Clinical Pharmacokinetics

, Volume 56, Issue 11, pp 1303–1330 | Cite as

Gestation-Specific Changes in the Anatomy and Physiology of Healthy Pregnant Women: An Extended Repository of Model Parameters for Physiologically Based Pharmacokinetic Modeling in Pregnancy

  • André Dallmann
  • Ibrahim Ince
  • Michaela Meyer
  • Stefan Willmann
  • Thomas Eissing
  • Georg Hempel
Systematic Review



In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues.


The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues.


A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility.


The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions.


The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.


Pregnant Woman PBPK Model Healthy Pregnant Woman Effective Renal Plasma Flow Supplemental Digital Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Kirstin Thelen (Bayer AG) for valuable discussions.

Compliance with Ethical Standards


This publication and the work involved were funded by Bayer AG.

Conflict of interest

Andre Dallmann is a PhD student at the University of Münster and is employed on a grant from Bayer AG. Ibrahim Ince, Michaela Meyer, Stefan Willmann, and Thomas Eissing were employed by Bayer AG during the preparation of this manuscript and are potential stock holders of Bayer AG. Georg Hempel has received a research grant from Bayer AG since 2008.

Supplementary material

40262_2017_539_MOESM1_ESM.pdf (5 mb)
Supplementary material 1 (PDF 5143 kb)


