Advertisement

Clinical Pharmacokinetics and Pharmacodynamics of Levobupivacaine

  • Chantal A. A. HeppoletteEmail author
  • Derek Brunnen
  • Sohail Bampoe
  • Peter M. Odor
Review Article
  • 21 Downloads

Abstract

Levobupivacaine is a long-acting amide local anaesthetic used in analgesia and anaesthesia. Like other local anaesthetic drugs, levobupivacaine exhibits effects on motor and sensory nerves by inhibiting the opening of voltage-gated sodium channels, and hence propagation of neuronal action potentials. Levobupivacaine is the S(−) stereoisomer of dextrobupivacaine, although both are used commercially in the racemic form bupivacaine. A favourable safety and drug effect profile for levobupivacaine has led to widespread use. Levobupivacaine is generally well tolerated but dose adjustment is important in populations such as paediatrics and the elderly. The pharmacokinetic properties of levobupivacaine are similar to that of bupivacaine; both extensively metabolised in the liver, and excreted in the urine and faeces. In vitro, animal model and human studies confirm a lower risk of cardiac and central nervous system toxicity with levobupivacaine compared with bupivacaine. Clinical trials of relative potency are impaired by the variability in chosen endpoints for sensory and motor function blockade, but clinically significant differences in potency are minor, with most clinical trials showing similar duration and quality of anaesthesia between levo- and racemic bupivacaine. In practice, levobupivacaine is most commonly used in regional anaesthesia, neuraxial anaesthesia and local infiltration analgesia. This review includes an appraisal of evidence from clinical trials of the pharmacokinetic and pharmacodynamic properties of levobupivacaine.

Notes

Author contributions

CAAH and DB conducted the literature search, data review and analysis, and wrote the initial manuscript draft. SB assisted with manuscript revisions. PMO conceived the article, assisted with the literature search and data analysis, and drafted and critically revised the manuscript.

Compliance with Ethical Standards

Funding

No sources of funding were used to assist with the preparation of this review.

Conflict of interest

Chantal A. A. Heppolette, Derek Brunnen, Sohail Bampoe and Peter M. Odor have no conflicts of interest that are directly relevant to the content of this article.

