2011;3:RRN1260.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Roessner V, Plessen KJ, Rothenberger A, Ludolph AG, Rizzo R, Skov L, et al. European clinical guidelines for Tourette syndrome and other tic disorders. Part II: pharmacological treatment. Eur Child Adolesc Psychiatry. 2011;20:173–96.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Partners/Collaborators|Neurocrine Biosciences [Internet]. Accessed 21 Sept 2018.
  10. 10.
    Kaur N, Kumar P, Jamwal S, Deshmukh R, Gauttam V. Comprehensive review tetrabenazine: spotlight on drug review. Neurosciences. 2016;23:176–85.Google Scholar
  11. 11.
    German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev. 2015;67:1005–24.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Xenazine. Highlights of prescribing information [Internet]. Accessed 17 Feb 2018.
  13. 13.
    Austedo. Center for Drug Evaluation and Research [Internet]. Accessed 17 Feb 2018.
  14. 14.
    Ingrezza. Highlights of prescribing information [Internet]. Accessed 17 Feb 2018.
  15. 15.
    Sepers MD, Raymond LA. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease. Drug Discov Today. 2014;19:990–6.PubMedGoogle Scholar
  16. 16.
    Cepeda C, Murphy KPS, Parent M, Levine MS. The role of dopamine in Huntington’s disease HHS public access. Prog Brain Res. 2014;211:235–54.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10:83–98.PubMedGoogle Scholar
  18. 18.
    McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25:24–34.PubMedGoogle Scholar
  19. 19.
    Waln O, Jankovic J. An update on tardive dyskinesia: from phenomenology to treatment. Tremor Other Hyperkinet Mov. 2013. pii:tre-03-161-4138-1.CrossRefGoogle Scholar
  20. 20.
    Burt D, Creese I, Snyder S. Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science. 1977;196:326–8.PubMedGoogle Scholar
  21. 21.
    Yin J, Barr AM, Ramos-Miguel A, Procyshyn RM. Antipsychotic induced dopamine supersensitivity psychosis: a comprehensive review. Curr Neuropharmacol. 2017;15:174–83.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Lévesque C, Hernandez G, Mahmoudi S, Calon F, Gasparini F, Gomez-Mancilla B, et al. Deficient striatal adaptation in aminergic and glutamatergic neurotransmission is associated with tardive dyskinesia in non-human primates exposed to antipsychotic drugs. Neuroscience. 2017;361:43–57.PubMedGoogle Scholar
  23. 23.
    De Deurwaerdère P, Lagière M, Bosc M, Navailles S. Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res. 2013;230:477–511.PubMedGoogle Scholar
  24. 24.
    Bordia T, Zhang D, Perez XA, Quik M. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia. Exp Neurol. 2016;286:32–9.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Lerner PP, Miodownik C, Lerner V. Tardive dyskinesia (syndrome): current concept and modern approaches to its management. Psychiatry Clin Neurosci. 2015;69:321–34.PubMedGoogle Scholar
  26. 26.
    Kious BM, Jimenez-Shahed J, Shprecher DR. Treatment-refractory Tourette syndrome. Prog Neuropsychopharmacol Biol Psychiatry. 2016;70:227–36.PubMedGoogle Scholar
  27. 27.
    Albin RL, Mink JW. Recent advances in Tourette syndrome research. Trends Neurosci. 2006;29:175–82.PubMedGoogle Scholar
  28. 28.
    Felling RJ, Singer HS. Neurobiology of Tourette syndrome: current status and need for further investigation. J Neurosci. 2011;31:12387–95.PubMedGoogle Scholar
  29. 29.
    Udvardi PT, Nespoli E, Rizzo F, Hengerer B, Ludolph AG. Nondopaminergic neurotransmission in the pathophysiology of Tourette syndrome. Int Rev Neurobiol. 2013;112:95–130.PubMedGoogle Scholar
  30. 30.
