CNS Drugs

, Volume 32, Issue 11, pp 1025–1037 | Cite as

From LBR-101 to Fremanezumab for Migraine

  • Marcelo E. BigalEmail author
  • Alan M. Rapoport
  • Stephen D. Silberstein
  • Sarah Walter
  • Richard J. Hargreaves
  • Ernesto Aycardi
Review Article


Calcitonin gene-related peptide (CGRP) is a neuropeptide of importance in migraine pathogenesis. Its central role in migraine was proven pharmacologically by the development of CGRP receptor antagonists. Monoclonal antibodies targeting CGRP or its receptor are effective in the preventive treatment of episodic and chronic migraine and are considered potential breakthroughs in their treatment. Fremanezumab (previously known as TEV-48125, LBR-101, or RN-307) is a humanized IgG2a monoclonal antibody that binds to CGRP. The development of this antibody validated the role of CGRP in chronic migraine and the drug has been recently approved in the US by the FDA, while it continues to be reviewed by other regulatory agencies. Herein we provide an in-depth review of its development. We start by summarizing its in vitro and in vivo pharmacology, and the phase I studies. We then review the late-stage clinical development, with a focus on its efficacy, safety, similarities, and uniqueness relative to other CGRP antibodies. We close by discussing lessons learned on the mechanisms of migraine and areas for future development and exploration.


Compliance with Ethical Standards


No funding was provided for writing this manuscript. At the time of writing, former employees of Teva (Bigal and Aycardi) were no longer working with the sponsor.

Conflict of interest

Dr Bigal was a full-time employee of Labrys (Chief Medical Officer) and of Teva (Chief Medical Officer and Chief Scientific Officer) and, as such, received salary and equity from both companies. He was directly involved with the development of fremanezumab at all stages. He is currently at Purdue. Dr Rapoport is a consultant and speaker for Teva Pharmaceuticals and was a consultant to Labrys. He is an author on multiple phase II and phase III publications on the program. Dr Silberstein is a consultant to Teva Pharmaceuticals and was a consultant to Labrys. He is an author on multiple phase II and phase III publications on the program and is the primary investigator on the phase III CM program. Dr Walter was a full-time employee at Labrys (Head of Preclinical Research and Clinical Pharmacology) and supported the transition of the program to Teva. Dr Hargreaves was a consultant to Labrys, was a full-time employee at Merck, and is currently a full-time employee at Celgene. Dr Aycardi was a full-time employee at Teva (Head of Development for Fremanezumab). As such, he received salary and equity compensation from Teva. He is currently at Xenon pharmaceuticals.