References

  1. 1.
    Bajwa SJ, Kaur J. Clinical profile of levobupivacaine in regional anesthesia: a systematic review. J Anaesthesiol Clin Pharmacol. 2013;29(4):530–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Casati A, Chelly JE, Cerchierini E, Santorsola R, Nobili F, Grispigni C, et al. Clinical properties of levobupivacaine or racemic bupivacaine for sciatic nerve block. J Clin Anesth. 2002;14(2):111–4.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Buckenmaier CC 3rd, Bleckner LL. Anaesthetic agents for advanced regional anaesthesia: a North American perspective. Drugs. 2005;65(6):745–59.  https://doi.org/10.2165/00003495-200565060-00003.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Burlacu CL, Buggy DJ. Update on local anesthetics: focus on levobupivacaine. Ther Clin Risk Manag. 2008;4(2):381–92.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Leone S, Di Cianni S, Casati A, Fanelli G. Pharmacology, toxicology, and clinical use of new long acting local anesthetics, ropivacaine and levobupivacaine. Acta Biomed. 2008;79(2):92–105.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Foster RH, Markham A. Levobupivacaine: a review of its pharmacology and use as a local anaesthetic. Drugs. 2000;59(3):551–79.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lyons G, Columb M, Wilson RC, Johnson RV. Epidural pain relief in labour: potencies of levobupivacaine and racemic bupivacaine. Br J Anaesth. 1998;81(6):899–901.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Camorcia M, Capogna G, Columb MO. Minimum local analgesic doses of ropivacaine, levobupivacaine, and bupivacaine for intrathecal labor analgesia. Anesthesiology. 2005;102(3):646–50.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Camorcia M, Capogna G, Berritta C, Columb MO. The relative potencies for motor block after intrathecal ropivacaine, levobupivacaine, and bupivacaine. Anesth Analg. 2007;104(4):904–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lee YY, Ngan Kee WD, Fong SY, Liu JT, Gin T. The median effective dose of bupivacaine, levobupivacaine, and ropivacaine after intrathecal injection in lower limb surgery. Anesth Analg. 2009;109(4):1331–4.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bardsley H, Gristwood R, Watson N, Nimmo W. The local anaesthetic activity of levobupivacaine does not differ from racemic bupivacaine (Marcain): first clinical evidence. Expert Opin Investig Drugs. 1997;6(12):1883–5.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Newton DJ, Burke D, Khan F, McLeod GA, Belch JJ, McKenzie M, et al. Skin blood flow changes in response to intradermal injection of bupivacaine and levobupivacaine, assessed by laser Doppler imaging. Reg Anesth Pain Med. 2000;25(6):626–31.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Newton DJ, McLeod GA, Khan F, Belch JJ. Vasoactive characteristics of bupivacaine and levobupivacaine with and without adjuvant epinephrine in peripheral human skin. Br J Anaesth. 2005;94(5):662–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ciechanowicz S, Patil V. Lipid emulsion for local anesthetic systemic toxicity. Anesthesiol Res Pract. 2012;2012:131784.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zink W, Graf BM. The toxicity of local anesthetics: the place of ropivacaine and levobupivacaine. Curr Opin Anaesthesiol. 2008;21(5):645–50.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Radwan IA, Saito S, Goto F. The neurotoxicity of local anesthetics on growing neurons: a comparative study of lidocaine, bupivacaine, mepivacaine, and ropivacaine. Anesth Analg. 2002;94(2):319–24.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gulihar A, Robati S, Twaij H, Salih A, Taylor GJ. Articular cartilage and local anaesthetic: a systematic review of the current literature. J Orthop. 2015;12(Suppl. 2):S200–10.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Baker JF, Walsh PM, Byrne DP, Mulhall KJ. In vitro assessment of human chondrocyte viability after treatment with local anaesthetic, magnesium sulphate or normal saline. Knee Surg Sports Traumatol Arthrosc. 2011;19(6):1043–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Baker JF, Byrne DP, Walsh PM, Mulhall KJ. Human chondrocyte viability after treatment with local anesthetic and/or magnesium: results from an in vitro study. Arthroscopy. 2011;27(2):213–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hodson M, Gajraj R, Scott NB. A comparison of the antibacterial activity of levobupivacaine vs. bupivacaine: an in vitro study with bacteria implicated in epidural infection. Anaesthesia. 1999;54(7):699–702.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Jappinen A, Turpeinen M, Kokki H, Rasi A, Ojanen T, Pelkonen O, et al. Stability of sufentanil and levobupivacaine solutions and a mixture in a 0.9% sodium chloride infusion stored in polypropylene syringes. Eur J Pharm Sci. 2003;19(1):31–6.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Helin-Tanninen M, Lehtonen M, Naaranlahti T, Venalainen T, Pentikainen J, Laatikainen A, et al. Stability of an epidural analgesic admixture of levobupivacaine, fentanyl and epinephrine. J Clin Pharm Ther. 2013;38(2):104–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kampe S, Poetter C, Buzello S, Wenchel HM, Paul M, Kiencke P, et al. Ropivacaine 0.1% with sufentanil 1 microg/mL inhibits in vitro growth of Pseudomonas aeruginosa and does not promote multiplication of Staphylococcus aureus. Anesth Analg. 2003;97(2):409–11.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sakuragi T, Ishino H, Dan K. Bactericidal activity of clinically used local anesthetics on Staphylococcus aureus. Reg Anesth. 1996;21(3):239–42.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Guillier M, Boselli E, Bouvet L, Freney J, Renaud FN, Chassard D, et al. Levobupivacaine hydrochloride and sufentanil have no antimicrobial effect at 25 degrees C in vitro. Eur J Anaesthesiol. 2007;24(7):634–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Pere P, Lindgren L, Vaara M. Poor antibacterial effect of ropivacaine: comparison with bupivacaine. Anesthesiology. 1999;91(3):884–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kopacz DJ, Allen HW. Accidental intravenous levobupivacaine. Anesth Analg. 1999;89(4):1027–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gitman M, Barrington MJ. Local anesthetic systemic toxicity: a review of recent case reports and registries. Reg Anesth Pain Med. 2018;43(2):124–30.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Pirotta D, Sprigge J. Convulsions following axillary brachial plexus blockade with levobupivacaine. Anaesthesia. 2002;57(12):1187–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Crews JC, Rothman TE. Seizure after levobupivacaine for interscalene brachial plexus block. Anesth Analg. 2003;96(4):1188–90.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Weiss E, Dumoulin JL, Fischler M, Le Guen M, Jolly C, Meftah RB, et al. Convulsions in 2 patients after bilateral ultrasound-guided transversus abdominis plane blocks for cesarean analgesia. Reg Anesth Pain Med. 2014;39(3):248–51.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Breslin DS, Martin G, MacLeod DB, D’Ercole F, Grant SA. Central nervous system toxicity following the administration of levobupivacaine for lumbar plexus block: a report of two cases. Reg Anesth Pain Med. 2003;28(2):144–7.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Foxall G, McCahon R, Lamb J, Bedforth NM, Hardman JG. Levobupivacaine-induced seizures and cardiovascular collapse treated with intralipid. Anaesthesia. 2007;62(5):516–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Odor PM, Cavalier AG, Reynolds ND, Ang KS, Parrington SJ, Xu H, et al. Safety and pharmacokinetics of levobupivacaine following fascia iliaca compartment block in elderly patients. Drugs Aging. 2019;36(6):541–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Heath ML. Deaths after intravenous regional anaesthesia. Br Med J. 1982;285(6346):913–4.CrossRefGoogle Scholar