  1. 1.
    Hytten FE, Leitch I. The physiology of human pregnancy. 2nd ed. Oxford: Blackwell Science Ltd; 1971.Google Scholar
  2. 2.
    Hill CC, Pickinpaugh J. Physiologic changes in pregnancy. Surg Clin North Am. 2008;88(2):391–401.PubMedCrossRefGoogle Scholar
  3. 3.
    Carlin A, Alfirevic Z. Physiological changes of pregnancy and monitoring. Best Pract Res Clin Obstet Gynaecol. 2008;22(5):801–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Gaiser R. Physiologic changes of pregnancy. Chestnuts Obstet Anesth Princ pract. 2009;4:15–36.CrossRefGoogle Scholar
  5. 5.
    Pacheco LD, Costantine MM, Hankins GD. Physiologic changes during pregnancy. In: Mattison DR, editor. Clinical pharmacology during pregnancy. 1st edn. USA: Academic Press, Elsevier Inc.; 2013. p. 5–16. ISBN:9780123860071. doi: 10.1016/B978-0-12-386007-1.00002-7.
  6. 6.
    Hebert MF. Impact of pregnancy on maternal pharmacokinetics of medications. In: Mattison DR, editor. Clinical pharmacology during pregnancy. 1st edn. USA: Academic Press, Elsevier Inc.; 2013. p. 17–39. ISBN:9780123860071. doi: 10.1016/B978-0-12-386007-1.00003-9.
  7. 7.
    Costantine MM. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol. 2014;5(65):1–5. doi: 10.3389/fphar.2014.00065.Google Scholar
  8. 8.
    Tasnif Y, Morado J, Hebert MF. Pregnancy-related pharmacokinetic changes. Clin Pharmacol Ther. 2016;100(1):53–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Heikkilä A, Erkkola R. Pharmacokinetics of piperacillin during pregnancy. J Antimicrob Chemother. 1991;28(3):419–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Eyal S, Easterling TR, Carr D, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos. 2010;38(5):833–40.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Best B, Burchett S, Li H, et al. Pharmacokinetics of tenofovir during pregnancy and postpartum. HIV Med. 2015;16(8):502–11.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hebert MF, Carr DB, Anderson GD, et al. Pharmacokinetics and pharmacodynamics of atenolol during pregnancy and postpartum. J Clin Pharmacol. 2005;45(1):25–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Hebert M, Easterling T, Kirby B, et al. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington Specialized Center of Research study. Clin Pharmacol Ther. 2008;84(2):248–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Philipson A, Stiernstedt G. Pharmacokinetics of cefuroxime in pregnancy. Am J Obstet Gynecol. 1982;142(7):823–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Yerby MS, Friel PN, McCormick K, et al. Pharmacokinetics of anticonvulsants in pregnancy: alterations in plasma protein binding. Epilepsy Res. 1990;5(3):223–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Mattison D, Zajicek A. Gaps in knowledge in treating pregnant women. Gender Med. 2006;3(3):169–82.CrossRefGoogle Scholar
  17. 17.
    Thomas SH, Yates LM. Prescribing without evidence: pregnancy. Br J Clin Pharmacol. 2012;74(4):691–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gerlowski LE, Jain RK. Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci. 1983;72(10):1103–27.PubMedCrossRefGoogle Scholar
  19. 19.
    Claassen K, Thelen K, Coboeken K, et al. Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des. 2015;21(39):5688–98.PubMedCrossRefGoogle Scholar
  20. 20.
    Maharaj A, Barrett J, Edginton A. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15(2):455–64.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Schlender J-F, Meyer M, Thelen K, et al. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals. Clin Pharmacokinet. 2016;55(12):1573–89.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Edginton AN, Willmann S. Physiology-based simulations of a pathological condition. Clin Pharmacokinet. 2008;47(11):743–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Gaohua L, Abduljalil K, Jamei M, et al. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br J Clin Pharmacol. 2012;74(5):873–85.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Luecke RH, Wosilait WD, Pearce BA, Young JF. A physiologically based pharmacokinetic computer model for human pregnancy. Teratology. 1994;49(2):90–103.PubMedCrossRefGoogle Scholar
  25. 25.
    Young JF, Branham WS, Sheehan DM, et al. Physiological “constants” for PBPK models for pregnancy. J Toxicol Environ Health. 1997;52(5):385–401.PubMedGoogle Scholar
  26. 26.
    Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP. 2002;32(3):1–277.CrossRefGoogle Scholar
  27. 27.
    Abduljalil K, Furness P, Johnson TN, et al. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy. Clin Pharmacokinet. 2012;51(6):365–96.PubMedCrossRefGoogle Scholar
