CNS Drugs

, Volume 32, Issue 8, pp 747–761 | Cite as

Drug Repurposing in Parkinson’s Disease

  • Dilan Athauda
  • Thomas FoltynieEmail author
Review Article


The development of an intervention to slow or halt disease progression remains the greatest unmet therapeutic need in Parkinson’s disease. Given the number of failures of various novel interventions in disease-modifying clinical trials in combination with the ever-increasing costs and lengthy processes for drug development, attention is being turned to utilizing existing compounds approved for other indications as novel treatments in Parkinson’s disease. Advances in rational and systemic drug repurposing have identified a number of drugs with potential benefits for Parkinson’s disease pathology and offer a potentially quicker route to drug discovery. Here, we review the safety and potential efficacy of the most promising candidates repurposed as potential disease-modifying treatments for Parkinson’s disease in the advanced stages of clinical testing.


Compliance with Ethical Standards


DA received funding from the Cure Parkinson’s Trust. No funding was received specifically for the publication of this review.

Conflict of interest

DA has no conflicts of interest. TF has received honoraria from Profile Pharma, BIAL, AbbVie, Genus, Medtronic, and St Jude Medical. DA and TF are investigators on the Exenatide-PD trial.


  1. 1.
    Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68:384–6.PubMedGoogle Scholar
  2. 2.
    Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A. The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord. 2013;28:311–8.PubMedGoogle Scholar
  3. 3.
    Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl. Neurodegener. 2017;6:28.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Athauda D, Foltynie T. The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat. Rev. Neurol. 2014;11:25–40.PubMedGoogle Scholar
  5. 5.
    DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.PubMedGoogle Scholar
  6. 6.
    Strittmatter SM. Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks. Nat Med. 2014;20:590–1.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–5.PubMedGoogle Scholar
  8. 8.
    Reaume AG. Drug repurposing through nonhypothesis driven phenotypic screening. Drug Discov Today Ther Strateg. 2011;8:85–8.Google Scholar
  9. 9.
    Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.PubMedGoogle Scholar
  10. 10.
    Schwab RS, Poskanzer DC, England AC, Young RR. Amantadine in Parkinson’s disease. JAMA. 1972;222:792.PubMedGoogle Scholar
  11. 11.
    Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE, et al. The drug repurposing hub: a next-generation drug library and information resource. Nat Med. 2017;23:405–8.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hughes RE, Nikolic K, Ramsay RR. One for all? Hitting multiple Alzheimer’s Disease targets with one drug. Front Neurosci Front. 2016;10:177.Google Scholar
  13. 13.
    Rakshit H, Chatterjee P, Roy D. A bidirectional drug repositioning approach for Parkinson’s disease through network-based inference. Biochemistry. 2015;457:280–7.Google Scholar
  14. 14.
    Fukuoka Y, Takei D, Ogawa H. A two-step drug repositioning method based on a protein-protein interaction network of genes shared by two diseases and the similarity of drugs. Bioinformation. 2013;9:89–93.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Johnston TH, Lacoste AMB, Visanji NP, Lang AE, Fox SH, Brotchie JM. Repurposing drugs to treat l-DOPA-induced dyskinesia in Parkinson’s disease. Neuropharmacology. 2018. Scholar
  16. 16.
    Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, et al. Priorities in Parkinson’s disease research. Nat Rev Drug Discov. 2011;10:377–93.PubMedGoogle Scholar
  17. 17.
    Tilley BC, Galpern WR. Screening potential therapies: lessons learned from new paradigms used in Parkinson disease. Stroke. 2007;38:800–3.PubMedGoogle Scholar
  18. 18.
    Ravina BM, Fagan SC, Hart RG, Hovinga CA, Murphy DD, Dawson TM, et al. Neuroprotective agents for clinical trials in Parkinson’s disease: a systematic assessment. Neurology. 2003;60:1234–40.PubMedGoogle Scholar
  19. 19.
    Writing Group for the NINDS Exploratory Trials in Parkinson Disease (NET-PD) Investigators WG for the NET in PD (NET-P, Kieburtz K, Tilley BC, Elm JJ, Babcock D, Hauser R, et al. Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: a randomized clinical trial. JAMA. 2015;313:584–93.Google Scholar
  20. 20.