  36. 36.
    Clarkson CW, Hondeghem LM. Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology. 1985;62(4):396–405.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Eizaga Rebollar R, Garcia Palacios MV, Morales Guerrero J, Torres Morera LM. Lipid rescue in children: the prompt decision. J Clin Anesth. 2016;32:248–52.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Salomaki TE, Laurila PA, Ville J. Successful resuscitation after cardiovascular collapse following accidental intravenous infusion of levobupivacaine during general anesthesia. Anesthesiology. 2005;103(5):1095–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Harvey M, Cave G. Lipid emulsion in local anesthetic toxicity. Curr Opin Anaesthesiol. 2017;30(5):632–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Huang YF, Pryor ME, Mather LE, Veering BT. Cardiovascular and central nervous system effects of intravenous levobupivacaine and bupivacaine in sheep. Anesth Analg. 1998;86(4):797–804.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Burm AG, van der Meer AD, van Kleef JW, Zeijlmans PW, Groen K. Pharmacokinetics of the enantiomers of bupivacaine following intravenous administration of the racemate. Br J Clin Pharmacol. 1994;38(2):125–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sanford M, Keating GM. Levobupivacaine: a review of its use in regional anaesthesia and pain management. Drugs. 2010;70(6):761–91.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    McLeod GA, Burke D. Levobupivacaine. Anaesthesia. 2001;56(4):331–41.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Gristwood RW. Cardiac and CNS toxicity of levobupivacaine strength of evidence for advantage over bupivacaine: strength of evidence for advantage over bupivacaine. Drug Saf. 2002;25(3):153–63.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bardsley H, Gristwood R, Baker H, Watson N, Nimmo W. A comparison of the cardiovascular effects of levobupivacaine and rac-bupivacaine following intravenous administration to healthy volunteers. Br J Clin Pharmacol. 1998;46(3):245–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gristwood RW, Greaves JL. Levobupivacaine: a new safer long acting local anaesthetic agent. Expert Opin Investig Drugs. 1999;8(6):861–76.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Stewart J, Kellett N, Castro D. The central nervous system and cardiovascular effects of levobupivacaine and ropivacaine in healthy volunteers. Anesth Analg. 2003;97(2):412–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Burke D, Henderson DJ, Simpson AM, Faccenda KA, Morrison LM, McGrady EM, et al. Comparison of 0.25% S(−)-bupivacaine with 0.25% RS-bupivacaine for epidural analgesia in labour. Br J Anaesth. 1999;83(5):750–5.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Bader AM, Tsen LC, Camann WR, Nephew E, Datta S. Clinical effects and maternal and fetal plasma concentrations of 0.5% epidural levobupivacaine versus bupivacaine for cesarean delivery. Anesthesiology. 1999;90(6):1596–601.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Nouette-Gaulain K, Jose C, Capdevila X, Rossignol R. From analgesia to myopathy: when local anesthetics impair the mitochondrion. Int J Biochem Cell Biol. 2011;43(1):14–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Weinberg GL, Palmer JW, VadeBoncouer TR, Zuechner MB, Edelman G, Hoppel CL. Bupivacaine inhibits acylcarnitine exchange in cardiac mitochondria. Anesthesiology. 2000;92(2):523–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Denson DD, Behbehani MM, Gregg RV. Enantiomer-specific effects of an intravenously administered arrhythmogenic dose of bupivacaine on neurons of the nucleus tractus solitarius and the cardiovascular system in the anesthetized rat. Reg Anesth. 1992;17(6):311–6.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Purdue Pharma L.P. Chirocaine (levobupivacaine injection) prescribing information. Norwalk: Purdue Pharma L.P.; 1999.Google Scholar
  54. 54.
    Costello TG, Cormack JR, Mather LE, LaFerlita B, Murphy MA, Harris K. Plasma levobupivacaine concentrations following scalp block in patients undergoing awake craniotomy. Br J Anaesth. 2005;94(6):848–51.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Simon MJ, Veering BT, Stienstra R, van Kleef JW, Williams SG, McGuire GM, et al. The systemic absorption and disposition of levobupivacaine 0.5% after epidural administration in surgical patients: a stable-isotope study. Eur J Anaesthesiol. 2004;21(6):460–70.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Faccenda KA, Simpson AM, Henderson DJ, Smith D, McGrady EM, Morrison LM. A comparison of levobupivacaine 0.5% and racemic bupivacaine 0.5% for extradural anesthesia for caesarean section. Reg Anesth Pain Med. 2003;28(5):394–400.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Altermatt F, Cortinez LI, Munoz H. Plasma levels of levobupivacaine after combined posterior lumbar plexus and sciatic nerve blocks. Anesth Analg. 2006;102(5):1597.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Pintaric TS, Kozelj G, Stanovnik L, Casati A, Hocevar M, Jankovic VN. Pharmacokinetics of levobupivacaine 0.5% after superficial or combined (deep and superficial) cervical plexus block in patients undergoing minimally invasive parathyroidectomy. J Clin Anesth. 2008;20(5):333–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Burlacu CL, Frizelle HP, Moriarty DC, Buggy DJ. Pharmacokinetics of levobupivacaine, fentanyl, and clonidine after administration in thoracic paravertebral analgesia. Reg Anesth Pain Med. 2007;32(2):136–45.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Chen Y, Zhang J, Chen Z, Wang Q, Li B, Lai R, et al. Lipid emulsion pretreatment decreased the maximum total and free plasma concentration of levobupivacaine for femoral and sciatic nerve block in below-knee fracture surgery. Reg Anesth Pain Med. 2018;43(8):838–43.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ishida T, Sakamoto A, Tanaka H, Ide S, Ishida K, Tanaka S, et al. Transversus abdominis plane block with 0.25% levobupivacaine: a prospective, randomized, double-blinded clinical study. J Anesth. 2015;29(4):557–61.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lacassie HJ, Rolle A, Cortinez LI, Solari S, Corvetto MA, Altermatt FR. Pharmacokinetics of levobupivacaine with epinephrine in transversus abdominis plane block for postoperative analgesia after Caesarean section. Br J Anaesth. 2018;121(2):469–75.