Advertisement

Clinical Pharmacokinetics

, Volume 57, Issue 11, pp 1385–1398 | Cite as

Two Decades-Long Journey from Riluzole to Edaravone: Revisiting the Clinical Pharmacokinetics of the Only Two Amyotrophic Lateral Sclerosis Therapeutics

  • Ranjeet Prasad Dash
  • R. Jayachandra Babu
  • Nuggehally R. Srinivas
Review Article

Abstract

The recent approval of edaravone has provided an intravenous option to treat amyotrophic lateral sclerosis (ALS) in addition to the existing oral agent, riluzole. The present work was primarily undertaken to provide a comprehensive clinical pharmacokinetic summary of the two approved ALS therapeutics. The key objectives of the review were to (i) tabulate the clinical pharmacokinetics of riluzole and edaravone with emphasis on absorption, distribution, metabolism and excretion (ADME) properties; (ii) provide a comparative scenario of the pharmacokinetics of the two drugs wherever possible; and (iii) provide perspectives and introspection on the gathered clinical pharmacokinetic data of the two drugs with appropriate conjectures to quench scientific curiosity. Based on this review, the following key highlights were deduced: (i) as a result of both presystemic metabolism and polymorphic hepatic cytochrome P450 (CYP) metabolism, the oral drug riluzole exhibited more inter-subject variability than that of intravenous edaravone; (ii) using various parameters for comparison, including the published intravenous data for riluzole, it was apparent that edaravone was achieving the desired systemic concentrations to possibly drive the local brain concentrations for its efficacy in ALS patients with lesser variability than riluzole; (iii) using scientific conjectures, it was deduced that the availability of intravenous riluzole may not be beneficial in therapy due to its fast systemic clearance; (iv) on the contrary, however, there appeared to be an opportunity for the development of an oral dosage form of edaravone, which may potentially benefit the therapy option for ALS patients by avoiding hospitalization costs; and (v) because of the existence of pharmaco-resistance for the brain entry in ALS patients, it appeared prudent to consider combination strategies of edaravone and/or riluzole with suitable P-glycoprotein efflux-blocking drugs to gain more favorable outcomes in ALS patients.

Notes

Compliance with Ethical Standards

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Ranjeet P. Dash, R. Jayachandra Babu and Nuggehally R. Srinivashave declare no conflicts of interest or competing interests relevant to the content of this review article.