    Brundin P, Barker RA, Conn PJ, Dawson TM, Kieburtz K, Lees AJ, et al. Linked clinical trials–the development of new clinical learning studies in Parkinson’s disease using screening of multiple prospective new treatments. J Parkinsons Dis. 2013;3:231–9.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Mortiboys H, Aasly J, Bandmann O. Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain. 2013;136:3038–50.PubMedGoogle Scholar
  22. 22.
    Sandor C, Robertson P, Lang C, Heger A, Booth H, Vowles J, et al. Transcriptomic profiling of purified patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson’s disease. Hum Mol Genet 2017;26:ddw412.Google Scholar
  23. 23.
    O’Regan G, deSouza R-M, Balestrino R, Schapira AH. Glucocerebrosidase mutations in Parkinson disease. J Parkinsons Dis. 2017;7:411–22.PubMedGoogle Scholar
  24. 24.
    Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW, et al. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol. 2012;72:455–63.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Murphy KE, Halliday GM. Glucocerebrosidase deficits in sporadic Parkinson disease. Autophagy. 2014;10:1350–1.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, Lachmann RH, et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain. 2009;132:1783–94.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sardi SP, Clarke J, Viel C, Chan M, Tamsett TJ, Treleaven CM, et al. Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. Proc Natl Acad Sci USA. 2013;110:3537–42.PubMedGoogle Scholar
  28. 28.
    Maegawa GHB, Tropak MB, Buttner JD, Rigat BA, Fuller M, Pandit D, et al. Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. J Biol Chem. 2009;284:23502–16.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Ambrosi G, Ghezzi C, Zangaglia R, Levandis G, Pacchetti C, Blandini F. Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson’s disease cells. Neurobiol Dis. 2015;82:235–42.PubMedGoogle Scholar
  30. 30.
    McNeill A, Magalhaes J, Shen C, Chau K-Y, Hughes D, Mehta A, et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain. 2014;137:1481–95.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Yang S-Y, Beavan M, Chau K-Y, Taanman J-W, Schapira AHV. A human neural crest stem cell-derived dopaminergic neuronal model recapitulates biochemical abnormalities in GBA1 mutation carriers. Stem Cell Rep. 2017;8:728–42.Google Scholar
  32. 32.
    Sanchez-Martinez A, Beavan M, Gegg ME, Chau K-Y, Whitworth AJ, Schapira AHV. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep. 2016;6:31380.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Migdalska-Richards A, Daly L, Bezard E, Schapira AHV. Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice. Ann Neurol. 2016;80:766–75.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Migdalska-Richards A, Ko WKD, Li Q, Bezard E, Schapira AHV. Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate. Synapse. 2017;71:e21967.PubMedCentralGoogle Scholar
  35. 35.
    Zimran A, Altarescu G, Elstein D. Pilot study using ambroxol as a pharmacological chaperone in type 1 Gaucher disease. Blood Cells Mol Dis. 2013;50:134–7.PubMedGoogle Scholar
  36. 36.
    Narita A, Shirai K, Itamura S, Matsuda A, Ishihara A, Matsushita K, et al. Ambroxol chaperone therapy for neuronopathic Gaucher disease: a pilot study. Ann Clin Transl Neurol. 2016;3:200–15.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Aflaki E, Borger DK, Moaven N, Stubblefield BK, Rogers SA, Patnaik S, et al. A new glucocerebrosidase chaperone reduces-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with gaucher disease and parkinsonism. J Neurosci. 2016;36:7441–52.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. “Rejuvenation” protects neurons in mouse models of Parkinson’s disease. Nature. 2007;447:1081–6.PubMedGoogle Scholar
  39. 39.
    Marras C, Gruneir A, Rochon P, Wang X, Anderson G, Brotchie J, et al. Dihydropyridine calcium channel blockers and the progression of parkinsonism. Ann Neurol. 2012;71:362–9.PubMedGoogle Scholar
  40. 40.
    Becker C, Jick SS, Meier CR. Use of antihypertensives and the risk of Parkinson disease. Neurology. 2008;70:1438–44.PubMedGoogle Scholar
  41. 41.
    Ritz B, Rhodes SL, Qian L, Schernhammer E, Olsen JH, Friis S. L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol. 2010;67:600–6.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Pasternak B, Svanström H, Nielsen NM, Fugger L, Melbye M, Hviid A. Use of calcium channel blockers and Parkinson’s disease. Am J Epidemiol. 2012;175:627–35.PubMedGoogle Scholar
  43. 43.