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Corvetto MA, Echevarria GC, De La Fuente N, Mosqueira L, Solari S, Altermatt FR. Comparison of plasma concentrations of levobupivacaine with and without epinephrine for transversus abdominis plane block. Reg Anesth Pain Med. 2012;37(6):633–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Miranda P, Corvetto MA, Altermatt FR, Araneda A, Echevarria GC, Cortinez LI. Levobupivacaine absorption pharmacokinetics with and without epinephrine during TAP block: analysis of doses based on the associated risk of local anaesthetic toxicity. Eur J Clin Pharmacol. 2016;72(10):1221–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Chahar P, Cummings KC 3rd. Liposomal bupivacaine: a review of a new bupivacaine formulation. J Pain Res. 2012;5:257–64.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kopacz DJ, Allen HW, Thompson GE. A comparison of epidural levobupivacaine 0.75% with racemic bupivacaine for lower abdominal surgery. Anesth Analg. 2000;90(3):642–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Groen K, Mantel M, Zeijlmans PW, Zeppenfeldt B, Olieman W, Stienstra R, et al. Pharmacokinetics of the enantiomers of bupivacaine and mepivacaine after epidural administration of the racemates. Anesth Analg. 1998;86(2):361–6.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Thomas JM, Schug SA. Recent advances in the pharmacokinetics of local anaesthetics: long-acting amide enantiomers and continuous infusions. Clin Pharmacokinet. 1999;36(1):67–83.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Weinberg GL, Ripper R, Murphy P, Edelman LB, Hoffman W, Strichartz G, et al. Lipid infusion accelerates removal of bupivacaine and recovery from bupivacaine toxicity in the isolated rat heart. Reg Anesth Pain Med. 2006;31(4):296–303.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Mather LE, McCall P, McNicol PL. Bupivacaine enantiomer pharmacokinetics after intercostal neural blockade in liver transplantation patients. Anesth Analg. 1995;80(2):328–35.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Palkama VJ, Neuvonen PJ, Olkkola KT. Effect of itraconazole on the pharmacokinetics of bupivacaine enantiomers in healthy volunteers. Br J Anaesth. 1999;83(4):659–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Lauprecht AE, Wenger FA, El Fadil O, Walz MK, Groeben H. Levobupivacaine plasma concentrations following major liver resection. J Anesth. 2011;25(3):369–75.PubMedCrossRefGoogle Scholar
  73. 73.
    Crews JC, Weller RS, Moss J, James RL. Levobupivacaine for axillary brachial plexus block: a pharmacokinetic and clinical comparison in patients with normal renal function or renal disease. Anesth Analg. 2002;95(1):219–23.PubMedCrossRefGoogle Scholar
  74. 74.
    Ala-Kokko TI, Karinen J, Räihä E, Kiviluoma K, Alahuhta S. Pharmacokinetics of 0.75% ropivacaine and 0.5% bupivacaine after ilioinguinal-iliohypogastric nerve block in children. Br J Anaesth. 2002;89(3):438–41.PubMedGoogle Scholar
  75. 75.
    Ala-Kokko TI, Räihä E, Karinen J, Kiviluoma K, Alahuhta S. Pharmacokinetics of 0.5% levobupivacaine following ilioinguinal-iliohypogastric nerve blockade in children. Acta Anaesthesiol Scand. 2005;49(3):397–400.PubMedCrossRefGoogle Scholar
  76. 76.
    Sola C, Menace C, Bringuier S, Saour AC, Raux O, Mathieu O, et al. Transversus abdominal plane block in children: efficacy and safety: a randomized clinical study and pharmacokinetic profile. Anesth Analg. 2019;128(6):1234–41.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Kokki H. Spinal blocks. Paediatr Anaesth. 2012;22(1):56–64.  https://doi.org/10.1111/j.1460-9592.2011.03693.x.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Chalkiadis GA, Eyres RL, Cranswick N, Taylor RH, Austin S. Pharmacokinetics of levobupivacaine 0.25% following caudal administration in children under 2 years of age. Br J Anaesth. 2004;92(2):218–22.  https://doi.org/10.1093/bja/aeh051.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Chalkiadis GA, Anderson BJ, Tay M, Bjorksten A, Kelly JJ. Pharmacokinetics of levobupivacaine after caudal epidural administration in infants less than 3 months of age. Br J Anaesth. 2005;95(4):524–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Vashisht R, Bendon AA, Okonkwo I, Patel D, Fullwood C, Ogungbenro K, et al. A study of the dosage and duration for levobupivacaine infusion by the caudal-epidural route in infants aged 3–6 months. Paediatr Anaesth. 2019;29(2):161–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Chalkiadis GA, Abdullah F, Bjorksten AR, Clarke A, Cortinez LI, Udayasiri S, et al. Absorption characteristics of epidural levobupivacaine with adrenaline and clonidine in children. Paediatr Anaesth. 2013;23(1):58–67.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Frawley G, Hallett B, Velkov T, Bjorksten A. Pharmacokinetics of levobupivacaine following infant spinal anesthesia. Paediatr Anaesth. 2016;26(6):575–81.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kokki M, Heikkinen M, Kumpulainen E, Vahaoja A, Kokki H. Levobupivacaine for spinal anesthesia in children: cerebrospinal fluid aspiration before the injection does not affect the spread or duration of the sensory block. Anesth Pain Med. 2016;6(3):e33815.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kokki H, Ylonen P, Heikkinen M, Reinikainen M. Levobupivacaine for pediatric spinal anesthesia. Anesth Analg. 2004;98(1):64–7.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Rosen MA, Thigpen JW, Shnider SM, Foutz SE, Levinson G, Koike M. Bupivacaine-induced cardiotoxicity in hypoxic and acidotic sheep. Anesth Analg. 1985;64(11):1089–96.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Simon MJ, Veering BT, Stienstra R, van Kleef JW, Burm AG. Effect of age on the clinical profile and systemic absorption and disposition of levobupivacaine after epidural administration. Br J Anaesth. 2004;93(4):512–20.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Karahan MA, Incebiyik A, Buyukfirat E, Altay N, Binici O, Besli F. Effect of spinal anesthesia on the QT interval in term and post-term pregnancies scheduled for elective cesarean section: a prospective study. J Matern Fetal Neonatal Med. 2019.  https://doi.org/10.1080/14767058.2019.1569620[Epub ahead of print].CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Dogan Z, Yildiz H, Akcay A, Coskuner I, Arikan DC, Silay E, et al. The effect of intraspinal bupivacaine versus levobupivacaine on the QTc intervals during caesarean section: a randomized, double-blind, prospective study. Basic Clin Pharmacol Toxicol. 2014;114(3):248–53.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    El-Shaarawy AM, Asfour MS, Rashwan DA, Amer MM, El-Menshawe SF, Elkomy MH. Comparison of three different concentrations of levobupivacaine for epidural labor analgesia: clinical effect and pharmacokinetic profile. Anesth Essays Res. 2018;12(1):60–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Santos AC, Karpel B, Noble G. The placental transfer and fetal effects of levobupivacaine, racemic bupivacaine, and ropivacaine. Anesthesiology. 1999;90(6):1698–703.PubMedCrossRefGoogle Scholar
  91. 91.
    de Barros Duarte L, Dantas Moises EC, Cavalli RC, Lanchote VL, Duarte G, da Cunha SP. Distribution of bupivacaine enantiomers and lidocaine and its metabolite in the placental intervillous space and in the different maternal and fetal compartments in term pregnant women. J Clin Pharmacol. 2011;51(2):212–7.CrossRefGoogle Scholar
  92. 92.
