CNS Drugs

, Volume 32, Issue 10, pp 939–949 | Cite as

Cancer Risk in Patients with Multiple Sclerosis: Potential Impact of Disease-Modifying Drugs

  • Christine LebrunEmail author
  • Fanny Rocher
Review Article


In the 1990s, the first disease-modifying therapies (DMTs) for multiple sclerosis (MS) were injectable immunomodulatory (IM) drugs, including four different interferon-β preparations and glatiramer acetate. Since 2000, more than 15 immunosuppressant (IS) drugs have been used, with a more or less specific action on inflammation. These include monoclonal antibodies targeting CTL4, the integrin receptor, the interleukin (IL)-2 receptor, CD19, CD20, CD52, and the sphingosine 1 phosphate family. The association between MS and cancer has long been investigated but has led to conflicting results. No studies have reported an increased risk of cancer after long-term exposure to IM. Several reports suggest an increase in cancer risk among MS patients treated with IS such as mitoxantrone, azathioprine and cyclophosphamide. Because of their action on the immune system, and due to a lack of available long-term data, a special warning of the potential risk of cancer accompanies the use of recent IS such as cladribine, fingolimod, natalizumab or alemtuzumab. In most studies, factors such as diet, smoking, solar radiation, and hormone therapy, all of which influence cancer risk, have not been considered. For fingolimod, natalizumab, alemtuzumab, dimethyl fumarate, teriflunomide, daclizumab and ocrelizumab, risk management plans outlined by regulatory agencies are mandatory. They allow prospective detection of some red flags, in particular those for the increased risk of cancer. We review the current evidence behind the increased risk of malignancy in MS patients receiving DMTs, and provide an overview of the DMTs that are currently in use and those in clinical trials. The known risks and benefits of these therapies will be considered.


Compliance with Ethical Standards


No sources of funding were used to assist in the preparation of this review.

Conflicts of interest

Christine Lebrun has received honoraria for expertise and speaking from Biogen, Merck, Roche, Novartis, and Genzyme. Fanny Rocher has no conflicts of interest that are directly relevant to the content of this study.