  28. 28.
    Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. Chippenham: John Wiley & Sons, Ltd; 2008.CrossRefGoogle Scholar
  29. 29.
    Rencher AC, Pun FC. Inflation of R2 in best subset regression. Technometrics. 1980;22(1):49–53.CrossRefGoogle Scholar
  30. 30.
    McQuarrie AD, Tsai C-L. Regression and time series model selection. 1st ed. Singapore: World Scientific; 1998.CrossRefGoogle Scholar
  31. 31.
    Spiess A-N, Neumeyer N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol. 2010;10(1):6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2003.Google Scholar
  33. 33.
    Anim-Nyame N, Sooranna S, Johnson M, et al. Resting peripheral blood flow in normal pregnancy and in pre-eclampsia. Clin Sci. 2000;99(6):505–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Beetham R, Dawnay A, Menabawy M, Silver A. Urinary excretion of albumin and retinol-binding protein during normal pregnancy. J Clin Pathol. 1988;41(10):1089–92.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Campbell DM, MacGillivray I. Comparison of maternal response in first and second pregnancies in relation to baby weight. BJOG. 1972;79(8):684–93.CrossRefGoogle Scholar
  36. 36.
    Connelly TJ, Ruo TI, Frederiksen MC, Atkinson AJ. Characterization of theophylline binding to serum proteins in pregnant and nonpregnant women. Clin Pharmacol Ther. 1990;47(1):68–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Darby WJ, McGanity WJ, Martin MP, et al. The Vanderbilt Cooperative Study of Maternal and Infant Nutrition: IV. Dietary laboratory and physical findings in 2129 delivered pregnancies. J Nutr. 1953;51(4):565–97.PubMedGoogle Scholar
  38. 38.
    Dean M, Stock B, Patterson RJ, Levy G. Serum protein binding of drugs during and after pregnancy in humans. Clin Pharmacol Ther. 1980;28(2):253–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Haram K, Augensen K, Elsayed S. Serum protein pattern in normal pregnancy with special reference to acute-phase reactants. BJOG. 1983;90(2):139–45.CrossRefGoogle Scholar
  40. 40.
    Hønger P. Intravascular mass of albumin in pre-eclampsia and normal pregnancy. Scand J Clin Lab Invest. 1967;19(3):283–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Horne C, Howie P, Goudie R. Serum alpha2-macroglobulin, transferrin, albumin, and IgG levels in preeclampsia. J Clin Pathol. 1970;23(6):514–6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Krauer B, Dayer P, Anner R. Changes in serum albumin and α1-acid glycoprotein concentrations during pregnancy: an analysis of fetal-maternal pairs. Br J Obstet Gynaecol. 1984;91(9):875–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Larijani GE, Norris MC, Ala-Kokko TI, et al. Serum concentration of alpha 1-acid glycoprotein and albumin following cesarean section and vaginal delivery. DICP. 1990;24(3):328–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Laurell C-B. Orosomucoid and α1-antitrypsin in maternal and fetal sera at parturition. Scand J Clin Lab Invest. 1968;21(2):136–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Macgillivray I, Tovey JE. A study of the serum protein changes in pregnancy and toxaemia, using paper strip electrophoresis. BJOG. 1957;64(3):361–4.CrossRefGoogle Scholar
  46. 46.
    MacLennan F, MacDonald A, Campbell D. Lung water during the puerperium. Anaesthesia. 1987;42(2):141–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Pabby P. Changes in serum proteins during pregnancy. BJOG. 1960;67(1):43–55.CrossRefGoogle Scholar
  48. 48.
    Pirani B, MacGillivray I. Smoking during pregnancy: its effect on maternal metabolism and fetoplacental function. Obstet Gynecol. 1978;52(3):257–63.PubMedGoogle Scholar
  49. 49.
    Pitkin RM, Reynolds W, Williams GA, Hargis GK. Calcium metabolism in normal pregnancy: a longitudinal study. Am J Obstet Gynecol. 1979;133(7):781–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Spetz S, Brody S. Serum proteins in pregnancy complicated by toxaemia. Acta Obstet Gynecol Scand. 1967;46(2):151–67.PubMedGoogle Scholar
  51. 51.
    Studd J, Blainey J, Bailey D. A study of serum protein changes in late pregnancy and identification of the pregnancy zone protein using antigen antibody crossed immunoelectrophoresis. BJOG. 1970;77(1):42–51.CrossRefGoogle Scholar
  52. 52.
    Tsen LC, Tarshis J, Denson DD, et al. Measurements of maternal protein binding of bupivacaine throughout pregnancy. Anesth Analg. 1999;89(4):965–8.PubMedGoogle Scholar
  53. 53.