References

  1. 1.
    Zufiría M, Gil-Bea FJ, Fernández-Torrón R, Poza JJ, Muñoz-Blanco JL, Rojas-García R, et al. ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol. 2016;142:104–29.  https://doi.org/10.1016/j.pneurobio.2016.05.004.CrossRefPubMedGoogle Scholar
  2. 2.
    Williams DB, Windebank AJ. Motor neuron disease (amyotrophic lateral sclerosis). Mayo Clin Proc. 1991;66:54–82.CrossRefPubMedGoogle Scholar
  3. 3.
    Kaplan L, Hollander D. Respiratory dysfunction in amyotrophic lateral sclerosis. Clin Chest Med. 1994;15:675–81.PubMedGoogle Scholar
  4. 4.
    Mackay R. Course and prognosis in amyotrophic lateral sclerosis. Arch Neurol. 1963;8:117–27.CrossRefGoogle Scholar
  5. 5.
    Plaitakis A. Altered glutamatergic mechanisms and selective motor neuron degeneration in amyotrophic lateral sclerosis: possible role of glycine. Adv Neurol. 1991;56:319–26.PubMedGoogle Scholar
  6. 6.
    Hughes JT. Pathology of amyotrophic lateral sclerosis. In: Rowland LP, editor. Human motor neuron diseases. Advances in neurology, vol. 36. New York: Raven Press; 1982. p. 61–74.Google Scholar
  7. 7.
    Hugon J, Tabaraud F, Rigaud M, Vallat M, Dumas M. Glutamate dehydrogenase and aspartate aminotransferase in leukocytes of patients with motor neuron disease. Neurology. 1989;39:956–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Swash M, Leigh N. Criteria for diagnosis of familial amyotrophic lateral sclerosis. Neuromuscul Dis. 1992;2:7–9.CrossRefGoogle Scholar
  9. 9.
    Boss B, Sunderland P, Heath J. Alterations of neurologic function. In: McCance K, Huether S, editors. Pathophysiology: the biologic basis for disease in adults and children. 2nd ed. St. Louis: Mosby-Year Book. Inc.; 1994. p. 576.Google Scholar
  10. 10.
    Appel S, Smith RG. Can neurotrophic factors prevent or reverse motor neuron injury in amyotrophic lateral sclerosis? Exp Neurol. 1993;124:100–2.  https://doi.org/10.1006/exnr.1993.1180.CrossRefPubMedGoogle Scholar
  11. 11.
    Tandan R, Bradley WG. Amyotrophic lateral sclerosis: part I. Clinical features. Pathophysiology and ethical issues in the management. Ann Neurol. 1985;8:271–80.CrossRefGoogle Scholar
  12. 12.
    Plaitakis A, Mandeli J, Smith J, Yahr M. Pilot trial of branched-chain amino acids in amyotrophic lateral sclerosis. Lancet. 1988;1(8593):1015–8.  https://doi.org/10.1016/S0140-6736(88)91841-7.CrossRefPubMedGoogle Scholar
  13. 13.
    Li TM, Alberman E, Swash M. Clinical features and associations of 560 cases of motor neuron disease. J Neurol Neurosurg Psychiatry. 1990;53:1043–5.  https://doi.org/10.1136/jnnp.53.12.1043.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Louwerse ES, Weverling GJ, Bossuyt PM, Meyjes FE, de Jong JM. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch Neurol. 1995;52:559–64.  https://doi.org/10.1001/archneur.1995.00540300031009.CrossRefPubMedGoogle Scholar
  15. 15.
    Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377:942–55.  https://doi.org/10.1016/S0140-6736(10)61156-7.CrossRefPubMedGoogle Scholar
  16. 16.
    Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 1994;264:1772–5.  https://doi.org/10.1126/science.8209258.CrossRefPubMedGoogle Scholar
  17. 17.
    Rothstein JD. Edaravone: a new drug approved for ALS. Cell. 2017;171(4):725.  https://doi.org/10.1016/j.cell.2017.10.011.CrossRefPubMedGoogle Scholar
  18. 18.
    Petrov D, Mansfield C, Moussy A, Hermine O. ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front Aging Neurosci. 2017;9:68.  https://doi.org/10.3389/fnagi.2017.00068 (eCollection 2017).CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Doble A. The pharmacology and mechanism of action of riluzole. Neurology. 1996;47(6 Suppl 4):S233–41.  https://doi.org/10.1212/WNL.47.6_Suppl_4.233S.CrossRefPubMedGoogle Scholar
  20. 20.
    Rothstein J, Martin L, Kuncl R. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992;326:1464–8.  https://doi.org/10.1056/NEJM199205283262204.CrossRefPubMedGoogle Scholar