  1. 1.
    Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. 2018;378(2):169–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Midgard R, Glattre E, Gronning M, Riise T, Edland A, Nyland H. Multiple sclerosis and cancer in Norway. A retrospective cohort study. Acta Neurol Scand. 1996;93:411–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Moller H, Kneller RW, BoiceJr JD, Olsen JH. Cancer incidence following hospitalization for multiple sclerosis in Denmark. Acta Neurol Scand. 1991;84:214–20.CrossRefPubMedGoogle Scholar
  5. 5.
    Edan G, Le Page E. Induction therapy for patients with multiple sclerosis: Why? When? How? CNS Drugs. 2013;27(6):403–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Marrie RA, Reider N, Cohen J, Stuve O, Trojano M, Sorensen P, et al. A systematic review of the incidence and prevalence of cancer in multiple sclerosis. Mult Scler. 2015;21(3):294–304.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Handel AE, Ramagopalan SV. Multiple sclerosis and risk of cancer: a meta-analysis. J Neurol Neurosurg Psychiatry. 2010;81:1413–1414.Google Scholar
  8. 8.
    Gaindh D, Kavak KS, Teter B, Vuaghn CB, Cookfair D, Hahn T, et al. Decreased risk of cancer in multiple sclerosis patients and analysis of the effect of disease modifying therapies on cancer risk. J Neurol Sci. 2016;370:13–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Moisset X, Perié M, Pereira B, Dumont E, Lebrun-Frenay C, Lesage FX, et al. Decreased prevalence of cancer in patients with multiple sclerosis: a case-control study. PLoS One. 2017;12(11):e0188120.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nielsen NM, Rostgaard K, Rasmussen S, Koch-Henriksen N, Storm HH, Melbye M, et al. Cancer risk among patients with multiple sclerosis: a population-based register study. Int J Cancer. 2006;118(4):979–84.CrossRefPubMedGoogle Scholar
  11. 11.
    Kyritsis AP, Boussios S, Pavlidis N. Cancer specific risk in multiple sclerosis patients. Crit Rev Oncol/Hematol. 2016;98:29–34.CrossRefGoogle Scholar
  12. 12.
    Kingwell E, Bajdik C, Phillips N, Zhu F, Oger j, Hashimoto S, et al. Cancer risk in multiple sclerosis: findings from British Columbia, Canada. Brain. 2012;135(10):2973–2979.Google Scholar
  13. 13.
    Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117(5):1137–46.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Bahmanyar S, Montgomery SM, Hillert J, Ekbom A, Olsson T. Cancer risk among patients with multiple sclerosis and their parents. Neurology. 2009;72(13):1170–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Fois AF, Wotton CJ, Yeates D, Turner MR, Goldacre MJ. Cancer in patients with motor neuron disease, multiple sclerosis and Parkinson’s disease: record linkage studies. J Neurol Neurosurg Psychiatry. 2010;81(2):215–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Ragonese P, Aridon P, Vazzoler G, Mazzola MA, Lo Re V, Lo Re M, et al. Association between multiple sclerosis, cancer risk, and immunosuppressant treatment: a cohort study. BMC Neurol. 2017;17(1):155.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sadovnick AD, Ebers GC, Dyment DA, Risch NJ. Evidence for genetic basis of multiple sclerosis. The Canadian collaborative study group. Lancet. 1996;347:1728–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Alonso A, Hernan MA, Ascherio A. Allergy, family history of autoimmune diseases, and the risk of multiple sclerosis. Acta Neurol Scand. 2008;117:15–20.PubMedGoogle Scholar
  20. 20.
    Holzmann C, Bauer I, Meyer P. Co-occurrence of multiple sclerosis and cancer in a BRCA1 positive family. Eur J Med Genet. 2013;56:577–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Lebrun C, Debouverie M, Vermersch P, Clavelou P, Rumbach L, de Seze J, et al. Cancer risk and impact of disease-modifying treatments in patients with multiple sclerosis. Mult Scler. 2008;14(3):399–405.CrossRefPubMedGoogle Scholar
  22. 22.
    Confavreux C, Saddier P, Grimaud J, Moreau T, Adeleine P, Aimard G. Risk of cancer from azathioprine therapy in multiple sclerosis: a case-control study. Neurology. 1996;46(6):1607–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Kingwell E, Evans C, Zhu F, Oger J, Hashimoto S, Tremlett H. Assessment of cancer risk with β-interferon treatment for multiple sclerosis. J Neurol Neurosurg Psychiatry. 2014;85(10):1096–102.CrossRefPubMedGoogle Scholar