  1. 1.
    Terenghi G, Polak JM, Ghatei MA, Mulderry PK, Butler JM, Unger WG, et al. Distribution and origin of calcitonin gene-related peptide (CGRP) immunoreactivity in the sensory innervation of the mammalian eye. J Comp Neurol. 1985;233(4):506–16. Scholar
  2. 2.
    Alevizaki M, Shiraishi A, Rassool FV, Ferrier GJ, MacIntyre I, Legon S. The calcitonin-like sequence of the beta CGRP gene. FEBS Lett. 1986;206(1):47–52.CrossRefGoogle Scholar
  3. 3.
    Recober A, Russo AF. Calcitonin gene-related peptide: an update on the biology. Curr Opin Neurol. 2009;22(3):241–6.CrossRefGoogle Scholar
  4. 4.
    Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med. 2011;13:e36. Scholar
  5. 5.
    Hargreaves R. New migraine and pain research. Headache. 2007;47(Suppl 1):S26–43. Scholar
  6. 6.
    Edvinsson L. The trigeminovascular pathway: role of CGRP and CGRP receptors in migraine. Headache. 2017;57(Suppl 2):47–55. Scholar
  7. 7.
    Edvinsson L, Goadsby PJ. Neuropeptides in migraine and cluster headache. Cephalalgia. 1994;14(5):320–7. Scholar
  8. 8.
    Goadsby P. Neuropeptides and migraine—a useful biological marker? Cephalalgia. 1995;15(5):333–4.PubMedGoogle Scholar
  9. 9.
    Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain. 2017;158(4):543–59. Scholar
  10. 10.
    Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache. 2013;53(8):1230–44. Scholar
  11. 11.
    Kopruszinski CM, Xie JY, Eyde NM, Remeniuk B, Walter S, Stratton J, et al. Prevention of stress- or nitric oxide donor-induced medication overuse headache by a calcitonin gene-related peptide antibody in rodents. Cephalalgia. 2017;37(6):560–70. Scholar
  12. 12.
    Krasenbaum LJ. A review of CGRP and its receptors. Headache. 2017;57(4):670–1. Scholar
  13. 13.
    Edvinsson L. The journey to establish CGRP as a migraine target: a retrospective view. Headache. 2015;55(9):1249–55. Scholar
  14. 14.
    Hargreaves R, Bigal ME. Calcitonin gene-related peptide modulators—the renaissance of a new migraine drug class Headache Currents. 2018; (in press).Google Scholar
  15. 15.
    Edvinsson L, Haanes KA, Warfvinge K, Krause DN. CGRP as the target of new migraine therapies—successful translation from bench to clinic. Nat Rev Neurol. 2018. Scholar
  16. 16.
    Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–10. Scholar
  17. 17.
    Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet. 2008;372(9656):2115–23. Scholar
  18. 18.
    Hewitt DJ, Aurora SK, Dodick DW, Goadsby PJ, Ge YJ, Bachman R, et al. Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia. 2011;31(6):712–22. Scholar
  19. 19.
    Marcus R, Goadsby PJ, Dodick D, Stock D, Manos G, Fischer TZ. BMS-927711 for the acute treatment of migraine: a double-blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia. 2014;34(2):114–25. Scholar
  20. 20.
    Voss T, Lipton RB, Dodick DW, Dupre N, Ge JY, Bachman R, et al. A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia. 2016;36(9):887–98. Scholar
  21. 21.
    Silberstein SD. Emerging target-based paradigms to prevent and treat migraine. Clin Pharmacol Ther. 2013;93(1):78–85. Scholar
  22. 22.
    Schuster NM, Rapoport AM. Calcitonin gene-related peptide-targeted therapies for migraine and cluster headache: a review. Clin Neuropharmacol. 2017;40(4):169–74. Scholar
  23. 23.
    Depre M, Macleod C, Palcza J, Behm M, de Lepeleire I, Han T, et al. Lack of hemodynamic interaction between CGRP-receptor antagonist telcagepant (MK-0974) and sumatriptan: results from a randomized study in patients with migraine. Cephalalgia. 2013;33(16):1292–301. Scholar
  24. 24.
    Deen M, Correnti E, Kamm K, Kelderman T, Papetti L, Rubio-Beltran E, et al. Blocking CGRP in migraine patients—a review of pros and cons. J Headache Pain. 2017;18(1):96. Scholar
  25. 25.
    Hostetler ED, Joshi AD, Sanabria-Bohorquez S, Fan H, Zeng Z, Purcell M, et al. In vivo quantification of calcitonin gene-related peptide receptor occupancy by telcagepant in rhesus monkey and human brain using the positron emission tomography tracer [11C]MK-4232. J Pharmacol Exp Ther. 2013;347(2):478–86. Scholar
  26. 26.
    Walter S, Bigal ME. TEV-48125: a review of a monoclonal CGRP antibody in development for the preventive treatment of migraine. Curr Pain Headache Rep. 2015;19(3):6. Scholar
  27. 27.
    Dodick DW, Goadsby PJ, Silberstein SD, Lipton RB, Olesen J, Ashina M, et al. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol. 2014;13(11):1100–7. Scholar