  21. 21.
    Groeneveld GJ, van Kan HJ, Toraño JS, Veldink JH, Guchelaar HJ, Wokke JH, et al. Inter- and intra-individual variability of riluzole serum concentrations in patients with ALS. J Neurol Sci. 2001;191(1–2):121–5.  https://doi.org/10.1016/S0022-510X(01)00613-X.CrossRefPubMedGoogle Scholar
  22. 22.
    Martinet M, Montay G, Rhodes G. Pharmacokinetics and metabolism of riluzole. Drugs Today. 1997;33(8):587–94.CrossRefGoogle Scholar
  23. 23.
    Wagner ML, Landis BE. Riluzole: a new agent for amyotrophic lateral sclerosis. Ann Pharmacother. 1997;31(6):738–44.  https://doi.org/10.1177/106002809703100614.CrossRefPubMedGoogle Scholar
  24. 24.
    Rilutek® (riluzole): product monograph. sanofi-aventis Canada Inc., Laval. May 11, 2010. Available online from http://products.sanofi.ca/en/rilutek.pdf. Accessed 20 Apr 2018.
  25. 25.
    van Kan HJ, Groeneveld GJ, Kalmijn S, Spieksma M, van den Berg LH, Guchelaar HJ. Association between CYP1A2 activity and riluzole clearance in patients with amyotrophic lateral sclerosis. Br J Clin Pharmacol. 2005;59(3):310–3.  https://doi.org/10.1111/j.1365-2125.2004.02233.x.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    van Kan HJ, van den Berg LH, Groeneveld GJ, van der Straaten RJ, van Vught PW, Lie-A-Huen L, et al. Pharmacokinetics of riluzole: evidence for glucuronidation as a major metabolic pathway not associated with UGT1A1 genotype. Biopharm Drug Dispos. 2008;29(3):139–44.  https://doi.org/10.1002/bdd.594.CrossRefPubMedGoogle Scholar
  27. 27.
    Bruno R, Vivier N, Montay G, Le Liboux A, Powe LK, Delumeau JC, et al. Population pharmacokinetics of riluzole in patients with amyotrophic lateral sclerosis. Clin Pharmacol Ther. 1997;62(5):518–26.  https://doi.org/10.1016/S0009-9236(97)90047-3.CrossRefPubMedGoogle Scholar
  28. 28.
    Li H, Xu K, Wang Y, Zhang H, Li T, Meng L, et al. Phase I clinical study of edaravone in healthy Chinese volunteers: safety and pharmacokinetics of single or multiple intravenous infusions. Drugs R & D. 2012;12(2):65–70.  https://doi.org/10.2165/11634290-000000000-00000.CrossRefGoogle Scholar
  29. 29.
    Wei M, Xiao Y. Clinical study on the effect of low molecular weight heparin calcium injection on plasma concentration of edaravone in patients with cerebral infarction. Zhongguo Yiyuan Yaoxue Zazhi. 2011;31(23):1933–6.Google Scholar
  30. 30.
    Tang DQ, Li YJ, Li Z, Bian TT, Chen K, Zheng XX, et al. Study on the interaction of plasma protein binding rate between edaravone and taurine in human plasma based on HPLC analysis coupled with ultrafiltration technique. Biomed Chromatogr. 2015;29(8):1137–45.  https://doi.org/10.1002/bmc.3401.CrossRefPubMedGoogle Scholar
  31. 31.
    Komatsu T, Nakai H, Masaki K, Iida S. Pharmacokinetic studies of 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186) in dogs. Blood or plasma levels, metabolism and excretion after a single intravenous administration. Yakubutsu Dotai. 1996;11(5):499–504.Google Scholar
  32. 32.
    Ma L, Sun J, Peng Y, Zhang R, Shao F, Hu X, et al. Glucuronidation of edaravone by human liver and kidney microsomes: biphasic kinetics and identification of UGT1A9 as the major UDP-glucuronosyltransferase isoform. Drug Metab Dispos. 2012;40(4):734–41.  https://doi.org/10.1124/dmd.111.043356.CrossRefPubMedGoogle Scholar
  33. 33.
    Le Liboux A, Lefebvre P, Le Roux Y, Truffinet P, Aubeneau M, Kirkesseli S, et al. Single- and multiple-dose pharmacokinetics of riluzole in white subjects. J Clin Pharmacol. 1997;37(9):820–7.  https://doi.org/10.1002/j.1552-4604.1997.tb05630.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Nakamaru Y, Kinoshita S, Kawaguchi A, Takei K, Palumbo J, Suzuki M. Pharmacokinetic profile of edaravone: a comparison between Japanese and Caucasian populations. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18(suppl 1):80–7.  https://doi.org/10.1080/21678421.2017.1353100.CrossRefPubMedGoogle Scholar