    Kabi F. Summary of product characteristics: ropivacaine 2015. http://editor.fresenius-kabi.us/PIs/Naropin_PI_451112G_Jan_2015.pdf. Accessed 15 June 2019.
  93. 93.
    Mather LE, Copeland SE, Ladd LA. Acute toxicity of local anesthetics: underlying pharmacokinetic and pharmacodynamic concepts. Reg Anesth Pain Med. 2005;30(6):553–66.PubMedGoogle Scholar
  94. 94.
    Rosenberg PH, Veering BT, Urmey WF. Maximum recommended doses of local anesthetics: a multifactorial concept. Reg Anesth Pain Med. 2004;29(6):564–75.PubMedPubMedCentralGoogle Scholar
  95. 95.
    El-Boghdadly K, Pawa A, Chin KJ. Local anesthetic systemic toxicity: current perspectives. Local Reg Anesth. 2018;11:35–44.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Neal JM, Barrington MJ, Fettiplace MR, Gitman M, Memtsoudis SG, Morwald EE, The Third American Society of Regional Anesthesia and Pain Medicine, et al. Practice advisory on local anesthetic systemic toxicity: executive summary 2017. Reg Anesth Pain Med. 2018;43(2):113–23.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
  98. 98.
    Ituk U, Wong C. Epidural and combined spinal-epidural anesthesia: techniques. https://www.uptodate.com. Accessed 23 June 2019.
  99. 99.
    Glaser C, Marhofer P, Zimpfer G, Heinz MT, Sitzwohl C, Kapral S, et al. Levobupivacaine versus racemic bupivacaine for spinal anesthesia. Anesth Analg. 2002;94(1):194–8.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Cappelleri G, Aldegheri G, Danelli G, Marchetti C, Nuzzi M, Iannandrea G, et al. Spinal anesthesia with hyperbaric levobupivacaine and ropivacaine for outpatient knee arthroscopy: a prospective, randomized, double-blind study. Anesth Analg. 2005;101(1):77.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Fattorini F, Ricci Z, Rocco A, Romano R, Pascarella MA, Pinto G. Levobupivacaine versus racemic bupivacaine for spinal anaesthesia in orthopaedic major surgery. Min Anestesiol. 2006;72(7–8):637–44.Google Scholar
  102. 102.
    Bhatt KA, Prajapati IA. A comparison between intrathecal isobaric levobupivacaine 0.5% and isobaric ropivacaine 0.5% in lower limb surgeries: a prospective, randomized, double blind study. Anaesth Pain Int Care. 2018;22(1):93–7.Google Scholar
  103. 103.
    Vanna O, Chumsang L, Thongmee S. Levobupivacaine and bupivacaine in spinal anesthesia for transurethral endoscopic surgery. J Med Assoc Thail. 2006;89(8):1133–9.Google Scholar
  104. 104.
    Mantouvalou M, Tziris G, Ralli S, Arnaoutoglou H, Papadopoulos G. Spinal anesthesia : comparison of plain ropivacaine, bupivacaine and levobupivacaine for lower abdominal surgery. Acta Anaesthesiol Belg. 2008;59(2):65–71.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Erbay RH, Ermumcu O, Atalay H, Hanci V. A comparison of spinal anesthesia with low-dose hyperbaric levobupivacaine and hyperbaric bupivacaine for transurethral surgery: a randomized controlled trial. Min Anestesiol. 2010;76(12):992–1001.Google Scholar
  106. 106.
    Sen H, Purtuloglu T, Gundu I, Ozkan S, Dagli G, Sizlan A, et al. Comparison of intrathecal hyperbaric and isobaric levobupivacaine in urological surgery. Min Anestesiol. 2010;76(1):24–8.Google Scholar
  107. 107.
    Akan B, Yagan O, Bilal B, Erdem D, Gogus N. Comparison of levobupivacaine alone and in combination with fentanyl and sufentanil in patients undergoing transurethral resection of the prostate. J Res Med Sci. 2013;18(5):378–82.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Casati A, Moizo E, Marchetti C, Vinciguerra F. A prospective, randomized, double-blind comparison of unilateral spinal anesthesia with hyperbaric bupivacaine, ropivacaine, or levobupivacaine for inguinal herniorrhaphy. Anesth Analg. 2004;99(5):1387.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Suresh S, Ecoffey C, Bosenberg A, Lonnqvist PA, De Oliveira GS, De Leon Casasola O, et al. The European Society of Regional Anaesthesia and Pain Therapy/American Society of Regional Anesthesia and Pain Medicine recommendations on local anesthetics and adjuvants dosage in pediatric regional anesthesia. Reg Anesth Pain Med. 2018;43(2):211–6.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Sell A, Olkkola KT, Jalonen J, Aantaa R. Minimum effective local anaesthetic dose of isobaric levobupivacaine and ropivacaine administered via a spinal catheter for hip replacement surgery. Br J Anaesth. 2005;94(2):239–42.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Frawley G, Smith KR, Ingelmo P. Relative potencies of bupivacaine, levobupivacaine, and ropivacaine for neonatal spinal anaesthesia. Br J Anaesth. 2009;103(5):731–8.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Lee YY, Muchhal K, Chan CK, Cheung ASP. Levobupivacaine and fentanyl for spinal anaesthesia: a randomized trial. Eur J Anaesthesiol. 2005;22(12):899–903.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Karsli ND, Subaşi D, Terzioğlu B, Turan G, Ekinci O. ED50 and ED95 of intrathecal isobaric levobupivacaine coadministered with fentanyl for transurethral resections: randomized, double-blind trial. Drug Res. 2015;65(1):24–9.Google Scholar
  114. 114.
    Popping DM, Elia N, Wenk M, Tramer MR. Can the dose of the local anaesthetic for intrathecal anaesthesia be reduced when an opioid is added? A meta-analysis of randomised trials. Eur J Anaesthesiol. 2013;30:130.CrossRefGoogle Scholar
  115. 115.
    Spilsbury Z, White S, Tighe S. Ultra-low dose intrathecal anaesthesia for lower limb arthroplasty: plain levobupiva-caine plus clonidine or fentanyl. Anaesthesia. 2017;72:45.Google Scholar
  116. 116.
    Sakic L, Sakic K, Tonkovic D. Influence of dexamethasone administration in spinal anesthesia for femur fracture. Reg Anesth Pain Med. 2014;39(5 Suppl.1):e204.Google Scholar
  117. 117.
    Eisenach JC, De Kock M, Klimscha W. Alpha2-adrenergic agonists for regional anesthesia: a clinical review of clonidine (1984–1995). Anesthesiology. 1996;85(3):655–74.  https://doi.org/10.1097/00000542-199609000-00026.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Noss CD, MacKenzie LD, Kostash MA. Adjuvant dexamethasone: innovation, farce, or folly? Reg Anesth Pain Med. 2014;39(6):540–5.  https://doi.org/10.1097/AAP.0000000000000148.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Cox CR, Bannister J, Faccenda KA, Morrison LMM, Gilhooly C, Scott NB. Extradural S(−)-bupivacaine: comparison with racemic RS-bupivacaine. Br J Anaesth. 1998;80(3):289–93.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Murdoch JAC, Dickson UK, Wilson PA, Berman JS, Gad-Elrab RR, Scott NB. The efficacy and safety of three concentrations of levobupivacaine administered as a continuous epidural infusion in patients undergoing orthopedic surgery. Anesth Analg. 2002;94(2):438–44.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Casati A, Santorsola R, Aldegheri G, Ravasi F, Fanelli G, Berti M, et al. Intraoperative epidural anesthesia and postoperative analgesia with levobupivacaine for major orthopedic surgery: a double-blind, randomized comparison of racemic bupivacaine and ropivacaine. J Clin Anesth. 2003;15(2):126–31.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Peduto VA, Baroncini S, Montanini S, Proietti R, Rosignoli L, Tufano R, et al. A prospective, randomized, double-blind comparison of epidural levobupivacaine 0.5% with epidural ropivacaine 0.75% for lower limb procedures. Eur J Anaesthesiol. 2003;20(12):979–83.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Casimiro C, Barrios A, Rodrigo J, Mendiola MA, Rey F, Gilsanz F, et al. Levobupivacaine plus fentanyl versus racemic bupivacaine plus fentanyl in epidural anaesthesia for lower limb surgery. Min Anestesiol. 2008;74(7):381–91.Google Scholar