    Xu M, Kobets A, Du J-C, Lennington J, Li L, Banasr M, et al. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proc Natl Acad Sci USA. 2015;112:893–8.PubMedGoogle Scholar
  31. 31.
    Kalanithi PSA, Zheng W, Kataoka Y, DiFiglia M, Grantz H, Saper CB, et al. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci USA. 2005;102:13307–12.PubMedGoogle Scholar
  32. 32.
    Kataoka Y, Kalanithi PSA, Grantz H, Schwartz ML, Saper C, Leckman JF, et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol. 2010;518:277–91.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Lennington JB, Coppola G, Kataoka-Sasaki Y, Fernandez TV, Palejev D, Li Y, et al. Transcriptome analysis of the human striatum in Tourette syndrome. Biol Psychiatry. 2016;79:372–82.PubMedGoogle Scholar
  34. 34.
    Skor H, Smith EB, Loewen G, O’Brien CF, Grigoriadis DE, Bozigian H. Differences in dihydrotetrabenazine isomer concentrations following administration of tetrabenazine and valbenazine. Drugs R D. 2017;17:449–59.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Yao Z, Wei X, Wu X, Katz JL, Kopajtic T, Greig NH, et al. Preparation and evaluation of tetrabenazine enantiomers and all eight stereoisomers of dihydrotetrabenazine as VMAT2 inhibitors. Eur J Med Chem. 2011;46:1841–8.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Grigoriadis DE, Smith E, Hoare SRJ, Madan A, Bozigian H. Pharmacologic characterization of valbenazine (NBI-98854) and its metabolites. J Pharmacol Exp Ther. 2017;361:454–61.PubMedGoogle Scholar
  37. 37.
    Stamler D, Offman E, Bradbury M, De Boer L. A randomized double-blind placebo- and positive-controlled crossover study to evaluate the effects of single doses of SD-809 (deutetrabenazine) and tetrabenazine on the corrected QT interval. Neurology. 2016;86:P2.347.Google Scholar
  38. 38.
    Mehanna R, Hunter C, Davidson A, Jimenez-Shahed J, Jankovic J. Analysis of CYP2D6 genotype and response to tetrabenazine. Mov Disord. 2013;28:210–5.PubMedGoogle Scholar
  39. 39.
    DeWitt SH, Maryanoff BE. Deuterated drug molecules: focus on FDA-approved deutetrabenazine. Biochemistry. 2018;57:472–3.PubMedGoogle Scholar
  40. 40.
    Luo R, Bozigian H, Jimenez R, Loewen G, O’Brien CF. Single dose and repeat once-daily dose safety, tolerability and pharmacokinetics of valbenazine in healthy male subjects. Psychopharmacol Bull. 2017;47:44–52.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Thai-Cuarto D, O’Brien CF, Jimenez R, Liang GS, Burke J. Cardiovascular profile of valbenazine: analysis of pooled data from three randomized, double-blind, placebo-controlled trials. Drug Saf. 2018;41:429–40.PubMedGoogle Scholar
  42. 42.
    Dalby MA. Effect of tetrabenazine on extrapyramidal movement disorders. Br Med J. 1969;2:422–3.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Soutar CA. Tetrabenazine for Huntington’s chorea. Br Med J. 1970;4:55.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Huang CY, McLeod JG, Holland RT, Elliot C. Tetrabenazine in the treatment of Huntington’s chorea. Med J Aust. 1976;1:583–4.PubMedGoogle Scholar
  45. 45.
    Toglia JU, McGlamery M, Sambandham RR. Tetrabenazine in the treatment of Huntington’s chorea and other hyperkinetic movement disorders. J Clin Psychiatry. 1978;39:81–7.PubMedGoogle Scholar
  46. 46.
    Ondo WG, Tintner R, Thomas M, Jankovic J. Tetrabenazine treatment for Huntington’s disease-associated chorea. Clin Neuropharmacol. 2002;25:300–2.PubMedGoogle Scholar
  47. 47.