  35. 35.
    Le Liboux A, Cachia JP, Kirkesseli S, Gautier JY, Guimart C, Montay G, et al. A comparison of the pharmacokinetics and tolerability of riluzole after repeat dose administration in healthy elderly and young volunteers. J Clin Pharmacol. 1999;39(5):480–6.  https://doi.org/10.1177/009127009903900507.CrossRefPubMedGoogle Scholar
  36. 36.
    RADICAVA (edaravone injection) [prescribing information]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209176lbl.pdf. Accessed 22 Dec 2017.
  37. 37.
    Abbara C, Estournet B, Lacomblez L, Lelièvre B, Ouslimani A, Lehmann B, et al. Riluzole pharmacokinetics in young patients with spinal muscular atrophy. Br J Clin Pharmacol. 2011;71(3):403–10.  https://doi.org/10.1111/j.1365-2125.2010.03843.x.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chow DS, Teng Y, Toups EG, Aarabi B, Harrop JS, Shaffrey CI, et al. Pharmacology of riluzole in acute spinal cord injury. J Neurosurg Spine. 2012;17(1 Suppl):129–40.  https://doi.org/10.3171/2012.5.AOSPINE12112.CrossRefPubMedGoogle Scholar
  39. 39.
    Kaste M, Murayama S, Ford GA, Dippel DW, Walters MR. Tatlisumak T; MCI-186 study group. Safety, tolerability and pharmacokinetics of MCI-186 in patients with acute ischemic stroke: new formulation and dosing regimen. Cerebrovasc Dis. 2013;36(3):196–204.  https://doi.org/10.1159/000353680.CrossRefPubMedGoogle Scholar
  40. 40.
    Milane A, Vautier S, Chacun H, Meininger V, Bensimon G, Farinotti R, et al. Interactions between riluzole and ABCG2/BCRP transporter. Neurosci Lett. 2009;452(1):12–6.  https://doi.org/10.1016/j.neulet.2008.12.061.CrossRefPubMedGoogle Scholar
  41. 41.
    Takamatsu Y, Yamamoto M, Hisanaga N. Studies on the metabolic fate of MCI-186 in rats. Jpn Pharmacol Ther. 1996;24:176–81.Google Scholar
  42. 42.
    Mohamed LA, Markandaiah S, Bonanno S, Pasinelli P, Trotti D. Blood–brain barrier driven pharmacoresistance in amyotrophic lateral sclerosis and challenges for effective drug therapies. AAPS J. 2017;19(6):1600–14.  https://doi.org/10.1208/s12248-017-0120-6.CrossRefPubMedGoogle Scholar
  43. 43.
    Dash RP, Jayachandra Babu R, Srinivas NR. Therapeutic potential and utility of elacridar with respect to P-glycoprotein inhibition: an insight from the published in vitro, preclinical and clinical studies. Eur J Drug Metab Pharmacokinet. 2017;42(6):915–33.  https://doi.org/10.1007/s13318-017-0411-4.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang SW, Monagle J, McNulty C, Putnam D, Chen H. Determination of P-glycoprotein inhibition by excipients and their combinations using an integrated high-throughput process. J Pharm Sci. 2004;93(11):2755–67.  https://doi.org/10.1002/jps.20183.CrossRefPubMedGoogle Scholar
  45. 45.
    Srivalli KMR, Lakshmi PK. Overview of P-glycoprotein inhibitors: a rational outlook. Braz J Pharm Sci. 2012;48(3):353–67.  https://doi.org/10.1590/S1984-82502012000300002.CrossRefGoogle Scholar
  46. 46.
    Bondì ML, Craparo EF, Giammona G, Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (London). 2010;5(1):25–32.  https://doi.org/10.2217/nnm.09.67.CrossRefGoogle Scholar
  47. 47.
    Milane A, Tortolano L, Fernandez C, Bensimon G, Meininger V, Farinotti R. Brain and plasma riluzole pharmacokinetics: effect of minocycline combination. J Pharm Sci. 2009;12(2):209–17.Google Scholar
  48. 48.
    Gutierrez J, Federici T, Peterson B, Bartus R, Betourne A, Boulis NM. Development of intrathecal riluzole: a new route of administration for the treatment of amyotrophic lateral sclerosis patients. Neurosurgery. 2016;63(Suppl 1):193.  https://doi.org/10.1227/01.neu.0000489810.52605.80.CrossRefGoogle Scholar
  49. 49.
    Gao C, Li X, Li Y, Wang L, Xue M. Pharmacokinetic interaction between puerarin and edaravone, and effect of borneol on the brain distribution kinetics of puerarin in rats. J Pharm Pharmacol. 2010;62(3):360–7.  https://doi.org/10.1211/jpp.62.03.0011.CrossRefPubMedGoogle Scholar