  124. 124.
    Ball L, Pellerano G, Santori G, Palombo D, Pelosi P, Corsi L, et al. Continuous epidural versus wound infusion plus single morphine bolus as postoperative analgesia in open abdominal aortic aneurysm repair: a randomized non-inferiority trial. Min Anestesiol. 2016;82(12):1296–305.Google Scholar
  125. 125.
    Sitsen E, van Alphen W, Rose L, Dahan A, Stienstra R, van Poorten F. Postoperative epidural analgesia after total knee arthroplasty with sufentanil 1 microg/mL combined with ropivacaine 0.2%, ropivacaine 0.125%, or levobupivacaine 0.125%: a randomized, double-blind comparison. Reg Anesth Pain Med. 2007;32(6):475–80.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Sitsen E, Dahan A, Van Poorten F, Kuijpers R, Jansen G, Stienstra R. A comparison of the efficacy of levobupivacaine 0.125%, ropivacaine 0.125% and ropivacaine 0.2%, all combined with sufentanil 0.5 µg/mL, in patient-controlled epidural analgesia after hysterectomy under combined epidural and general anesthesia. Acta Anaesthesiol Belg. 2012;63(4):169–75.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Senard M, Kaba A, Jacquemin MJ, Maquoi LM, Geortay MPN, Lamy ML, et al. Epidural levobuplvacaine 0.1% or ropivacaine 0.1% combined with morphine provides comparable analgesia after abdominal surgery. Anesth Analg. 2004;98(2):389–94.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Garcia Vitoria C, Martin Jaramago J, Alonso Cano C, Barrachina Segura C, Martinez Gil A, Martinez Gonzalez E, et al. Comparison of analgesic effectiveness of different epidural solutions for analgesia after total knee replacement: the utility of epidural fentanyl. Reg Anesth Pain Med. 2014;39(5 Suppl.1):e257.Google Scholar
  129. 129.
    Kopacz DJ, Allen HW, Sharrock NE. A comparison of levobupivacaine 0.125%, fentanyl 4 µg/ml, or their combination for patient-controlled epidural analgesia after major orthopedic surgery. Anesth Analg. 1999;89(6):1497–503.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Crews JC, Hord AH, Denson DD, Schatzman C. A comparison of the analgesic efficacy of 0.25% levobupivacaine combined with 0.005% morphine, 0.25% levobupivacaine alone, or 0.005% morphine alone for the management of postoperative pain in patients undergoing major abdominal surgery. Anesth Analg. 1999;89(6):1504–9.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Sathyanarayana LA, Heggeri VM, Simha PP, Narasimaiah S, Narasimaiah M, Subbarao BK. Comparison of epidural bupivacaine, levobupivacaine and dexmedetomidine in patients undergoing vascular surgery. J Clin Diagn Res. 2016;10(1):UC13–27.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Milligan KR, Convery PN, Weir P, Quinn P, Connolly D. The efficacy and safety of epidural infusions of levobupivacaine with and without clonidine for postoperative pain relief in patients undergoing total hip replacement. Anesth Analg. 2000;91(2):393–7.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Baker R, Wright J. Caudal anaesthesia practice in paediatric urology surgery: are we providing effective analgesia? Anaesthesia. 2016;71:40.CrossRefGoogle Scholar
  134. 134.
    Wiegele M, Marhofer P, Lonnqvist P-A. Caudal epidural blocks in paediatric patients: a review and practical considerations. Br J Anaesth. 2019;122(4):509–17.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ivani G, DeNegri P, Conio A, Grossetti R, Vitale P, Vercellino C, et al. Comparison of racemic bupivacaine, ropivacaine, and levo-bupivacaine for pediatric caudal anesthesia: effects on postoperative analgesia and motor block. Reg Anesth Pain Med. 2002;27(2):157–61.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Locatelli B, Ingelmo P, Sonzogni V, Zanella A, Gatti V, Spotti A, et al. Randomized, double-blind, phase III, controlled trial comparing levobupivacaine 0.25%, ropivacaine 0.25% and bupivacaine 0.25% by the caudal route in children. Br J Anaesth. 2005;94(3):366–71.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Frawley GP, Downie S, Huang GH. Levobupivacaine caudal anesthesia in children: A randomized double-blind comparison with bupivacaine. Paediatr Anaesth. 2006;16(7):754–60.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Ingelmo PM, Locatelli BG, Sonzogni V, Gattoni C, Cadisco A, Fumagalli R, et al. Caudal 0.2% ropivacaine is less effective during surgery than 0.2% levobupivacaine and 0.2% bupivacaine: a double-blind, randomized, controlled trial. Paediatr Anaesth. 2006;16(9):955–61.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Ingelmo P, Ingelmo G, Rosano G, Fumagalli R, Gullo A, Astuto M, et al. Relative analgesic potencies of levobupivacaine and ropivacaine for caudal anesthesia in children. Anesth Analg. 2009;108(3):805–13.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Erol A, Tavlan A, Tuncer S, Topal A, Reisli R, Otelcioglu S, et al. Caudal anesthesia for minor subumbilical pediatric surgery: a comparison of levobupivacaine alone and levobupivacaine plus sufentanil. J Clin Anesth. 2008;20(6):442–6.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Sen A, Tomak Y, Colak MS, Erturk E. A randomized-controlled, double-blind comparison of the postoperative analgesic efficacy of caudal bupivacaine and levobupivacaine in minor pediatric surgery. Korean J Anesthesiol. 2014;66(6):457–61.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Engelman E, Marsala C. Bayesian enhanced meta-analysis of post-operative analgesic efficacy of additives for caudal analgesia in children. Acta Anaesthesiol Scand. 2012;56(7):817–32.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    She YJ, Zhang ZY, Song XR. Caudal dexmedetomidine decreases the required concentration of levobupivacaine for caudal block in pediatric patients: a randomized trial. Paed Anaesth. 2013;23(12):1205–12.CrossRefGoogle Scholar
  144. 144.
    Locatelli BG, Spotti A, Rossi B, Monia L, Sonzogni V, Frawley G, et al. Analgesic effectiveness of caudal levobupivacaine and ketamine. Br J Anaesth. 2008;100(5):701–6.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Dobereiner EFA, Cox RG, Ewen A, Lardner DR. Evidence-based clinical update: which local anesthetic drug for pediatric caudal block provides optimal efficacy with the fewest side effects? Can J Anesth. 2010;57(12):1102–10.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Cox CR, Checketts MR, Mackenzie N, Scott NB, Bannister J. Comparison of S(−)-bupivacaine with racemic (RS)-bupivacaine in supraclavicular brachial plexus block. Br J Anaesth. 1998;80(5):594–8.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Urbanek B, Duma A, Kimberger O, Huber G, Marhofer P, Zimpfer M, et al. Onset time, quality of blockade, and duration of three-in-one blocks with levobupivacaine and bupivacaine. Anesth Analg. 2003;97(3):888–92.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Liisanantti O, Luukkonen J, Rosenberg PH. High-dose bupivacaine, levobupivacaine and ropivacaine in axillary brachial plexus block. Acta Anaesthesiol Scand. 2004;48(5):601–6.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Casati A, Putzu M, Fanelli G, Vinciguerra F, Santorsola R, Aldegheri G. Sciatic nerve block with 0.5% levobupivacaine, 0.75% levobupivacaine or 0.75% ropivacaine: a double-blind, randomized comparison. Eur J Anaesth. 2005;22(6):452–6.CrossRefGoogle Scholar