    Group HS. Tetrabenazine as antichorea therapy in Huntington disease. A randomized controlled trial. Neurology. 2006;66:366–72.Google Scholar
  48. 48.
    Frank S. Tetrabenazine as anti-chorea therapy in Huntington disease: an open-label continuation study. Huntington Study Group/TETRA-HD Investigators. BMC Neurol Biomed Cent. 2009;9:62.Google Scholar
  49. 49.
    Dorsey R, Biglan K, Eberly S, Auinger P, Brocht A, Umeh CC, et al. Use of tetrabenazine in Huntington disease patients on antidepressants or with advanced disease: results from the TETRA-HD study. PLoS Curr Public Libr Sci. 2011;3:RRN1283.Google Scholar
  50. 50.
    Asher SW, Aminoff MJ. Tetrabenazine and movement disorders. Neurology. 1981;31:1051–4.PubMedGoogle Scholar
  51. 51.
    Jankovic J, Beach J. Long-term effects of tetrabenazine in hyperkinetic movement disorders. Neurology. 1997;48:358–62.PubMedGoogle Scholar
  52. 52.
    Frank S, Testa CM, Stamler D, Kayson E, Davis C, Edmondson MC, et al. Effect of deutetrabenazine on chorea among patients with Huntington disease. JAMA Am Med Assoc. 2016;316:40.Google Scholar
  53. 53.
    Center for Drug Evaluation and Research Application Number: 209885Orig1s000 Other Reviews [Internet]. Accessed 15 Sept 2018.
  54. 54.
    Godwin-Austen RB, Clark T. Persistent phenothiazine dyskinesia treated with tetrabenazine. Br Med J. 1971;4:25–6.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Kazamatsuri H, Chien C, Cole JO. Treatment of tardive dyskinesia. Arch Gen Psychiatry Am Med Assoc. 1972;27:95.Google Scholar
  56. 56.
    Jankovic J. Treatment of hyperkinetic movement disorders with tetrabenazine: a double-blind crossover study. Ann. Neurol. 1982;11:41–7.PubMedGoogle Scholar
  57. 57.
    Ondo WG, Hanna PA, Jankovic J. Tetrabenazine treatment for tardive dyskinesia: assessment by randomized videotape protocol. Am Psychiatric Assoc. 1999;156:1279–81.Google Scholar
  58. 58.
    Fernandez HH, Factor SA, Hauser RA, Jimenez-Shahed J, Ondo WG, Jarskog LF, et al. Randomized controlled trial of deutetrabenazine for tardive dyskinesia: the ARM-TD study. Neurology. 2017;88:2003–10.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Anderson KE, Stamler D, Davis MD, Factor SA, Hauser RA, Isojärvi J, et al. Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia (AIM-TD): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Psychiatry. 2017;4:595–604.PubMedGoogle Scholar
  60. 60.
    Factor S, Hauser R, Mandri D, Castro-Gayol J, Jimenez R, Siegert S, et al. A phase 2 study of valbenazine (NBI-98854) for treatment of tardive dyskinesia: KINECT 2. Neurology. 2016;86:S27.007.Google Scholar
  61. 61.
    Hauser RA, Factor SA, Marder SR, Knesevich MA, Ramirez PM, Jimenez R, et al. KINECT 3: a phase 3 randomized, double-blind, placebo-controlled trial of valbenazine for tardive dyskinesia. Am J Psychiatry. 2017;174:476–84.PubMedGoogle Scholar
  62. 62.
    Factor SA, Remington G, Comella CL, Correll CU, Burke J, Jimenez R, et al. The effects of valbenazine in participants with tardive dyskinesia. J Clin Psychiatry. 2017;78:1344–50.PubMedGoogle Scholar
  63. 63.
    Porta M, Sassi M, Cavallazzi M, Fornari M, Brambilla A, Servello D. Tourette’s syndrome and role of tetrabenazine: review and personal experience. Clin Drug Investig. 2008;28:443–59.PubMedGoogle Scholar
  64. 64.