    Tuttle S, Aggett PJ, Campbell D, MacGillivray I. Zinc and copper nutrition in human pregnancy: a longitudinal study in normal primigravidae and in primigravidae at risk of delivering a growth retarded baby. Am J Clin Nutr. 1985;41(5):1032–41.PubMedGoogle Scholar
  54. 54.
    Von Studnitz W. Studies on serum proteins in pregnancy. Scand J Clin Lab Invest. 1955;7(4):324–8.CrossRefGoogle Scholar
  55. 55.
    Whittaker PG, Lind T. The intravascular mass of albumin during human pregnancy: a serial study in normal and diabetic women. Br J Obstet Gynaecol. 1993;100(6):587–92.PubMedCrossRefGoogle Scholar
  56. 56.
    Wright A, Steele P, Bennett J, et al. The urinary excretion of albumin in normal pregnancy. Br J Obstet Gynaecol. 1987;94(5):408–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Bardos P, Luthier B, Avenet J, et al. Variations des concentrations de certaines glycoproteines au niveau du sang maternel, foetal et du liquide amniotique lors de la grossesse. Clin Chim Acta. 1976;66(3):353–63.PubMedCrossRefGoogle Scholar
  58. 58.
    Havenaar EC, Axford JS, Brinkman-van der Linden EC, et al. Severe rheumatoid arthritis prohibits the pregnancy-induced decrease in α3-fucosylation of α1-acid glycoprotein. Glycoconj J. 1998;15(7):723–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Kovar I, Riches PG. C3 and C4 complement components and acute phase proteins in late pregnancy and parturition. J Clin Pathol. 1988;41(6):650–2.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Succari M, Foglietti M-J, Percheron F. Microheterogeneity of α 1-acid glycoprotein: variation during the menstrual cycle in healthy women, and profile in women receiving estrogen-progestogen treatment. Clin Chim Acta. 1990;187(3):235–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Wood M, Wood AJ. Changes in plasma drug binding and α1-acid glycoprotein in mother and newborn infant. Clin Pharmacol Ther. 1981;29(4):522–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Wulf H, Münstedt P, Maier C. Plasma protein binding of bupivacaine in pregnant women at term. Acta Anaesth Scand. 1991;35(2):129–33.PubMedCrossRefGoogle Scholar
  63. 63.
    Oatridge A, Holdcroft A, Saeed N, et al. Change in brain size during and after pregnancy: study in healthy women and women with preeclampsia. Am J Neuroradiol. 2002;23(1):19–26.PubMedGoogle Scholar
  64. 64.
    Willmann S, Höhn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31.PubMedCrossRefGoogle Scholar
  65. 65.
    Nevo O, Soustiel JF, Thaler I. Maternal cerebral blood flow during normal pregnancy: a cross-sectional study. Am J Obstet Gynecol. 2010;203(5):475 (e1–6).PubMedCrossRefGoogle Scholar
  66. 66.
    Paxton A, Lederman SA, Heymsfield SB, et al. Anthropometric equations for studying body fat in pregnant women. Am J Clin Nutr. 1998;67(1):104–10.PubMedGoogle Scholar
  67. 67.
    Lederman SA. Pregnancy. In: Hemysfield SBL, Timothy G, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign (IL): Human Kinetics; 2005. p. 299–311.Google Scholar
  68. 68.
    Butte NF, Ellis KJ, Wong WW, et al. Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am J Obstet Gynecol. 2003;189(5):1423–32.PubMedCrossRefGoogle Scholar
  69. 69.
    Kopp-Hoolihan L, Van Loan M, Wong W, King J. Fat mass deposition during pregnancy using a four-component model. J Appl Physiol. 1999;87(1):196–202.PubMedGoogle Scholar
  70. 70.
    Kopp-Hoolihan LE, van Loan MD, Wong WW, King JC. Longitudinal assessment of energy balance in well-nourished, pregnant women. Am J Clin Nutr. 1999;69(4):697–704.PubMedGoogle Scholar
  71. 71.
    Butte N, Hopkinson J, Nicolson M. Leptin in human reproduction: serum leptin levels in pregnant and lactating women. J Clin Endocrinol Metab. 1997;82(2):585–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Catalano PM, Wong WW, Drago NM, Amini SB. Estimating body composition in late gestation: a new hydration constant for body density and total body water. Am J Physiol Endocrinol Metab. 1995;268(1):E153–8.Google Scholar
  73. 73.
    de Groot LC, Boekholt HA, Spaaij C, et al. Energy balances of healthy Dutch women before and during pregnancy: limited scope for metabolic adaptations in pregnancy. Am J Clin Nutr. 1994;59(4):827–32.PubMedGoogle Scholar
  74. 74.
    Highman TJ, Friedman JE, Huston LP, et al. Longitudinal changes in maternal serum leptin concentrations, body composition, and resting metabolic rate in pregnancy. Am J Obstet Gynecol. 1998;178(5):1010–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Hopkinson JM, Butte NF, Ellis KJ, et al. Body fat estimation in late pregnancy and early postpartum: comparison of two-, three-, and four-component models. Am J Clin Nutr. 1997;65(2):432–8.PubMedGoogle Scholar