  150. 150.
    Duma A, Urbanek B, Sitzwohl C, Kreiger A, Zimpfer M, Kapral S. Clonidine as an adjuvant to local anaesthetic axillary brachial plexus block: a randomized, controlled study. Br J Anaesth. 2005;94(1):112–6.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Di Donato A, Fontana C, Lancia F, Celleno D. Efficacy and comparison of 0.5% levobupivacaine with 0.75% ropivacaine for peribulbar anaesthesia in cataract surgery. Eur J Anaesth. 2006;23(6):487–90.CrossRefGoogle Scholar
  152. 152.
    Piangatelli C, De Angelis C, Pecora L, Recanatini F, Cerchiara P, Testasecca D. Levobupivacaine and ropivacaine in the infraclavicular brachial plexus block. Min Anestesiol. 2006;72(4):217–21.Google Scholar
  153. 153.
    Aksu R, Bicer C, Akin A, Bayram A, Boyaci A, Ozkiris A. Comparison of 0.5% levobupivacaine, 0.5% bupivacaine, and 2% lidocine for retrobulbar anesthesia in vitreoretinal surgery. Eur J Ophthalmol. 2009;19(2):280–4.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    González-Suárez S, Pacheco M, Roigé J, Puig MM. Comparative study of ropivacaine 0.5% and levobupivacaine 0.33% in axillary brachial plexus block. Reg Anesth Pain Med. 2009;34(5):414–9.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Noulas N, Kaliakmanis D, Graikiotis A, Kouvalakidou A. Comparison of levobupivacaine 0.5% versus ropivacaine 0.5% for digital nerve blocks in ambulatory surgery. Eur J Anaesth. 2011;28:120.CrossRefGoogle Scholar
  156. 156.
    Li A, Wei Z, Liu Y, Shi J, Ding H, Tang H, et al. Ropivacaine versus levobupivacaine in peripheral nerve block: a PRISMA-compliant meta-analysis of randomized controlled trials. Medicine. 2017;96(14):e6551.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Bartolek Hamp D, Rakic M, Rod E, Radic A, Granec D. Femoral nerve block-or intravenous-PCA analgesia for early physical rehabilitationafter ACL-reconstruction in “fast-track” orthopedics. Reg Anesth Pain Med. 2014;38(5 Suppl.1):e225.Google Scholar
  158. 158.
    Mostafa SF, Eid GM, Elkalla RS. Patient-controlled fascia iliaca compartment block versus fentanyl patient-controlled intravenous analgesia in patients undergoing femur fracture surgery. Egypt J Anaesth. 2018;34(1):9–13.CrossRefGoogle Scholar
  159. 159.
    Watson MJ, Walker E, Halliday S, Binning A, Rowell S, Lumsden MA, et al. Femoral nerve block for pain relief in hip fracture: a dose finding study. Anaesthesia. 2014;69(7):683–6.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Burlacu CL, Frizelle HP, Moriarty DC, Buggy DJ. Fentanyl and clonidine as adjunctive analgesics with levobupivacaine in paravertebral analgesia for breast surgery. Anaesthesia. 2006;61(10):932–7.PubMedCrossRefGoogle Scholar
  161. 161.
    Albrecht E, Kern C, Kirkham KH. A systematic review and meta-analysis of perineural dexamethasone for peripheral nerve blocks. Reg Anesth Pain Med. 2014;39(5 Suppl.1):e315.Google Scholar
  162. 162.
    Alessandri F, Lijoi D, Mistrangelo E, Nicoletti A, Ragni N. Effect of presurgical local infiltration of levobupivacaine in the surgical field on postsurgical wound pain in laparoscopic gynecological surgery. Acta Obstet Gynecol Scand. 2006;85(7):844–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Ausems ME, Hulsewe KW, Hooymans PM, Hoofwijk AG. Postoperative analgesia requirements at home after inguinal hernia repair: Effects of wound infiltration on postoperative pain. Anaesthesia. 2007;62(4):325–31.PubMedCrossRefGoogle Scholar
  164. 164.
    Bay-Nielsen M, Klarskov B, Bech K, Andersen J, Kehlet H. Levobupivacaine vs bupivacaine as infiltration anaesthesia in inguinal herniorrhaphy. Br J Anaesth. 1999;82(2):280–2.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Fatma NO, Aysun NK, Demira YB. Comparison of efficacy of intraarticular levobupivacaine and bupivacaine on postoperative analgesia after arthroscopic knee surgery. Br J Anaesth. 2012;108:ii432.Google Scholar
  166. 166.
    Di Francesco A, Flamini S, Pizzoferrato R, Fusco P, Paglia A. Continuous intraarticular and periarticular levobupivacaine for management of pain relief after total knee arthroplasty: a prospective randomized, double-blind pilot study. J Orthop. 2016;13(3):119–22.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Kazak Bengisun Z, Darcin K, Suer H, Aysu Salviz E, Ates Y. Intraarticular levobupivacaine or bupivacaine administration decreases pain scores and provides a better recovery after total knee arthroplasty. J Anesth. 2010;24(5):694–9.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Yavuz N, Taspinar V, Tezcan A, Karasu D, Dikmen B, Gogus N. The effect of intraarticular levobupivacaine and bupivacaine injection on the postoperative pain management in total knee artroplastic surgery. Pak J Med Sci. 2014;30(6):1286–92.PubMedPubMedCentralGoogle Scholar
  169. 169.
    NHS-Digital. NHS maternity statistics 2016–17. Secondary care analysis. 2017. http://digital.nhs.uk/pubs/maternity1617. Accessed 15 June 2019.
  170. 170.
    NICE. Caesarean section (CG132): clinical guideline. 2011. http://www.nice.org.uk/guidance/cg132. Accessed 15th June 2019.
  171. 171.
    Yeoh SB, Li SJ. Anaesthesia for emergency caesarean section. Curr Anaesth Crit Care. 2013;3(3):157–61.  https://doi.org/10.1016/j.tacc.2013.02.007.CrossRefGoogle Scholar
  172. 172.
    Palmer E, Ciechanowicz S, Reeve A, Harris S, Wong DJN, Sultan P. Operating room-to-incision interval and neonatal outcome in emergency caesarean section: a retrospective 5-year cohort study. Anaesthesia. 2018;73(7):825–31.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Gautier P, De Kock M, Huberty L, Demir T, Izydorczic M, Vanderick B. Comparison of the effects of intrathecal ropivacaine, levobupivacaine, and bupivacaine for Caesarean section. Br J Anaesth. 2003;91(5):684–9.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Bremerich DH, Fetsch N, Zwissler BC, Meininger D, Byhahn C, Gogarten W. Comparison of intrathecal bupivacaine and levobupivacaine combined with opioids for Caesarean section. Curr Med Res Opin. 2007;23(12):3047–54.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Bozdogan Ozyilkan N, Kocum A, Sener M, Caliskan E, Ergenoglu P, Aribogan A, et al. Comparison of intrathecal levobupivacaine combined with sufentanil, fentanyl, or placebo for elective caesarean section: a prospective, randomized, double-blind, controlled study. Curr Ther Res Clin Exp. 2013;75:64–70.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Debbarma B, Yumnam AS, Laithangbam PKS, Singh TH, Singh TR, Singh NR. A comparative study of hyperbaric bupivacaine (0.5%) with hyperbaric levobupivacaine for spinal anesthesia in cesarean section: a randomized, controlled trial. J Med Soc. 2017;31(1):32–6.CrossRefGoogle Scholar
  177. 177.