    Kenney CJ, Hunter CB, Mejia N, Jankovic J. Tetrabenazine in the treatment of Tourette syndrome. J Pediatr Neurol. 2007;5:9–13.Google Scholar
  65. 65.
    Jankovic J, Jimenez-Shahed J, Budman C, Coffey B, Murphy T, Shprecher D, et al. Deutetrabenazine in tics associated with Tourette syndrome. Tremor Other Hyperkinet Mov. 2016;6:422.Google Scholar
  66. 66.
    Jeon S, Walkup JT, Woods DW, Peterson A, Piacentini J, Wilhelm S, et al. Detecting a clinically meaningful change in tic severity in Tourette syndrome: a comparison of three methods. Contemp Clin Trials NIH Public Access. 2013;36:414–20.Google Scholar
  67. 67.
    Tourette syndrome clinical trials | Neurocrine Biosciences [Internet]. Accessed 17 Mar 2018.
  68. 68.
    Neurocrine announces phase II results of VMAT2 inhibitor INGREZZA® for treatment of Tourette [Internet]. Accessed 29 Apr 2018.
  69. 69.
    Brusa L, Orlacchio A, Stefani A, Galati S, Pierantozzi M, Iani C, et al. Tetrabenazine improves levodopa-induced peak-dose dyskinesias in patients with Parkinson’s disease. Funct Neurol. 2013;28:101–5.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Kenney C, Hunter C, Jankovic J. Long-term tolerability of tetrabenazine in the treatment of hyperkinetic movement disorders. Mov Disord. 2007;22:193–7.PubMedGoogle Scholar
  71. 71.
    Jankovic J, Orman J. Tetrabenazine therapy of dystonia, chorea, tics, and other dyskinesias. Neurology. 1988;38:391–4.PubMedGoogle Scholar
  72. 72.
    Ondo WG. Tetrabenazine treatment for stereotypies and tics associated with dementia. J Neuropsychiatry Clin Neurosci. 2012;24:208–14.PubMedGoogle Scholar
  73. 73.
    Rodrigues FB, Duarte GS, Costa J, Ferreira JJ, Wild EJ. Tetrabenazine versus deutetrabenazine for Huntington’s disease: twins or distant cousins? Mov Disord Clin Pract. 2017;4:582–5.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Claassen DO, Carroll B, De Boer LM, Wu E, Ayyagari R, Gandhi S, et al. Indirect tolerability comparison of deutetrabenazine and tetrabenazine for Huntington disease. J Clin Mov Disord. 2017;4:3.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Frank S, Stamler D, Kayson E, Claassen DO, Colcher A, Davis C, et al. Safety of converting from tetrabenazine to deutetrabenazine for the treatment of chorea. JAMA Neurol Am Med Assoc. 2017;74:977.Google Scholar
  76. 76.
    Bari M, Shiwach R, Jimenez R, Siegert S, O’Brien C. Open-label extension of KINECT: a phase 2 Study of valbenazine (NBI-98854) for tardive dyskinesia. Neurology. 2016;86:S27.001.Google Scholar
  77. 77.
    Fernandez H, Stamler D, Davis M, Factor S, Hauser R, Isojärvi J, et al. Evaluation of patient-reported outcomes in tardive dyskinesia patients with underlying psychotic and mood disorders in the ARM-TD and AIM-TD trials [abstract]. Mov Disord. 2017;32:S159–60.Google Scholar
  78. 78.
    Müller T. Valbenazine for the treatment of tardive dyskinesia. Expert Rev Neurother. 2017;17:1135–44.PubMedGoogle Scholar
  79. 79.
    Murphy SM, Puwanant A, Griggs RC, Consortium for Clinical Investigations of Neurological Channelopathies (CINCH) and Inherited Neuropathies Consortium (INC) Consortia of the Rare Disease Clinical Research Network the C and IC of the RDCR. Unintended effects of orphan product designation for rare neurological diseases. Ann Neurol NIH Public Access. 2012;72:481–90.Google Scholar
  80. 80.