  28. 28.
    Monteith D, Collins EC, Vandermeulen C, Van Hecken A, Raddad E, Scherer JC, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the CGRP binding monoclonal antibody LY2951742 (Galcanezumab) in healthy volunteers. Front Pharmacol. 2017;8:740. Scholar
  29. 29.
    Tepper S, Ashina M, Reuter U, Brandes JL, Dolezil D, Silberstein S, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017;16(6):425–34. Scholar
  30. 30.
    Bigal ME, Dodick DW, Rapoport AM, Silberstein SD, Ma Y, Yang R, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14(11):1081–90. Scholar
  31. 31.
    Bigal ME, Dodick DW, Krymchantowski AV, VanderPluym JH, Tepper SJ, Aycardi E, et al. TEV-48125 for the preventive treatment of chronic migraine: efficacy at early time points. Neurology. 2016;87(1):41–8. Scholar
  32. 32.
    Bigal ME, Walter S. Monoclonal antibodies for migraine: preventing calcitonin gene-related peptide activity. CNS Drugs. 2014;28(5):389–99. Scholar
  33. 33.
    Bigal ME, Walter S, Rapoport AM. Therapeutic antibodies against CGRP or its receptor. Br J Clin Pharmacol. 2015;79(6):886–95. Scholar
  34. 34.
    Walter S, Alibhoy A, Escandon R, Bigal ME. Evaluation of cardiovascular parameters in cynomolgus monkeys following IV administration of LBR-101, a monoclonal antibody against calcitonin gene-related peptide. MAbs. 2014;6(4):871–8. Scholar
  35. 35.
    Zeller J, Poulsen KT, Sutton JE, Abdiche YN, Collier S, Chopra R, et al. CGRP function-blocking antibodies inhibit neurogenic vasodilatation without affecting heart rate or arterial blood pressure in the rat. Br J Pharmacol. 2008;155(7):1093–103. Scholar
  36. 36.
    Edvinsson L, Nilsson E, Jansen-Olesen I. Inhibitory effect of BIBN4096BS, CGRP(8-37), a CGRP antibody and an RNA-Spiegelmer on CGRP induced vasodilatation in the perfused and non-perfused rat middle cerebral artery. Br J Pharmacol. 2007;150(5):633–40. Scholar
  37. 37.
    Bigal ME, Escandon R, Bronson M, Walter S, Sudworth M, Huggins JP, et al. Safety and tolerability of LBR-101, a humanized monoclonal antibody that blocks the binding of CGRP to its receptor: results of the Phase 1 program. Cephalalgia. 2014;34(7):483–92. Scholar
  38. 38.
    Bigal ME, Walter S, Bronson M, Alibhoy A, Escandon R. Cardiovascular and hemodynamic parameters in women following prolonged CGRP inhibition using LBR-101, a monoclonal antibody against CGRP. Cephalalgia. 2014;34(12):968–76. Scholar
  39. 39.
    Melo-Carrillo A, Noseda R, Nir RR, Schain AJ, Stratton J, Strassman AM, et al. Selective inhibition of trigeminovascular neurons by Fremanezumab: a humanized monoclonal anti-CGRP antibody. J Neurosci. 2017;37(30):7149–63. Scholar
  40. 40.
    Allen DM, Chen LE, Seaber AV, Urbaniak JR. Calcitonin gene-related peptide and reperfusion injury. J Orthop Res. 1997;15(2):243–8. Scholar
  41. 41.
    Kallner G, Gonon A, Franco-Cereceda A. Calcitonin gene-related peptide in myocardial ischaemia and reperfusion in the pig. Cardiovasc Res. 1998;38(2):493–9.CrossRefGoogle Scholar
  42. 42.
    Lynch JJ Jr, Detwiler TJ, Kane SA, Regan CP. Effect of calcitonin gene-related peptide receptor antagonism on the systemic blood pressure responses to mechanistically diverse vasomodulators in conscious rats. J Cardiovasc Pharmacol. 2010;56(5):518–25. Scholar
  43. 43.
    Supowit SC, Ethridge RT, Zhao H, Katki KA, Dipette DJ. Calcitonin gene-related peptide and substance P contribute to reduced blood pressure in sympathectomized rats. Am J Physiol Heart Circ Physiol. 2005;289(3):H1169–75. Scholar
  44. 44.
    Lynch JJ Jr, Regan CP, Edvinsson L, Hargreaves RJ, Kane SA. Comparison of the vasoconstrictor effects of the calcitonin gene-related peptide receptor antagonist telcagepant (MK-0974) and zolmitriptan in human isolated coronary arteries. J Cardiovasc Pharmacol. 2010;55(5):518–21. Scholar
  45. 45.
    Chan KY, Edvinsson L, Eftekhari S, Kimblad PO, Kane SA, Lynch J, et al. Characterization of the calcitonin gene-related peptide receptor antagonist telcagepant (MK-0974) in human isolated coronary arteries. J Pharmacol Exp Ther. 2010;334(3):746–52. Scholar
  46. 46.
    Regan CP, Stump GL, Kane SA, Lynch JJ Jr. Calcitonin gene-related peptide receptor antagonism does not affect the severity of myocardial ischemia during atrial pacing in dogs with coronary artery stenosis. J Pharmacol Exp Ther. 2009;328(2):571–8. Scholar
  47. 47.