    Surmeier DJ, Halliday GM, Simuni T. Calcium, mitochondrial dysfunction and slowing the progression of Parkinson’s disease. Exp Neurol. 2017;298:202–9.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Sinnegger-Brauns MJ, Huber IG, Koschak A, Wild C, Obermair GJ, Einzinger U, et al. Expression and 1,4-dihydropyridine-binding properties of brain L-type calcium channel isoforms. Mol Pharmacol. 2009;75:407–14.PubMedGoogle Scholar
  45. 45.
    Fitton A, Benfield P. Isradipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cardiovascular disease. Drugs. 1990;40:31–74.PubMedGoogle Scholar
  46. 46.
    Ilijic E, Guzman JN, Surmeier DJ. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis. 2011;43:364–71.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Simuni T, Borushko E, Avram MJ, Miskevics S, Martel A, Zadikoff C, et al. Tolerability of isradipine in early Parkinson’s disease: a pilot dose escalation study. Mov Disord. 2010;25:2863–6.PubMedGoogle Scholar
  48. 48.
    Parkinson Study Group. Phase II safety, tolerability, and dose selection study of isradipine as a potential disease-modifying intervention in early Parkinson’s disease (STEADY-PD). Mov Disord. 2013;28:1823–31.Google Scholar
  49. 49.
    Kang S, Cooper G, Dunne SF, Dusel B, Luan C-H, Surmeier DJ, et al. CaV1.3-selective L-type calcium channel antagonists as potential new therapeutics for Parkinson’s disease. Nat. Commun. 2012;3:1146.Google Scholar
  50. 50.
    Chen H, Mosley TH, Alonso A, Huang X. Plasma Urate and Parkinson’s disease in the atherosclerosis risk in communities (ARIC) Study. Am J Epidemiol. 2009;169:1064–9.PubMedPubMedCentralGoogle Scholar
  51. 51.
    de Lau LML, Koudstaal PJ, Hofman A, Breteler MMB. Serum uric acid levels and the risk of Parkinson disease. Ann Neurol. 2005;58:797–800.PubMedGoogle Scholar
  52. 52.
    De Vera M, Rahman MM, Rankin J, Kopec J, Gao X, Choi H. Gout and the risk of parkinson’s disease: a cohort study. Arthritis Rheum. 2008;59:1549–54.PubMedGoogle Scholar
  53. 53.
    Weisskopf MG, O’Reilly E, Chen H, Schwarzschild MA, Ascherio A. Plasma urate and risk of Parkinson’s disease. Am J Epidemiol. 2007;166:561–7.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Facheris MF, Hicks AA, Minelli C, Hagenah JM, Kostic V, Campbell S, et al. Variation in the uric acid transporter gene SLC2A9 and its association with AAO of Parkinson’s disease. J Mol Neurosci. 2011;43:246–50.PubMedGoogle Scholar
  55. 55.
    González-Aramburu I, Sánchez-Juan P, Jesús S, Gorostidi A, Fernández-Juan E, Carrillo F, et al. Genetic variability related to serum uric acid concentration and risk of Parkinson’s disease. Mov Disord. 2013;28:1737–40.PubMedGoogle Scholar
  56. 56.
    Alonso A, Rodríguez LAG, Logroscino G, Hernán MA. Gout and risk of Parkinson disease: a prospective study. Neurology. 2007;69:1696–700.PubMedGoogle Scholar
  57. 57.
    Gao X, O’Reilly ÉJ, Schwarzschild MA, Ascherio A. Prospective study of plasma urate and risk of Parkinson disease in men and women. Neurology. 2016;86:520–6.PubMedPubMedCentralGoogle Scholar
  58. 58.
    O’Reilly EJ, Gao X, Weisskopf MG, Chen H, Schwarzschild MA, Spiegelman D, et al. Plasma Urate and Parkinson’s Disease in Women. Am J Epidemiol. 2010;172:666–70.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Cortese M, Riise T, Engeland A, Ascherio A, Bjørnevik K. Urate and the risk of Parkinson’s disease in men and women. Disord: Parkinsonism Relat; 2018.Google Scholar
  60. 60.
    Ascherio A, LeWitt PA, Xu K, Eberly S, Watts A, Matson WR, et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol. 2009;66:1460–8.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem. 2002;80:101–10.PubMedGoogle Scholar
  62. 62.