    INGREZZA® (valbenazine) HCP support and resources [Internet]. Accessed 23 Mar 2018.
  81. 81.
    Getting started|AUSTEDO® (deutetrabenazine) tablets [Internet]. Accessed 23 Mar 2018.
  82. 82.
    Bitsko RH, Holbrook JR, Visser SN, Mink JW, Zinner SH, Ghandour RM, et al. A national profile of Tourette syndrome, 2011–2012. J Dev Behav Pediatr. 2014;35:317–22.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Drolet B, Rousseau G, Daleau P, Cardinal R, Simard C, Turgeon J. Pimozide (Orap®) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current in native cardiac myocytes. J Cardiovasc Pharmacol Ther. 2001;6:255–60.PubMedGoogle Scholar
  84. 84.
    Jankovic J. Therapeutic developments for tics and myoclonus. Mov Disord. 2015;30:1566–73.PubMedGoogle Scholar
  85. 85.
    Shapiro E, Shapiro AK, Fulop G, Hubbard M, Mandeli J, Nordlie J, et al. Controlled study of haloperidol, pimozide and placebo for the treatment of Gilles de la Tourette’s syndrome. Arch Gen Psychiatry. 1989;46:722–30.PubMedGoogle Scholar
  86. 86.
    Scahill L, Leckman JF, Schultz RT, Katsovich L, Peterson BS. A placebo-controlled trial of risperidone in Tourette syndrome. Neurology. 2003;60:1130–5.PubMedGoogle Scholar
  87. 87.
    Gerlach J, Rye T, Kristjansen P. Effect of baclofen on tardive dyskinesia. Psychopharmacology (Berl). 1978;56:145–51.PubMedGoogle Scholar
  88. 88.
    Stewart RM, Rollins J, Beckham B, Roffman M. Baclofen in tardive dyskinesia patients maintained on neuroleptics. Clin. Neuropharmacol. 1982;5:365–73.PubMedGoogle Scholar
  89. 89.
    Glazer WM, Moore DC, Bowers MB, Bunney BS, Roffman M. The treatment of tardive dyskinesia with baclofen. Psychopharmacology (Berl). 1985;87:480–3.PubMedGoogle Scholar
  90. 90.
    Singer HS, Wendlandt J, Krieger M, Giuliano J. Baclofen treatment in Tourette syndrome: a double-blind, placebo-controlled, crossover trial. Neurology. 2001;56:599–604.PubMedGoogle Scholar
  91. 91.
    Thaker GK, Nguyen JA, Strauss ME, Jacobson R, Kaup BA, Tamminga CA. Clonazepam treatment of tardive dyskinesia: a practical GABAmimetic strategy. Am J Psychiatry. 1990;147:445–51.PubMedGoogle Scholar
  92. 92.
    Singh MM, Becker RE, Pitman RK, Nasrallah HA, Lal H. Sustained improvement in tardive dyskinesia with diazepam: indirect evidence for corticolimbic involvement. Brain Res Bull. 1983;11:179–85.PubMedGoogle Scholar
  93. 93.
    Jankovic J, Jimenez-Shahed J, Brown LW. A randomised, double-blind, placebo-controlled study of topiramate in the treatment of Tourette syndrome. J Neurol Neurosurg Psychiatry. 2010;81:70–3.PubMedGoogle Scholar
  94. 94.
    Kuo S-H, Jimenez-Shahed J. Topiramate in treatment of Tourette syndrome. Clin Neuropharmacol. 2010;33:32–4.PubMedGoogle Scholar
  95. 95.
    Erickson HM, Goggin JE, Messiha FS. Comparison of lithium and haloperidol therapy in Gilles de la Tourette syndrome. Adv Exp Med Biol. 1977;90:197–205.PubMedGoogle Scholar
  96. 96.