  24. 24.
    Lebrun C, Vermersch P, Brassat D, Defer G, Rumbach L, Clavelou P, et al. Cancer and multiple sclerosis in the era of disease-modifying treatments. J Neurol. 2011;258(7):1304–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Achiron A, Barak Y, Gail M, Mandel M, Pee D, Ayyagari R, et al. Cancer incidence in multiple sclerosis and effects of immunomodulatory treatments. Breast Cancer Res Treat. 2005;89:265–70.CrossRefPubMedGoogle Scholar
  26. 26.
    Bloomgren G, Sperling B, Cushing K, Wenten M. Assessment of malignancy risk in patients with multiple sclerosis treated with intramuscular interferon beta-1a: retrospective evaluation using a health insurance claims database and postmarketing surveillance data. Ther Clin Risk Manag. 2012;8:313–21.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sandberg-Wollheim M, Kornmann G, Bischof D, Moraga M, Hennessy B, Alteri E. The risk of malignancy is not increased in patients with multiple sclerosis treated with subcutaneous interferon beta-1a: analysis of data from clinical trial and post-marketing surveillance settings. Mult Scler. 2011;17:431–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Walker J, Smylie A, Smylie M. An association between glatiramer acetate and malignant melanoma. J Immunother. 2016;39(7):276–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Ghebeh H, Barhoush E, Tulbah A, Elkum N, Al-Tweigeri T, Dermine S. FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: implication for immunotherapy. BMC Cancer. 2008;8:57.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Madray MM, Greene JF, Butler DF. Glatiramer acetate-associated, CD30+, primary, cutaneous, anapestic large-cell lymphoma. Arch Neurol. 2008;65(10):1378–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Buttmann M, Seuffert L, Mäder U, Toyka KV. Malignancies after mitoxantrone for multiple sclerosis: a retrospective cohort study. Neurology. 2016;86(23):2203–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Monach PA, Arnold LM, Merkel PA. Incidence and prevention of bladder toxicity from cyclophosphamide in the treatment of rheumatic diseases: a data-driven review. Arthritis Rheum. 2010;62(1):9–21.CrossRefPubMedGoogle Scholar
  33. 33.
    Mariette X, Cazals-Hatem D, Warszawki J, Liotte F, Balandraud N, Sibilia J, Investigators of the Club Rhumatismes et Inflammation. Lymphomas in rheumatoid arthritis patients treated with methotrexate: a 3-year prospective study in France. Blood. 2002;99(11):3909–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Xie X, Zhao Y, Ma C-Y, et al. Dimethyl fumarate induces necroptosis in colon cancer cells through glutathione depletion/ROS increase/MAPKs activation pathway. Br J Pharmacol. 2015;172:3929–43.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget. 2016;7(17):23106–27.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Huang O, Zhang W, Zhi Q, Xue X, Liu H, Shen D, et al. Teriflunomide, an immunomodulatory drug, exerts anticancer activity in triple negative breast cancer cells. Exp Biol Med. 2015;240(4):426–37.CrossRefGoogle Scholar
  37. 37.
    Khan O, La Thangue NB. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. 2011;90(1):85–94.Google Scholar
  38. 38.
    Hasanali ZS, Saroya BS, Stuart A, Shimko S, Evans J, Shah MV, et al. Epigenetic therapy overcomes treatment resistance in T cell prolymphocytic leukemia. Sci Transl Med,2015;7(293):293ra102.Google Scholar
  39. 39.
    Martinelli V, Cocco E, Capra R, et al. Acute myeloid leukemia in Italian patients with multiple sclerosis treated with mitoxantrone. Neurology. 2011;77(21):1887–95.CrossRefPubMedGoogle Scholar
  40. 40.