    Shen YT, Mallee JJ, Handt LK, Gilberto DB, Lynch JJ Jr, Hargreaves RJ, et al. Effects of inhibition of alpha-CGRP receptors on cardiac and peripheral vascular dynamics in conscious dogs with chronic heart failure. J Cardiovasc Pharmacol. 2003;42(5):656–61.CrossRefGoogle Scholar
  48. 48.
    Ohlsson L, Kronvall E, Stratton J, Edvinsson L. Fremanezumab blocks CGRP induced dilatation in human cerebral, middle meningeal and abdominal arteries. J Headache Pain. 2018;19(1):66. Scholar
  49. 49.
    Lynch JJ, Shen YT, Pittman TJ, Anderson KD, Koblan KS, Gould RJ, et al. Effects of the prototype serotonin 5-HT(1B/1D) receptor agonist sumatriptan and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37) on myocardial reactive hyperemic response in conscious dogs. Eur J Pharmacol. 2009;623(1–3):96–102. Scholar
  50. 50.
    Behm MO, Blanchard RL, Murphy MG, Palcza JS, Harris DE, Butterfield KL, et al. Effect of telcagepant on spontaneous ischemia in cardiovascular patients in a randomized study. Headache. 2011;51(6):954–60. Scholar
  51. 51.
    Chaitman BR, Ho AP, Behm MO, Rowe JF, Palcza JS, Laethem T, et al. A randomized, placebo-controlled study of the effects of telcagepant on exercise time in patients with stable angina. Clin Pharmacol Ther. 2012;91(3):459–66. Scholar
  52. 52.
    Bigal ME, Edvinsson L, Rapoport AM, Lipton RB, Spierings EL, Diener HC, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14(11):1091–100. Scholar
  53. 53.
    Silberstein SD, Lipton RB, Dodick DW, Freitag FG, Ramadan N, Mathew N, et al. Efficacy and safety of topiramate for the treatment of chronic migraine: a randomized, double-blind, placebo-controlled trial. Headache. 2007;47(2):170–80. Scholar
  54. 54.
    Dodick DW, Turkel CC, DeGryse RE, Aurora SK, Silberstein SD, Lipton RB, et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache. 2010;50(6):921–36. Scholar
  55. 55.
    Silberstein SD, Dodick DW, Bigal ME, Yeung PP, Goadsby PJ, Blankenbiller T, et al. Fremanezumab for the Preventive Treatment of Chronic Migraine. N Engl J Med. 2017;377(22):2113–22. Scholar
  56. 56.
    Yeung PP, Aycardi E, Bigal ME, Blankenbiller T, Grozinski-Wolff M, Yang R et al. Early onset of action with fremanezumab versus placebo for the preventive treatment of chronic migraine Y. J Journal of Headache and Pain. 2017;18(1, suppl 1):132.Google Scholar
  57. 57.
    Dodick DW, Silberstein SD, Bigal ME, Yeung PP, Blankenbiller T, Grozinski-Wolff M, et al. Effect of fremanezumab compared with placebo on prevention of episodic migraine: a randomized clinical trial. JAMA. 2018;319(19):2113–22.CrossRefGoogle Scholar
  58. 58.
    Oakes TMM, Skljarevski V, Zhang Q, Kielbasa W, Hodsdon ME, Detke HC, et al. Safety of galcanezumab in patients with episodic migraine: a randomized placebo-controlled dose-ranging Phase 2b study. Cephalalgia. 2018;38(6):1015–25. Scholar
  59. 59.
    Skljarevski V, Oakes TM, Zhang Q, Ferguson MB, Martinez J, Camporeale A, et al. Effect of different doses of galcanezumab vs placebo for episodic migraine prevention: a randomized clinical trial. JAMA Neurol. 2018;75(2):187–93. Scholar
  60. 60.
    Dodick DW, Ashina M, Brandes JL, Kudrow D, Lanteri-Minet M, Osipova V, et al. ARISE: a phase 3 randomized trial of erenumab for episodic migraine. Cephalalgia. 2018;38(6):1026–37. Scholar
  61. 61.
    Goadsby PJ, Reuter U, Hallstrom Y, Broessner G, Bonner JH, Zhang F, et al. A controlled trial of erenumab for episodic migraine. N Engl J Med. 2017;377(22):2123–32. Scholar
  62. 62.
    Lipton RB, Brennan A, Palmer S, Hatswell AJ, Porter JK, Sapra S, et al. Estimating the clinical effectiveness and value-based price range of erenumab for the prevention of migraine in patients with prior treatment failures: a US societal perspective. J Med Econ. 2018. Scholar
  63. 63.
    Underwood E. A shot at migraine. Science. 2016;351(6269):116–9. Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marcelo E. Bigal
    • 1
    Email author
  • Alan M. Rapoport
    • 2
  • Stephen D. Silberstein
    • 3
  • Sarah Walter
    • 4
  • Richard J. Hargreaves
    • 5
  • Ernesto Aycardi
    • 6
  1. 1.Purdue PharmaStamfordUSA
  2. 2.The David Geffen School of Medicine at UCLALos AngelesUSA
  3. 3.Jefferson Headache CenterThomas Jefferson UniversityPhiladelphiaUSA
  4. 4.Antiva BiosciencesSan FranciscoUSA
  5. 5.CelgeneSummitUSA
  6. 6.Xenon PharmaceuticalsVancouverCanada

Personalised recommendations