  76. 76.
    Lof M, Forsum E. Hydration of fat-free mass in healthy women with special reference to the effect of pregnancy. Am J Clin Nutr. 2004;80(4):960–5.PubMedGoogle Scholar
  77. 77.
    Lof M, Olausson H, Bostrom K, et al. Changes in basal metabolic rate during pregnancy in relation to changes in body weight and composition, cardiac output, insulin-like growth factor I, and thyroid hormones and in relation to fetal growth. Am J Clin Nutr. 2005;81(3):678–85.PubMedGoogle Scholar
  78. 78.
    Van Loan M, Kopp L, King J, et al. Fluid changes during pregnancy: use of bioimpedance spectroscopy. J Appl Physiol. 1995;78(3):1037–42.PubMedGoogle Scholar
  79. 79.
    Lederman SA, Paxton A, Heymsfield SB, et al. Body fat and water changes during pregnancy in women with different body weight and weight gain. Obstet Gynecol. 1997;90(4, Part 1):483–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Borghi C, Degli Esposti D, Immordino V, et al. Relationship of systemic hemodynamics, left ventricular structure and function, and plasma natriuretic peptide concentrations during pregnancy complicated by preeclampsia. Am J Obstet Gynecol. 2000;183(1):140–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Kametas N, McAuliffe F, Hancock J, et al. Maternal left ventricular mass and diastolic function during pregnancy. Ultrasound Obstet Gynecol. 2001;18(5):460–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Lucini D, Strappazzon P, Dalla Vecchia L, et al. Cardiac autonomic adjustments to normal human pregnancy: insight from spectral analysis of R–R interval and systolic arterial pressure variability. J Hypertens. 1999;17(12):1899–904.PubMedCrossRefGoogle Scholar
  83. 83.
    Mesa A, Jessurun C, Hernandez A, et al. Left ventricular diastolic function in normal human pregnancy. Circulation. 1999;99(4):511–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Mone SM, Sanders SP, Colan SD. Control mechanisms for physiological hypertrophy of pregnancy. Circulation. 1996;94(4):667–72.PubMedCrossRefGoogle Scholar
  85. 85.
    Poppas A, Shroff SG, Korcarz CE, et al. Serial assessment of the cardiovascular system in normal pregnancy role of arterial compliance and pulsatile arterial load. Circulation. 1997;95(10):2407–15.PubMedCrossRefGoogle Scholar
  86. 86.
    Robson S, Dunlop W, Moore M, Hunter S. Haemodynamic changes during the puerperium: a Doppler and M-mode echocardiographic study. Br J Obstet Gynaecol. 1987;94(11):1028–39.PubMedCrossRefGoogle Scholar
  87. 87.
    Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol. 1989;256(4):H1060–5.PubMedGoogle Scholar
  88. 88.
    Schannwell CM, Zimmermann T, Schneppenheim M, et al. Left ventricular hypertrophy and diastolic dysfunction in healthy pregnant women. Cardiology. 2002;97(2):73–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Thompson JA, Hays PM, Sagar KB, Cruikshank DP. Echocardiographic left ventricular mass to differentiate chronic hypertension from preeclampsia during pregnancy. Am J Obstet Gynecol. 1986;155(5):994–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Valensise H, Novelli G, Vasapollo B, et al. Maternal cardiac systolic and diastolic function: relationship with uteroplacental resistances. A Doppler and echocardiographic longitudinal study. Ultrasound Obstet Gynecol. 2000;15(6):487–97.PubMedCrossRefGoogle Scholar
  91. 91.
    Vasapollo B, Novelli GP, Valensise H. Total vascular resistance and left ventricular morphology as screening tools for complications in pregnancy. Hypertension. 2008;51(4):1020–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Vasapollo B, Valensise H, Novelli G, et al. Abnormal maternal cardiac function and morphology in pregnancies complicated by intrauterine fetal growth restriction. Ultrasound Obstet Gynecol. 2002;20(5):452–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Lees M, Taylor S, Scott D, Kerr M. A study of cardiac output at rest throughout pregnancy. BJOG. 1967;74(3):319–28.CrossRefGoogle Scholar
  94. 94.
    Rubler S, Damani PM, Pinto ER. Cardiac size and performance during pregnancy estimated with echocardiography. Am J Cardiol. 1977;40(4):534–40.PubMedCrossRefGoogle Scholar
  95. 95.
    Higuchi H, Takagi S, Zhang K, et al. Effect of lateral tilt angle on the volume of the abdominal aorta and inferior vena cava in pregnant and nonpregnant women determined by magnetic resonance imaging. Obstet Gynecol Surv. 2015;70(7):425–6.CrossRefGoogle Scholar
  96. 96.
    Bamfo JE, Kametas NA, Nicolaides KH, Chambers JB. Maternal left ventricular diastolic and systolic long-axis function during normal pregnancy. Eur Heart J. 2007;8(5):360–8.Google Scholar