  50. 50.
    Rong WT, Lu YP, Tao Q, Guo M, Lu Y, Ren Y, et al. Hydroxypropyl-sulfobutyl-β-cyclodextrin improves the oral bioavailability of edaravone by modulating drug efflux pump of enterocytes. J Pharm Sci. 2014;103(2):730–42.  https://doi.org/10.1002/jps.23807.CrossRefPubMedGoogle Scholar
  51. 51.
    Jin Q, Cai Y, Li S, Liu H, Zhou X, Lu C, et al. Edaravone-encapsulated agonistic micelles rescue ischemic brain tissue by tuning blood–brain barrier permeability. Theranostics. 2017;7(4):884–98.  https://doi.org/10.7150/thno.18219 (eCollection 2017).CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hukkanen J. Induction of cytochrome P450 enzymes: a view on human in vivo findings. Expert Rev Clin Pharmacol. 2012;5(5):569–85.  https://doi.org/10.1586/ecp.12.39.CrossRefPubMedGoogle Scholar
  53. 53.
    Kalow W, Tang BK. Caffeine as a metabolic probe: exploration of the enzyme-inducing effect of cigarette smoking. Clin Pharmacol Ther. 1991;49(1):44–8.  https://doi.org/10.1038/clpt.1991.8.CrossRefPubMedGoogle Scholar
  54. 54.
    Quattrochi LC, Vu T, Tukey RH. The human CYP1A2 gene and induction by 3-methylcholanthrene. A region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem. 1994;269(9):6949–54.PubMedGoogle Scholar
  55. 55.
    Sawada H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother. 2017;18(7):735–8.  https://doi.org/10.1080/14656566.2017.1319937.CrossRefPubMedGoogle Scholar
  56. 56.
    Toklu HZ, Uysal MK, Kabasakal L, Sirvanci S, Ercan F, Kaya M. The effects of riluzole on neurological, brain biochemical, and histological changes in early and late term of sepsis in rats. J Surg Res. 2009;152(2):238–48.  https://doi.org/10.1016/j.jss.2008.03.013.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhou S, Yu G, Chi L, Zhu J, Zhang W, Zhang Y, et al. Neuroprotective effects of edaravone on cognitive deficit, oxidative stress and tau hyperphosphorylation induced by intracerebroventricular streptozotocin in rats. Neurotoxicology. 2013;38:136–45.  https://doi.org/10.1016/j.neuro.2013.07.007.CrossRefPubMedGoogle Scholar
  58. 58.
    Isfahan University of Medical Sciences. Treatment effect of edaravone in patients with amyotrophic lateral sclerosis (ALS) [ClinicalTrials.gov Identifier: NCT03272802]. https://clinicaltrials.gov/ct2/show/study/NCT03272802. Accessed 22 Dec 2017.
  59. 59.
    Sato T, Mizuno K, Ishii F. A novel administration route of edaravone–II: mucosal absorption of edaravone from edaravone/hydroxypropyl-beta-cyclodextrin complex solution including l-cysteine and sodium hydrogen sulfite. Pharmacology. 2010;85(2):88–94.  https://doi.org/10.1159/000276548.CrossRefPubMedGoogle Scholar
  60. 60.
    Parikh A, Kathawala K, Tan CC, Garg S, Zhou XF. Development of a novel oral delivery system of edaravone for enhancing bioavailability. Int J Pharm. 2016;515(1–2):490–500.  https://doi.org/10.1016/j.ijpharm.2016.10.052.CrossRefPubMedGoogle Scholar
  61. 61.
    Parikh A, Kathawala K, Tan CC, Garg S, Zhou XF. Lipid-based nanosystem of edaravone: development, optimization, characterization and in vitro/in vivo evaluation. Drug Deliv. 2017;24(1):962–78.  https://doi.org/10.1080/10717544.2017.1337825.CrossRefPubMedGoogle Scholar
  62. 62.
    Groeneveld GJ, Van Kan HJ, Kalmijn S, Veldink JH, Guchelaar HJ, Wokke JH, et al. Riluzole serum concentrations in patients with ALS: associations with side effects and symptoms. Neurology. 2003;61(8):1141–3.  https://doi.org/10.1212/01.WNL.0000090459.76784.49.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ranjeet Prasad Dash
    • 1
  • R. Jayachandra Babu
    • 1
  • Nuggehally R. Srinivas
    • 2
  1. 1.Department of Drug Discovery and Development, Harrison School of PharmacyAuburn UniversityAuburnUSA
  2. 2.Drug Metabolism and PharmacokineticsZydus Research CentreAhmedabadIndia

Personalised recommendations