    Goetz CG, Tanner CM, Wilson RS, Susan VC, Como PG, Shannon KM. Clonidine and Gilles de la Tourette’s syndrome: double-blind study using objective rating methods. Ann Neurol. 1987;21:307–10.PubMedGoogle Scholar
  97. 97.
    Du Y, Li H, Vance A, Zhong Y, Jiao F, Wang H, et al. Randomized double-blind multicentre placebo-controlled clinical trial of the clonidine adhesive patch for the treatment of tic disorders. Aust N Z J Psychiatry. 2008;42:807–13.PubMedGoogle Scholar
  98. 98.
    Scahill L, Chappell PB, Kim YS, Schultz RT, Katsovich L, Shepherd E, et al. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. Am J Psychiatry. 2001;158:1067–74.PubMedGoogle Scholar
  99. 99.
    O’Suilleabhain P, Dewey RB Jr. A randomized trial of amantadine in Huntington disease. Arch Neurol. 2003;60:996.PubMedGoogle Scholar
  100. 100.
    Verhagen Metman L, Morris MJ, Farmer C, Gillespie M, Mosby K, Wuu J, et al. Huntington’s disease: a randomized, controlled trial using the NMDA-antagonist amantadine. Neurology. 2002;59:694–9.PubMedGoogle Scholar
  101. 101.
    Pappa S, Tsouli S, Apostolou G, Mavreas V, Konitsiotis S. Effects of amantadine on tardive dyskinesia: a randomized, double-blind, placebo-controlled study. Clin Neuropharmacol. 2010;33:271–5.PubMedGoogle Scholar
  102. 102.
    Angus S, Sugars J, Boltezar R, Koskewich S, Schneider NM. A controlled trial of amantadine hydrochloride and neuroleptics in the treatment of tardive dyskinesia. J Clin Psychopharmacol. 1997;17:88–91.PubMedGoogle Scholar
  103. 103.
    Zheng W, Xiang Y-Q, Ng C, Ungvari G, Chiu H, Xiang Y-T. Extract of Ginkgo biloba for tardive dyskinesia: meta-analysis of randomized controlled trials. Pharmacopsychiatry. 2016;49:107–11.PubMedGoogle Scholar
  104. 104.
    Woods SW, Saksa JR, Baker CB, Cohen SJ, Tek C. Effects of levetiracetam on tardive dyskinesia: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry. 2008;69:546–54.PubMedGoogle Scholar
  105. 105.
    Curtis A, Mitchell I, Patel S, Ives N, Rickards H. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord. 2009;24:2254–9.PubMedGoogle Scholar
  106. 106.
    van Wattum PJ, Chappell PB, Zelterman D, Scahill LD, Leckman JF. Patterns of response to acute naloxone infusion in Tourette’s syndrome. Mov Disord. 2000;15:1252–4.PubMedGoogle Scholar
  107. 107.
    Huntington Study Group. Dosage effects of riluzole in Huntington’s disease: a multicenter placebo-controlled study. Neurology. 2003;61:1551–6.Google Scholar
  108. 108.
    Macerollo A, Deuschl G. Deep brain stimulation for tardive syndromes: systematic review and meta-analysis. J Neurol Sci. 2018;389:55–60.PubMedGoogle Scholar
  109. 109.
    Martinez-Ramirez D, Jimenez-Shahed J, Leckman JF, Porta M, Servello D, Meng F-G, et al. Efficacy and safety of deep brain stimulation in Tourette syndrome. JAMA Neurol. 2018;75:353.PubMedGoogle Scholar
  110. 110.
    Slotema CW, van Harten PN, Bruggeman R, Hoek HW. Botulinum toxin in the treatment of orofacial tardive dyskinesia: a single blind study. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:507–9.PubMedGoogle Scholar
  111. 111.
    Lotia M, Jankovic J. Botulinum toxin for the treatment of tremor and tics. Semin Neurol. 2016;36:054–63.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Parkinson’s Disease Center and Movement Disorders ClinicBaylor College of MedicineHoustonUSA

Personalised recommendations