    Gong L, Zhang Q-L, Zhang N, Hua W-Y, Huang Y-X, Di P-W, et al. Neuroprotection by urate on 6-OHDA-lesioned rat model of Parkinson’s disease: linking to Akt/GSK3β signaling pathway. J Neurochem. 2012;123:876–85.PubMedGoogle Scholar
  63. 63.
    Zhang N, Shu H-Y, Huang T, Zhang Q-L, Li D, Zhang G-Q, et al. Nrf2 Signaling Contributes to the Neuroprotective Effects of Urate against 6-OHDA Toxicity. Finkelstein DI, editor. PLoS One. 2014;9:e100286.Google Scholar
  64. 64.
    Schwarzschild MA, Ascherio A, Beal MF, Cudkowicz ME, Curhan GC, Hare JM, et al. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol. 2014;71:141–50.PubMedGoogle Scholar
  65. 65.
    Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res. 2011;63:102–10.Google Scholar
  66. 66.
    Iwaki H, Ando R, Miyaue N, Tada S, Tsujii T, Yabe H, et al. One year safety and efficacy of inosine to increase the serum urate level for patients with Parkinson’s disease in Japan. J Neurol Sci. 2017;383:75–8.PubMedGoogle Scholar
  67. 67.
    Exner N, Lutz AK, Haass C, Winklhofer KF. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31:3038–62.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Miura T, Ouchida R, Yoshikawa N, Okamoto K, Makino Y, Nakamura T, et al. Functional modulation of the glucocorticoid receptor and suppression of NF-kappaB-dependent transcription by ursodeoxycholic acid. J Biol Chem. 2001;276:47371–8.PubMedGoogle Scholar
  69. 69.
    Lapenna D, Ciofani G, Festi D, Neri M, Pierdomenico SD, Giamberardino MA, et al. Antioxidant properties of ursodeoxycholic acid. Biochem Pharmacol. 2002;64:1661–7.PubMedGoogle Scholar
  70. 70.
    Ved R, Saha S, Westlund B, Perier C, Burnam L, Sluder A, et al. Similar Patterns of mitochondrial vulnerability and rescue induced by genetic modification of α-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem. 2005;280:42655–68.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Duan W-M, Rodrigues CMP, Zhao L-R, Steer CJ, Low WC, Rodrigures CMP. Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson’s disease. Cell Transplant. 2002;11:195–205.PubMedGoogle Scholar
  72. 72.
    Abdelkader NF, Safar MM, Salem HA. Ursodeoxycholic acid ameliorates apoptotic cascade in the rotenone model of Parkinson’s disease: modulation of mitochondrial perturbations. Mol Neurobiol. 2016;53:810–7.PubMedGoogle Scholar
  73. 73.
    Chun HS, Low WC. Ursodeoxycholic acid suppresses mitochondria-dependent programmed cell death induced by sodium nitroprusside in SH-SY5Y cells. Toxicology. 2012;292:105–12.PubMedGoogle Scholar
  74. 74.
    Parry GJ, Rodrigues CMP, Aranha MM, Hilbert SJ, Davey C, Kelkar P, et al. Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis. Clin Neuropharmacol. 2010;33:17–21.PubMedGoogle Scholar
  75. 75.
    Kotb MA. Molecular mechanisms of ursodeoxycholic acid toxicity & side effects: ursodeoxycholic acid freezes regeneration & induces hibernation mode. Int J Mol Sci. 2012;13:8882–914.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson CJ, Wolf CR, Rodrigues CMP, et al. Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson’s disease. Mol Neurobiol. 2012;46:475–86.PubMedGoogle Scholar
  77. 77.
    Moreira S, Fonseca I, Nunes MJ, Rosa A, Lemos L, Rodrigues E, et al. Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp Neurol. 2017;295:77–87.PubMedGoogle Scholar
  78. 78.
    Rosa AI, Duarte-Silva S, Silva-Fernandes A, Nunes MJ, Carvalho AN, Rodrigues E, et al. Tauroursodeoxycholic acid improves motor symptoms in a mouse model of Parkinson’s disease. Mol Neurobiol. 2018. Scholar
  79. 79.
    Elia AE, Lalli S, Monsurrò MR, Sagnelli A, Taiello AC, Reggiori B, et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol. 2016;23:45–52.PubMedGoogle Scholar
  80. 80.