  97. 97.
    Bene R, Barletta G, Mello G, et al. Cardiovascular function in pregnancy: effects of posture. BJOG. 2001;108(4):344–52.PubMedCrossRefGoogle Scholar
  98. 98.
    Chapman AB, Abraham WT, Zamudio S, et al. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int. 1998;54(6):2056–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Clapp JF, Capeless E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am J Cardiol. 1997;80(11):1469–73.PubMedCrossRefGoogle Scholar
  100. 100.
    Easterling TR, Benedetti TJ, Schmucker BC, Millard SP. Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study. Obstet Gynecol. 1990;76(6):1061–9.PubMedGoogle Scholar
  101. 101.
    Hennessy TG, MacDonald D, Hennessy MS, et al. Serial changes in cardiac output during normal pregnancy: a Doppler ultrasound study. Eur J Obstet Gynecol Reprod Biol. 1996;70(2):117–22.PubMedCrossRefGoogle Scholar
  102. 102.
    Mahendru AA, Everett TR, Wilkinson IB, et al. A longitudinal study of maternal cardiovascular function from preconception to the postpartum period. J Hypertens. 2014;32(4):849–56.PubMedCrossRefGoogle Scholar
  103. 103.
    Pivarnik J, Lee W, Clark L, et al. Cardiac output responses of primigravid women during exercise determined by the direct Fick technique. Obstet Gynecol. 1990;75(6):954–9.PubMedGoogle Scholar
  104. 104.
    Rang S, de Pablo Lapiedra B, van Montfrans GA, et al. Modelflow: a new method for noninvasive assessment of cardiac output in pregnant women. Am J Obstet Gynecol. 2007;196(3):235 (e1–8).PubMedCrossRefGoogle Scholar
  105. 105.
    Robson S, Dunlop W, Hunter S. Haemodynamic changes during the early puerperium. BMJ. 1987;294(6579):1065.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Spaanderman M, Ekhart T, van Eyck J, et al. Preeclampsia and maladaptation to pregnancy: a role for atrial natriuretic peptide? Kidney Int. 2001;60(4):1397–406.PubMedCrossRefGoogle Scholar
  107. 107.
    Spaanderman M, Meertens M, Van Bussel M, et al. Cardiac output increases independently of basal metabolic rate in early human pregnancy. Am J Physiol. 2000;278(5):H1585–8.Google Scholar
  108. 108.
    Clark SL, Cotton DB, Lee W, et al. Central hemodynamic assessment of normal term pregnancy. Am J Obstet Gynecol. 1989;161(6):1439–42.PubMedCrossRefGoogle Scholar
  109. 109.
    Caton WL, Roby CC, Reid DE, Gibson JG. Plasma volume and extravascular fluid volume during pregnancy and the puerperium. Am J Obstet Gynecol. 1949;57(3):471–81.PubMedCrossRefGoogle Scholar
  110. 110.
    Chanarin I, Rothman D, Berry V. Iron deficiency and its relation to folic-acid status in pregnancy: eesults of a clinical trial. BMJ. 1965;1(5433):480–5.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Chesley LC, Chesley ER. The diodrast clearance and renal blood flow in normal pregnant and non-pregnant women. Am J Physiol. 1939;127(4):731–7.Google Scholar
  112. 112.
    Cohen ME, Thomson KJ. Studies on the circulation in pregnancy. I. The velocity of blood flow and related aspects of the circulation in normal pregnant women. J Clin Invest. 1936;15(6):607–25.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Edgar W, Rice H. Administration of iron in antenatal clinics. Lancet. 1956;267(6923):599–602.CrossRefGoogle Scholar
  114. 114.
    Ghezzi F, Franchi M, Balestreri D, et al. Bioelectrical impedance analysis during pregnancy and neonatal birth weight. Eur J Obstet Gynecol Reprod Biol. 2001;98(2):171–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Hamilton HF. Blood viscosity in pregnancy. BJOG. 1950;57(4):530–8.CrossRefGoogle Scholar
  116. 116.
    Hutchins C. Plasma volume changes in pregnancy in indian and european primigravidas. Br J Obstet Gynaecol. 1980;87(7):586–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Irons D, Baylis P, Davison J. Effect of atrial natriuretic peptide on renal hemodynamics and sodium excretion during human pregnancy. Am J Physiol. 1996;271(1):F239–42.PubMedGoogle Scholar
  118. 118.
    Karanam V, Page N, Anim-Nyame N. Maternal tissue blood flow and oxygen saturation in pre-eclampsia and intrauterine growth restriction. Eur J Obstet Gynecol Reprod Biol. 2014;178:148–52.PubMedCrossRefGoogle Scholar
  119. 119.
    Larciprete G, Valensise H, Vasapollo B, et al. Body composition during normal pregnancy: reference ranges. Acta Diabetol. 2003;40(1):s225–32.PubMedCrossRefGoogle Scholar
  120. 120.
    Low J, Johnston E, McBride R. Blood volume adjustments in the normal obstetric patient with particular reference to the third trimester of pregnancy. Am J Obstet Gynecol. 1965;91(3):356–63.PubMedCrossRefGoogle Scholar