    Ellis R, Boggild M. Therapy-related acute leukaemia with Mitoxantrone: what is the risk and can we minimise it? Mult Scler. 2009;15:505–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Marriott JJ, Miyasaki J, Gronseth G, O’Connor PW. Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2010;74:1463–70.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Le Page E, Leray E, Taurin G, et al. Mitoxantrone as induction treatment in aggressive relapsing remitting multiple sclerosis: treatment response factors in a 5-year follow-up observational study of 100 patients. J Neurol Neurosurg Psychiatry. 2008;79:52–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Hasan SK, Buttari F, Ottone T, et al. Risk of acute promyelocytic leukemia in multiple sclerosis: coding variants of DNA repair genes. Neurology. 2011;76:1059–65.CrossRefPubMedGoogle Scholar
  44. 44.
    Reich K, et al. Drug safety of systemic treatments for psoriasis: results from The German Psoriasis Registry PsoBest. Arch Derm Research. 2015;307(10):875–83.CrossRefGoogle Scholar
  45. 45.
    Landais A, Alhendi R, Gouverneur A, Teron-Aboud B. A case of lymphoma in a patient on teriflunomide treatment for relapsing multiple sclerosis. Mult Scler Relat Disord. 2017;17:92–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Herzinger T, Kleuser B, Schafer-Korting M, Korting HC. Sphingosine-1-phosphate signaling and the skin. Am J Clin Dermatol. 2007;8(6):329–36.CrossRefPubMedGoogle Scholar
  47. 47.
    Kappos L, Radue LW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401.CrossRefPubMedGoogle Scholar
  48. 48.
    Mahajan KR, Ko JS, Tetzlaff MT, Hudgens CW, Billings SD, Cohen JA. Merkel cell carcinoma with fingolimod treatment for multiple sclerosis: a case report. Mult Scler Rel Disord. 2017;17:12–4.CrossRefGoogle Scholar
  49. 49.
    Killestein J, Leurs CE, Hoogervorst ELJ, van Eijk J, Mostert JP, van den Eertwegh AJM, et al. Five cases of malignant melanoma during fingolimod treatment in Dutch patients with MS. Neurology. 2017;89(9):970–2.CrossRefPubMedGoogle Scholar
  50. 50.
    Cohen JA, Khatri B, Barkhof F, et al. Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J Neurol Neurosurg Psychiatry. 2016;87:468–75.CrossRefPubMedGoogle Scholar
  51. 51.
    Papathemeli D, Gräfe R, Hildebrandt U, Zettl UK, Ulrich J. Development of a primary cutaneous CD30(+) anaplastic large-cell T-cell lymphoma during treatment of multiple sclerosis with fingolimod. Mult Scler. 2016;22:1888–90.CrossRefPubMedGoogle Scholar
  52. 52.
    Cohan S, Godwin J, Gaedeke L. Acute lymphoblastic leukemia in a man treated with fingolimod for relapsing multiple sclerosis. J Investig Med High Impact Case Rep. 2015;3(1):2324709615575551.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Samaraweera AP, Cohen SN, Akay EM, Evangelou N. Lymphomatoid papulosis: a cutaneous lymphoproliferative disorder in a patient on fingolimod for multiple sclerosis. Mult Scler. 2016;22:122–4.CrossRefPubMedGoogle Scholar
  54. 54.
    Walker S, Brew B. Kaposi sarcoma in a fingolimod-treated patient with multiple sclerosis. J Clin Neurosci. 2016;31:217–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Lebrun-Frenay C, Papeix C, Kobelt G, Visy JM, Coustans M, Debouverie M, et al. Long-term efficacy, safety, tolerability and quality of life with fingolimod treatment in patients with multiple sclerosis in real-world settings in France: VIRGILE two-year results. 2017. ECTRIMS 2017; Paris, EP1716.Google Scholar
  56. 56.
    Hassan R, Gupta M, Kern W, Ozer H. Acute myeloid leukemia following treatment with cladribine for hairy cell leukemia: a case report and review of the literature. Leuk Lymphoma. 2004;45(10):2149–52.CrossRefPubMedGoogle Scholar
  57. 57.
    Robak T, Blonski JZ, Gora-Tybor J, Kasznicki M, Konopka L, Ceglarek B, et al. Second malignancies and Richter’s syndrome in patients with chronic lymphocytic leukaemia treated with cladribine. Eur J Cancer. 2004;40(3):383–9.Google Scholar
  58. 58.
    Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Sorensen PS, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362:416–26.CrossRefPubMedGoogle Scholar
  59. 59.
    Pakpoor J, Disanto G, Altmann DR, Pavitt S, Turner BP, Marta M, et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflammation. 2015;2(6):e158.CrossRefGoogle Scholar
  60. 60.
    Rosenberg JD, Burian C, Waalen J, Saven A. Clinical characteristics and long-term outcome of young hairy cell leukemia patients treated with cladribine: a single-institution series. Blood. 2014;123:177–83.CrossRefPubMedGoogle Scholar