    Takanashi M, Mochizuki H, Yokomizo K, Hattori N, Mori H, Yamamura Y, et al. Iron accumulation in the substantia nigra of autosomal recessive juvenile parkinsonism (ARJP). Parkinsonism Relat Disord. 2001;7:311–4.PubMedGoogle Scholar
  81. 81.
    Han Y-H, Lee J-H, Kang B-M, Mun C-W, Baik S-K, Shin Y, et al. Topographical differences of brain iron deposition between progressive supranuclear palsy and parkinsonian variant multiple system atrophy. J Neurol Sci. 2013;325:29–35.PubMedGoogle Scholar
  82. 82.
    Walter U. Transcranial sonography in brain disorders with trace metal accumulation. Int Rev Neurobiol. 2010;90:166–78.PubMedGoogle Scholar
  83. 83.
    Bartzokis G, Cummings JL, Markham CH, Marmarelis PZ, Treciokas LJ, Tishler TA, et al. MRI evaluation of brain iron in earlier- and later-onset Parkinson’s disease and normal subjects. Magn Reson Imaging. 1999;17:213–22.PubMedGoogle Scholar
  84. 84.
    Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology. 2007;68:1820–5.PubMedGoogle Scholar
  85. 85.
    Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2017;155:96–119.PubMedGoogle Scholar
  86. 86.
    Zhang W, Phillips K, Wielgus AR, Liu J, Albertini A, Zucca FA, et al. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res. 2011;19:63–72.PubMedGoogle Scholar
  87. 87.
    Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M. α-synuclein expression is modulated at the translational level by iron. NeuroReport. 2012;23:576–80.PubMedGoogle Scholar
  88. 88.
    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Dusek P, Schneider SA, Aaseth J. Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol. 2016;38:81–92.PubMedGoogle Scholar
  90. 90.
    Sun Y, Pham AN, Waite TD. Mechanism underlying the effectiveness of deferiprone in alleviating Parkinson’s disease symptoms. ACS Chem. 2018;9:1118–27.Google Scholar
  91. 91.
    Sohn Y-S, Mitterstiller A-M, Breuer W, Weiss G, Cabantchik ZI. Rescuing iron-overloaded macrophages by conservative relocation of the accumulated metal. Br J Pharmacol. 2011;164:406–18.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal. 2014;21:195–210.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Zhu Y, Wang B, Tao K, Yang H, Wang Y, Zhou T, et al. Iron accumulation and microglia activation contribute to substantia nigra hyperechogenicity in the 6-OHDA-induced rat model of Parkinson’s disease. Parkinsonism Relat Disord. 2017;36:76–82.PubMedGoogle Scholar
  94. 94.
    Workman DG, Tsatsanis A, Lewis FW, Boyle JP, Mousadoust M, Hettiarachchi NT, et al. Protection from neurodegeneration in the 6-hydroxydopamine (6-OHDA) model of Parkinson’s with novel 1-hydroxypyridin-2-one metal chelators. Metallomics. 2015;7:867–76.PubMedGoogle Scholar
  95. 95.
    Carboni E, Tatenhorst L, Tönges L, Barski E, Dambeck V, Bähr M, et al. Deferiprone rescues behavioral deficits induced by mild iron exposure in a mouse model of alpha-synuclein aggregation. Neuromolecular. 2017;19:309–21.Google Scholar
  96. 96.
    Grolez G, Moreau C, Sablonnière B, Garçon G, Devedjian J-C, Meguig S, et al. Ceruloplasmin activity and iron chelation treatment of patients with Parkinson’s disease. BMC Neurol. 2015;15:74.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Martin-Bastida A, Ward RJ, Newbould R, Piccini P, Sharp D, Kabba C, et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep. 2017;7:1398.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Miyajima H, Takahashi Y, Kamata T, Shimizu H, Sakai N, Gitlin JD. Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol. 1997;41:404–7.PubMedGoogle Scholar
  99. 99.
    Sangchot P, Sharma S, Chetsawang B, Porter J, Govitrapong P, Ebadi M. Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and α-synuclein translocation in SK-N-SH cells in culture. Dev Neurosci. 2002;24:143–53.PubMedGoogle Scholar
  100. 100.
    Sian-Hülsmann J, Mandel S, Youdim MBH, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem. 2011;118:939–57.PubMedGoogle Scholar
  101. 101.