    Parpaglioni R, Frigo MG, Lemma A, Sebastiani M, Barbati G, Celleno D. Minimum local anaesthetic dose (MLAD) of intrathecal levobupivacaine and ropivacaine for Caesarean section. Anaesthesia. 2006;61(2):110–5.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Parpaglioni R, Baldassini B, Celleno D, Barbati G. Adding sufentanil to levobupivacaine or ropivacaine intrathecal anaesthesia affects the minimum local anaesthetic dose required. Acta Anaesthesiol Scand. 2009;53(9):1214–20.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Bouvet L, Da-Col X, Chassard D, Daléry F, Ruynat L, Allaouchiche B, et al. ED50 and ED95 of intrathecal levobupivacaine with opioids for Caesarean delivery. Br J Anaesth. 2011;106(2):215–20.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Carvalho B, Durbin M, Drover DR, Cohen SE, Ginosar Y, Riley ET. The ED50 and ED95 of intrathecal isobaric bupivacaine with opioids for cesarean delivery. Anesthesiology. 2005;103(3):606–12.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    eMC. Summary of product characteristics: chirocaine 5 mg/ml solution for injection/concentrate for solution for infusion. 2018. https://www.medicines.org.uk/emc/product/6637/smpc. Accessed 15 June 2019.
  182. 182.
    Pereira M, Ferreira N, Almeida F, Pinheiro N, Manso F, Veiga P. A randomized comparison of haemodynamic effects of combined spinal-epidural anesthesia with hyperbaric bupivacaine or levobupivacaine for elective cesarean section. Eur J Anaesth. 2013;30:167.CrossRefGoogle Scholar
  183. 183.
    Kinsella SM, Carvalho B, Dyer RA, Fernando R, McDonnell N, Mercier FJ, et al. International consensus statement on the management of hypotension with vasopressors during caesarean section under spinal anaesthesia. Anaesthesia. 2018;73(1):71–92.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Richardson AL, Shida A, Lucas DN, O’Sullivan G. The extension of epidural analgesia for category 1 caesarean section: a national survey. Int J Obstet Anesth. 2015;24:s46.CrossRefGoogle Scholar
  185. 185.
    Ngamprasertwong P, Udomtecha D, Charuluxananan S, Rodanant O, Srihatajati C, Baogham S. Levobupivacaine versus racemic bupivacaine for extradural anesthesia for cesarean delivery. J Med Assoc Thail. 2005;88(11):1563–8.Google Scholar
  186. 186.
    Allam J, Malhotra S, Hemingway C, Yentis SM. Epidural lidocaine-bicarbonate-adrenaline vs levobupivacaine for emergency Caesarean section: a randomised controlled trial. Anaesthesia. 2008;63(3):243–9.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Sng BL, Pay LL, Sia ATH. Comparison of 2% lignocaine with adrenaline and fentanyl, 0.75% ropivacaine and 0.5% levobupivacaine for extension of epidural analgesia for urgent caesarean section after low dose epidural infusion during labour. Anaesth Int Care. 2008;36(5):659–64.CrossRefGoogle Scholar
  188. 188.
    Balaji P, Dhillon P, Russell IF. Low-dose epidural top up for emergency caesarean delivery: a randomised comparison of levobupivacaine versus lidocaine/epinephrine/fentanyl. Int J Obstet Anesth. 2009;18(4):335–41.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Hillyard SG, Corcoran TB, Bate TE, O’Sullivan G, Paech MJ. Extending epidural analgesia for emergency Caesarean section: a meta-analysis. Br J Anaesth. 2011;107(5):668–78.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Wang TT, Sun S, Huang SQ. Effects of epidural labor analgesia with low concentrations of local anesthetics on obstetric outcomes: a systematic review and meta-analysis of randomized controlled trials. Anesth Analg. 2017;124(5):1571–80.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Sultan P, Murphy C, Halpern S, Carvalho B. The effect of low concentrations versus high concentrations of local anesthetics for labour analgesia on obstetric and anesthetic outcomes: a meta-analysis. Can J Anaesth. 2013;60(9):840–54.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Polley LS, Naughton NN, Van De Ven CJM, Goralski KH, Wagner DS, Columb MO. Relative analgesic potencies of levobupivacaine and ropivacaine for epidural analgesia in labor. Anesthesiology. 2003;99(6):1354–8.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Le Gouez A, Mercier FJ, Mazoit JX, Benhamou D, Bonnet MP, Leclerc T. Effective concentration of levobupivacaine and ropivacaine in 80% of patients receiving epidural analgesia (EC80) in the first stage of labour: a study using the continual reassessment method. Anaesth Crit Care Pain Med. 2018;37(5):429–34.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Robinson AP, Lyons GR, Wilson RC, Gorton HJ, Columb MO. Levobupivacaine for epidural analgesia in labor: the sparing effect of epidural fentanyl. Anesth Analg. 2001;92(2):410–4.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Boulier V, Gomis P, Lautner C, Visseaux H, Palot M, Malinovsky JM. Minimum local analgesic concentrations of ropivacaine and levobupivacaine with sufentanil for epidural analgesia in labour. Int J Obstet Anesth. 2009;18(3):226–30.PubMedCrossRefGoogle Scholar
  196. 196.
    Baliuliene V, Macas A, Rimaitis K. The optimal concentration of bupivacaine and levobupivacaine for labor pain management using patient-controlled epidural analgesia: a double-blind, randomized controlled trial. Int J Obstet Anesth. 2018;35:17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Camorcia M, Capogna G. Epidural levobupivacaine, ropivacaine and bupivacaine in combination with sufentanil in early labour: a randomized trial. Eur J Anaesth. 2003;20(8):636–9.CrossRefGoogle Scholar
  198. 198.
    Jha T, Potdar M, Gaur P. A randomized comparison of 0.1% levobupivacaine, bupivacaine and ropivacaine with fentanyl for epidural ambulatory labor analgesia. Reg Anesth Pain Med. 2016;41(5 Suppl.1):e124.Google Scholar
  199. 199.
    Das D, Thakur DP, Tendolkar BA. Labour epidural analgesia: a randomised double blind comparative study of 0.1% levobupivacaine with fentanyl vs. 0.1% ropivacaine with fentanyl. J Clin Diagn Res. 2018;12(7):UC06–10.Google Scholar
  200. 200.
    Lacassie HJ, Habib AS, Lacassie HP, Columb MO. Motor blocking minimum local anesthetic concentrations of bupivacaine, levobupivacaine, and ropivacaine in labor. Reg Anesth Pain Med. 2007;32(4):323–9.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Vercauteren MP, Hans G, De Decker K, Adriaensen HA. Levobupivacaine combined with sufentanil and epinephrine for intrathecal labor analgesia: a comparison with racemic bupivacaine. Anesth Analg. 2001;93(4):996–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Lim Y, Ocampo CE, Sia AT. A comparison of duration of analgesia of intrathecal 2.5 mg of bupivacaine, ropivacaine, and levobupivacaine in combined spinal epidural analgesia for patients in labor. Anesth Analg. 2004;98(1):235–9.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Kim KM, Kim YW, Lee AR, Choi DH, Choi JW. The comparison of clinically relevant doses of intrathecal ropivacaine and levobupivacaine with fentanyl for labor. Korean J Anesthesiol. 2014;65(6):525–30.CrossRefGoogle Scholar
  204. 204.
    Lim Y, Sia AT, Ocampo CE. Comparison of intrathecal levobupivacaine with and without fentanyl in combined spinal epidural for labor analgesia. Med Sci Monit. 2004;10(7):PI87.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Van de Velde M, Dreelinck R, Dubois J, Kumar A, Deprest J, Lewi L, et al. Determination of the full dose-response relation of intrathecal bupivacaine, levobupivacaine, and ropivacaine, combined with sufentanil, for labor analgesia. Anesthesiology. 2007;106(1):149–56.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre of Anaesthesia and Perioperative MedicineUniversity College HospitalLondonUK
  2. 2.Centre for Perioperative MedicineUniversity College LondonLondonUK

Personalised recommendations