  61. 61.
    Coles AJ, Cohen JA, Fox EJ, Giovannoni G, Hartung HP, Havrdova E, et al. Alemtuzumab CARE-MS II 5-year follow-up. Neurology. 2017;89(11):1117–26.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Havrdova E, Arnold DL, Cohen JA, Hartung HP, Fox EJ, Giovannoni G, et al. Alemtuzumab CARE-MS I 5-year follow-up. Neurology. 2017;89(11):1107–16.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pace AA, Zajicek JP. Melanoma following treatment with alemtuzumab for multiple sclerosis. Eur J Neurol. 2009;16(4):e70–1.CrossRefPubMedGoogle Scholar
  64. 64.
    Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910.CrossRefPubMedGoogle Scholar
  65. 65.
    Bergamaschi R, Montomoli C. Melanoma in multiple sclerosis treated with natalizumab: causal association or coincidence? Mult Scler. 2009;15(12):1532–3.CrossRefPubMedGoogle Scholar
  66. 66.
    Castela E, Lebrun-Frenay C, Laffon M, Rocher F, Cohen M, Leccia NC, Bahadoran P, Lacour JP, Ortonne JP, Passeron T. Evolution of nevi during treatment with natalizumab: a prospective follow-up of patients treated with natalizumab for multiple sclerosis. Arch Dermatol. 2011;147(1):72–6. Scholar
  67. 67.
    Sartori D, Grundmark B. Natalizumab and rapidly evolving central nervous system lymphoma. In: WHO pharmaceuticals newsletter, no. 6. World Health Organization; 2017. p. 14.Google Scholar
  68. 68.
    Wynn D, Kaufman M, Montalban X, Vollmer T, Simon J, Elkins J, et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol. 2010;9(4):381–90.CrossRefPubMedGoogle Scholar
  69. 69.
    Kappos L, Wiendl H, Selmaj K, Boyko A, Kaufman M, Rose J, et al. Daclizumab HYP versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2015;373(15):1418–28.CrossRefPubMedGoogle Scholar
  70. 70.
    Gold R, Radue EW, Giovannoni G, Selmaj K, Hardrova E, Stefoski D, et al. Safety and efficacy of daclizumab in relapsing-remitting multiple sclerosis: 3-year results from the SELECTED open-label extension study. BMC Neurol. 2016;16:117.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20.CrossRefPubMedGoogle Scholar
  72. 72.
    Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017;376(3):221–34.CrossRefPubMedGoogle Scholar
  73. 73.
    van Vollenhoven RF, Emery P, Bingham CO, Keystone EC, Fleischmann RM, First DE, et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis. 2013;72(9):1496–502.CrossRefPubMedGoogle Scholar
  74. 74.
    Yudkin PL, Ellison GW, Ghezzi A, Goodkin DE, Hughes RA, McPherson K, et al. Overview of azathioprine treatment in multiple sclerosis. Lancet. 1991;338(8774):1051–5.CrossRefPubMedGoogle Scholar
  75. 75.
    Casetta I, Iuliano G, Filippini G. Azathioprine for multiple sclerosis. Cochrane database Syst Rev. 2007;4:CD003982.Google Scholar
  76. 76.
    Baker GL, Kahl LE, Zee BC, Stolzer BL, Agarwal AK, Medsger TA Jr. Malignancy following treatment of rheumatoid arthritis with cyclophosphamide. Long-term case-control follow-up study. Am J Med. 1987;83(1):1–9.CrossRefPubMedGoogle Scholar
  77. 77.
    De Ridder D, et al. Bladder cancer in patients with multiple sclerosis treated with cyclophosphamide. J Urol. 1998;159(6):1881–4.CrossRefPubMedGoogle Scholar
  78. 78.
    Le Bouc R, Zéphir H, Majed B, Verier A, Marcel M, Vermersch P. No increase in cancer incidence detected after cyclophosphamide in a French cohort of patients with progressive multiple sclerosis. Mult Scler. 2012;18(1):55–63.CrossRefPubMedGoogle Scholar
  79. 79.
    Montalbán X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, Chandraratna D, et al. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler. 2018;24(2):96–120. Scholar
  80. 80.
    Rae-Grant A, Day GS, Marrie RA, Rabinstein A, Cree BAC, Gronseth GS, et al. Practice guideline recommendations summary: disease modifying therapies for adults with multiple sclerosis. Neurology. 2018;90:777–88.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centre de Ressources et Compétences Sclérose En Plaques, NeurologieUniversité Nice Côte d’AzurNiceFrance
  2. 2.Centre Régional de Pharmacovigilance, CHU CimiezNiceFrance

Personalised recommendations