    Elincx-Benizri S, Glik A, Merkel D, Arad M, Freimark D, Kozlova E, et al. Clinical experience with deferiprone treatment for Friedreich Ataxia. J Child Neurol. 2016;31:1036–40.PubMedGoogle Scholar
  102. 102.
    De Pablo-Fernandez E, Goldacre R, Pakpoor J, Noyce AJ, Warner TT. Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study. Neurology. 2018;91:e139–42.PubMedGoogle Scholar
  103. 103.
    Cereda E, Barichella M, Pedrolli C, Klersy C, Cassani E, Caccialanza R, et al. Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis. Diabetes Care. 2011;34:2614–23.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Bosco D, Plastino M, Cristiano D, Colica C, Ermio C, De Bartolo M, et al. Dementia is associated with insulin resistance in patients with Parkinson’s disease. J Neurol Sci. 2012;315:39–43.PubMedGoogle Scholar
  105. 105.
    Kotagal V, Albin RL, Müller MLTM, Koeppe RA, Frey KA, Bohnen NI. Diabetes is associated with postural instability and gait difficulty in Parkinson disease. Parkinsonism Relat Disord. 2013;19:522–6.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Choi J-Y, Jang E-H, Park C-S, Kang J-H. Enhanced susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in high-fat diet-induced obesity. Free Radic Biol Med. 2005;38:806–16.PubMedGoogle Scholar
  107. 107.
    Morris JK, Zhang H, Gupte AA, Bomhoff GL, Stanford JA, Geiger PC. Measures of striatal insulin resistance in a 6-hydroxydopamine model of Parkinson’s disease. Brain Res. 2008;1240:185–95.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Wang L, Zhai Y-Q, Xu L-L, Qiao C, Sun X-L, Ding J-H, et al. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice. Exp Neurol. 2014;251:22–9.PubMedGoogle Scholar
  109. 109.
    Athauda D, Foltynie T. Insulin resistance and Parkinson’s disease: a new target for disease modification? Prog Neurobiol. 2016;145–146:98–120.PubMedGoogle Scholar
  110. 110.
    Bassil F, Canron M-H, Vital A, Bezard E, Fernagut P-O, Meissner WG. Brain insulin resistance in Parkinson’s disease [abstract]. Mov Disord. 2017;32(suppl 2). Accessed 24 July 2018.
  111. 111.
    Sekar S, Taghibiglou C. Elevated nuclear phosphatase and tensin homolog (PTEN) and altered insulin signaling in substantia nigral region of patients with Parkinson’s disease. Neurosci Lett. 2018;666:139–43.PubMedGoogle Scholar
  112. 112.
    Gao S, Duan C, Gao G, Wang X, Yang H. Alpha-synuclein overexpression negatively regulates insulin receptor substrate 1 by activating mTORC1/S6K1 signaling. Int J Biochem Cell Biol. 2015;64:25–33.PubMedGoogle Scholar
  113. 113.
    Parkes DG, Mace KF, Trautmann ME. Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert Opin Drug Discov. 2013;8:219–44.PubMedGoogle Scholar
  114. 114.
    Perry T, Haughey NJ, Mattson MP, Egan JM, Greig NH. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Exp Ther. 2002;302:881–8.PubMedGoogle Scholar
  115. 115.
    Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol. 2009;202:431–9.PubMedGoogle Scholar
  116. 116.
    Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whitton PS. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflammation. 2008;5:19.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Yun SP, Kam T-I, Panicker N, Kim S, Oh Y, Park J-S, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;1.Google Scholar
  118. 118.
    Ventorp F, Bay-Richter C, Nagendra AS, Janelidze S, Matsson VS, Lipton J, et al. Exendin-4 treatment improves LPS-induced depressive-like behavior without affecting pro-inflammatory cytokines. J Parkinsons Dis. 2017;7:263–73.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Fan R, Li X, Gu X, Chan JCN, Xu G. Exendin-4 protects pancreatic beta cells from human islet amyloid polypeptide-induced cell damage: potential involvement of AKT and mitochondria biogenesis. Diabetes Obes Metab. 2010;12(9):815–24.PubMedGoogle Scholar
  120. 120.
    Perry T, Lahiri DK, Chen D, Zhou J, Shaw KTY, Egan JM, et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther. 2002;300:958–66.PubMedGoogle Scholar
  121. 121.
    Bertilsson G, Patrone C, Zachrisson O, Andersson A, Dannaeus K, Heidrich J, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J Neurosci Res. 2008;86:326–38.PubMedGoogle Scholar
  122. 122.