  121. 121.
    Lukaski HC, Hall CB, Siders WA. Assessment of change in hydration in women during pregnancy and postpartum with bioelectrical impedance vectors. Nutrition. 2007;23(7):543–50.PubMedCrossRefGoogle Scholar
  122. 122.
    Lukaski HC, Siders WA, Nielsen EJ, Hall CB. Total body water in pregnancy: assessment by using bioelectrical impedance. Am J Clin Nutr. 1994;59(3):578–85.PubMedGoogle Scholar
  123. 123.
    McLennan CE, Thouin L. Blood volume in pregnancy; a critical review and preliminary report of results with a new technique. Am J Obstet Gynecol. 1948;55(2):189–200.PubMedCrossRefGoogle Scholar
  124. 124.
    Munnell EW, Taylor HC Jr. Liver blood flow in pregnancy: hepatic vein catheterization. J Clin Invest. 1947;26(5):952–6.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Paintin D, Thomson A, Hytten F. Iron and the haemoglobin level in pregnancy. BJOG. 1966;73(2):181–90.CrossRefGoogle Scholar
  126. 126.
    Pivarnik JM, Mauer MB, Ayres NA, et al. Effects of chronic exercise on blood volume expansion and hematologic indices during pregnancy. Obstet Gynecol. 1994;83(2):265–9.PubMedGoogle Scholar
  127. 127.
    Roscoe M, Donaldson G. The blood in pregnancy. Part II. The blood volume, cell volume and haemoglobin mass. BJOG. 1946;53(6):527–38.CrossRefGoogle Scholar
  128. 128.
    Rovinsky JJ, Jaffin H. Cardiovascular hemodynamics in pregnancy. Am J Obstet Gynecol. 1965;93(1):1–15.PubMedCrossRefGoogle Scholar
  129. 129.
    Silver HM, Seebeck M, Carlson R. Comparison of total blood volume in normal, preeclamptic, and nonproteinuric gestational hypertensive pregnancy by simultaneous measurement of red blood cell and plasma volumes. Am J Obstet Gynecol. 1998;179(1):87–93.PubMedCrossRefGoogle Scholar
  130. 130.
    Sims EA, Krantz KE. Serial studies of renal function during pregnancy and the puerperium in normal women. J Clin Invest. 1958;37(12):1764–74.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Taylor D, Lind T. Red cell mass during and after normal pregnancy. BJOG. 1979;86(5):364–70.CrossRefGoogle Scholar
  132. 132.
    Thorburn J, Drummond M, Whigham K, et al. Blood viscosity and haemostatic factors in late pregnancy, pre-eclampsia and fetal growth retardation. BJOG. 1982;89(2):117–22.CrossRefGoogle Scholar
  133. 133.
    Weir R, Paintin D, Brown J, et al. A serial study in pregnancy of the plasma concentrations of renin, corticosteroids, electrolytes and proteins and of haematocrit and plasma volume. BJOG. 1971;78(7):590–602.CrossRefGoogle Scholar
  134. 134.
    Whittaker PG, Macphail S, Lind T. Serial hematologic changes and pregnancy outcome. Obstet Gynecol. 1996;88(1):33–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Wu P, Udani V, Chan L, et al. Colloid osmotic pressure: variations in normal pregnancy. J Perinat Med. 1983;11(4):193–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Sheehan HL, Lynch JB. Pathology of toxaemia of pregnancy, 1st edn. Edinburgh: Churchill Livingstone; 1973. p. 1–986. doi: 10.1002/bjs.1800601223.
  137. 137.
    Cietak K, Newton J. Serial qualitative maternal nephrosonography in pregnancy. Br J Radiol. 1985;58(689):399–404.PubMedCrossRefGoogle Scholar
  138. 138.
    Christensen T, Klebe JG, Bertelsen V, Hansen HE. Changes in renal volume during normal pregnancy. Acta Obstet Gynecol Scand. 1989;68(6):541–3.PubMedCrossRefGoogle Scholar
  139. 139.
    Franz N. Diagnostische Wertigkeit der dreidimensionalen Volumensonographie einer maternalen Harnstauungsniere im Rahmen der Routineuntersuchung in der Gravidität. Würzburg: University of Würzburg; 2005.Google Scholar
  140. 140.
    Bailey R, Rolleston G. Kidney length and ureteric dilatation in the puerperium. BJOG. 1971;78(1):55–61.CrossRefGoogle Scholar
  141. 141.
    McCrory WW. Quantitative measurement of renal function during growth in infancy and childhood. In: McCrory WW, editor. Developmental nephrology, 1st edn. Cambridge: Harvard University Press; 1972: p. 79–122. ISBN:9780674202757.Google Scholar
  142. 142.
    Le Reubi F. flux sanguin rénal: aspects physiopathologiques, cliniques et thérapeutique. Bâle: Schwabe; 1950.Google Scholar
  143. 143.
    Battilana C, Zhang H, Olshen RA, et al. PAH extraction and estimation of plasma flow in diseased human kidneys. Am J Physiol. 1991;261(4):F726–33.PubMedGoogle Scholar
  144. 144.
    Hladunewich M, Lafayette R, Derby G, et al. The dynamics of glomerular filtration in the puerperium. Am J Physiol. 2004;286(3):F496–503.Google Scholar
  145. 145.