    Bomba M, Granzotto A, Castelli V, Massetti N, Silvestri E, Canazoniero E, et al. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol Aging. 2018;64:33–43.PubMedGoogle Scholar
  123. 123.
    Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov Today. 2016;21:802–18.PubMedGoogle Scholar
  124. 124.
    Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Ell P, Soderlund T, et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest. 2013;123:2730–6.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Kahan J, Fmedsci PE, et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J Parkinsons Dis. 2014;4:337–44.PubMedGoogle Scholar
  126. 126.
    Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:1664–75.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Athauda D, Maclagan K, Budnik N, Zampedri L, Hibbert S, Skene SS, et al. What effects might exenatide have on non-motor symptoms in Parkinson’s disease: a post hoc analysis. J Parkinsons Dis. 2018;8(2):247–58.PubMedGoogle Scholar
  128. 128.
    Feng P, Zhang X, Li D, Ji C, Yuan Z, Wang R, et al. Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson’s disease. Neuropharmacology. 2018;133:385–94.PubMedGoogle Scholar
  129. 129.
    Yuan Z, Li D, Feng P, Xue G, Ji C, Li G, et al. A novel GLP-1/GIP dual agonist is more effective than liraglutide in reducing inflammation and enhancing GDNF release in the MPTP mouse model of Parkinson’s disease. Eur J Pharmacol. 2017;812:82–90.PubMedGoogle Scholar
  130. 130.
    Badawi GA, Abd El Fattah MA, Zaki HF, El Sayed MI. Sitagliptin and liraglutide reversed nigrostriatal degeneration of rodent brain in rotenone-induced Parkinson’s disease. Inflammopharmacology. 2017;25:369–82.PubMedGoogle Scholar
  131. 131.
    Liu W, Jalewa J, Sharma M, Li G, Li L, Hölscher C. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience. 2015;303:42–50.PubMedGoogle Scholar
  132. 132.
    Gejl M, Gjedde A, Egefjord L, Møller A, Hansen SB, Rodell AB, et al. In Alzheimer’s Disease, Six-Month Treatment with GLP-1 Analogue Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial. Front Aging Neurosci. 2016.Google Scholar
  133. 133.
    Trujillo JM, Nuffer W, Ellis SL. GLP-1 receptor agonists: a review of head-to-head clinical studies. Ther Adv Endocrinol Metab SAGE Publications. 2015;6:19–28.Google Scholar
  134. 134.
    Christensen M, Sparre-Ulrich AH, Hartmann B, Grevstad U, Rosenkilde MM, Holst JJ, et al. Transfer of liraglutide from blood to cerebrospinal fluid is minimal in patients with type 2 diabetes. Int J Obes. 2015;39:1651–4.Google Scholar
  135. 135.
    Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, et al. Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J Neurosci. 2011;31:157–63.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Ko HS, Lee Y, Shin J-H, Karuppagounder SS, Gadad BS, Koleske AJ, et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc Natl Acad Sci. 2010;107:16691–6.PubMedGoogle Scholar
  137. 137.
    Hebron ML, Lonskaya I. Moussa CE-H. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of -synuclein in Parkinson’s disease models. Hum Mol Genet. 2013;22:3315–28.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol. 2004;5:33–44.PubMedGoogle Scholar
  139. 139.
    Tanabe A, Yamamura Y, Kasahara J, Morigaki R, Kaji R, Goto S. A novel tyrosine kinase inhibitor AMN107 (nilotinib) normalizes striatal motor behaviors in a mouse model of Parkinson’s disease. Front Cell Neurosci. 2014;8:50.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS. The c-Abl inhibitor, Nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci Rep. 2015;4:4874.Google Scholar
  141. 141.
    Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, et al. Nilotinib effects in Parkinson’s disease and Dementia with Lewy bodies. J Parkinsons Dis IOS Press. 2016;6:503–17.Google Scholar
  142. 142.
    Wyse RK, Brundin P, Sherer TB. Nilotinib—differentiating the Hope from the Hype. J Parkinsons Dis. 2016;6:519–22.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Lee S, Kim S, Park YJ, Yun SP, Kwon S-H, Kim D, et al. The c-Abl inhibitor, Radotinib HCl, is neuroprotective in a preclinical Parkinson’s disease mouse model. Hum Mol Genet. 2018;27(13):2344–56. Scholar
  144. 144.
    Carroll CB, Wyse RKH. Simvastatin as a potential disease-modifying therapy for patients with Parkinson’s disease: rationale for clinical trial, and current progress. J Parkinsons Dis. 2017;7:545–68.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Roy A, Pahan K. Prospects of statins in Parkinson disease. Neuroscience. 2011;17:244–55.Google Scholar
  146. 146.
    Tong H, Zhang X, Meng X, Lu L, Mai D, Qu S. Simvastatin inhibits activation of NADPH oxidase/p38 MAPK pathway and enhances expression of antioxidant protein in Parkinson disease models. Front Mol Neurosci. 2018;11:165.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Yan J, Sun J, Huang L, Fu Q, Du G. Simvastatin prevents neuroinflammation by inhibiting N-methyl-d-aspartic acid receptor 1 in 6-hydroxydopamine-treated PC12 cells. J Neurosci Res. 2014;92:634–40.PubMedGoogle Scholar
  148. 148.
    Kumar A, Sharma N, Gupta A, Kalonia H, Mishra J. Neuroprotective potential of atorvastatin and simvastatin (HMG-CoA reductase inhibitors) against 6-hydroxydopamine (6-OHDA) induced Parkinson-like symptoms. Brain Res. 2012;1471:13–22.PubMedGoogle Scholar
  149. 149.
    Ghosh A, Roy A, Matras J, Brahmachari S, Gendelman HE, Pahan K. Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci. 2009;29:13543–56.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Selley ML. Simvastatin prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced striatal dopamine depletion and protein tyrosine nitration in mice. Brain Res. 2005;1037:1–6.PubMedGoogle Scholar
  151. 151.
    Bykov K, Yoshida K, Weisskopf MG, Gagne JJ. Confounding of the association between statins and Parkinson disease: systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2017;26:294–300.PubMedGoogle Scholar
  152. 152.
    Lang AE, Espay AJ. Disease modification in Parkinson’s disease: current approaches, challenges, and future considerations. Mov Disord. 2018;33:660–77.PubMedGoogle Scholar
  153. 153.
    Colca JR, VanderLugt JT, Adams WJ, Shashlo A, McDonald WG, Liang J, et al. Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin Pharmacol Ther. 2013;93:352–9.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Mittal S, Bjørnevik K, Im DS, Flierl A, Dong X, Locascio JJ, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science. American Association for the. Adv Sci. 2017;357:891–8.Google Scholar
  155. 155.
    Qian L, Wu H, Chen S-H, Zhang D, Ali SF, Peterson L, et al. β2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. J. Immunol. 2011;186:4443–54.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Shah RC, Matthews DC, Andrews RD, Capuano AW, Fleischman DA, VanderLugt JT, et al. An evaluation of MSDC-0160, a prototype mTOT modulating insulin sensitizer, in patients with mild Alzheimer’s disease. Curr Alzheimer Res. 2014;11:564–73.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Ghosh A, Tyson T, George S, Hildebrandt EN, Steiner JA, Madaj Z, et al. Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease. Sci Transl Med. 2016;8:368ra174.Google Scholar
  158. 158.
    Pan J, Xiao Q, Sheng C-Y, Hong Z, Yang H-Q, Wang G, et al. Blockade of the translocation and activation of c-Jun N-terminal kinase 3 (JNK3) attenuates dopaminergic neuronal damage in mouse model of Parkinson’s disease. Neurochem Int. 2009;54:418–25.PubMedGoogle Scholar
  159. 159.
    Clark J, Clore EL, Zheng K, Adame A, Masliah E, Simon DK. Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One. 2010;5:e12333.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Monti DA, Zabrecky G, Kremens D, Liang T-W, Wintering NA, Cai J, et al. N-acetyl cysteine may support dopamine neurons in Parkinson’s disease: preliminary clinical and cell line data. PLoS One. 2016;11:e0157602.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Holmay MJ, Terpstra M, Coles LD, Mishra U, Ahlskog M, Öz G, et al. N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases. Clin Neuropharmacol. 2013;36:103–6.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Coles LD, Tuite PJ, Öz G, Mishra UR, Kartha RV, Sullivan KM, et al. Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol. 2018;58:158–67.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Clinical and Movement NeurosciencesUCL Institute of Neurology and National Hospital for Neurology & NeurosurgeryLondonUK

Personalised recommendations