    Dunlop W. Investigations into the influence of posture on renal plasma flow and glomerular filtration rate during late pregnancy. BJOG. 1976;83(1):17–23.CrossRefGoogle Scholar
  146. 146.
    Dunlop W. Serial changes in renal haemodynamics during normal human pregnancy. BJOG. 1981;88(1):1–9.CrossRefGoogle Scholar
  147. 147.
    Ezimokhai M, Davison J, Philips P, Dunlop W. Non-postural serial changes in renal function during the third trimester of normal human pregnancy. BJOG. 1981;88(5):465–71.CrossRefGoogle Scholar
  148. 148.
    Milne J, Lindheimer M, Davison J. Glomerular heteroporous membrane modeling in third trimester and postpartum before and during amino acid infusion. Am J Physiol. 2002;282(1):F170–5.Google Scholar
  149. 149.
    Moran P, Baylis PH, Lindheimer MD, Davison JM. Glomerular ultrafiltration in normal and preeclamptic pregnancy. J Am Soc Nephrol. 2003;14(3):648–52.PubMedCrossRefGoogle Scholar
  150. 150.
    Roberts M, Lindheimer M, Davison JM. Altered glomerular permselectivity to neutral dextrans and heteroporous membrane modeling in human pregnancy. Am J Physiol. 1996;270(2):F338–43.PubMedGoogle Scholar
  151. 151.
    Sturgiss S, Wilkinson R, Davison J. Renal reserve during human pregnancy. Am J Physiol. 1996;271(1):F16–20.PubMedGoogle Scholar
  152. 152.
    Smith M, Moran P, Ward M, Davison J. Assessment of glomerular filtration rate during pregnancy using the MDRD formula. BJOG. 2008;115(1):109–12.PubMedCrossRefGoogle Scholar
  153. 153.
    Akbari A, Lepage N, Keely E, et al. Cystatin-C and beta trace protein as markers of renal function in pregnancy. BJOG. 2005;112(5):575–8.PubMedCrossRefGoogle Scholar
  154. 154.
    Bucht H. Studies on renal function in man; with special reference to glomerular filtration and renal plasma flow in pregnancy. Scand J Clin Lab Invest. 1951;3:1–64.PubMedCrossRefGoogle Scholar
  155. 155.
    Davison J, Hytten F. Glomerular filtration during and after pregnancy. BJOG. 1974;81(8):588–95.CrossRefGoogle Scholar
  156. 156.
    Gibson HM. Plasma volume and glomerular filtration rate in pregnancy and their relation to differences in fetal growth. BJOG. 1973;80(12):1067–74.CrossRefGoogle Scholar
  157. 157.
    Semple P, Carswell W, Boyle J. Serial studies of the renal clearance of urate and inulin during pregnancy and after the puerperium in normal women. Clin Sci Mol Med. 1974;47:559–65.PubMedGoogle Scholar
  158. 158.
    Strevens H, Wide-Swensson D, Torffvit O, Grubb A. Serum cystatin C for assessment of glomerular filtration rate in pregnant and non-pregnant women: indications of altered filtration process in pregnancy. Scand J Clin Lab Invest. 2002;62(2):141–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Combes BA, Adams RH. Pathophysiology of the liver in pregnancy. In: Assali NS, editor. Pathophysiology of gestation. Maternal disorders. Vol. I, 1st edn. New York: Academic Press; 1972. p. 1–617. ISBN:10:0120655012/ISBN:13:9780120655014.Google Scholar
  160. 160.
    Dai G, Bustamante JJ, Zou Y, et al. Maternal hepatic growth response to pregnancy in the mouse. Exp Biol Med. 2011;236(11):1322–32.CrossRefGoogle Scholar
  161. 161.
    Ingerslev M, Teilum G. Biopsy studies on the liver in pregnancy: II. Liver biopsy on normal pregnant women. Acta Obstet Gynecol Scand. 1945;25(3):352–60. doi: 10.3109/00016344509162218.CrossRefGoogle Scholar
  162. 162.
    Robson S, Mutch E, Boys R, Woodhouse K. Apparent liver blood flow during pregnancy: a serial study using indocyanine green clearance. BJOG. 1990;97(8):720–4.CrossRefGoogle Scholar
  163. 163.
    Nakai A, Sekiya I, Oya A, et al. Assessment of the hepatic arterial and portal venous blood flows during pregnancy with Doppler ultrasonography. Arch Gynecol Obstet. 2002;266(1):25–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Clapp JF, Stepanchak W, Tomaselli J, et al. Portal vein blood flow: effects of pregnancy, gravity, and exercise. Am J Obstet Gynecol. 2000;183(1):167–72.PubMedGoogle Scholar
  165. 165.
    Hytten F, Paintin D. Increase in plasma volume during normal pregnancy. BJOG. 1963;70(3):402–7.CrossRefGoogle Scholar
  166. 166.
    Bernstein IM, Ziegler W, Badger GJ. Plasma volume expansion in early pregnancy. Obstet Gynecol. 2001;97(5):669–72.PubMedGoogle Scholar
  167. 167.
    Pirani B, Campbell D, MacGillivray I. Plasma volume in normal first pregnancy. BJOG. 1973;80(10):884–7.CrossRefGoogle Scholar
  168. 168.
    Brody S, Spetz S. Plasma, extracellular, and interstitial fluid volumes in pregnancy complicated by toxaemia. Acta Obstet Gynecol Scand. 1967;46(2):138–50.PubMedGoogle Scholar
  169. 169.
    Chesley L, Duffus G. Posture and apparent plasma volume in late pregnancy. BJOG. 1971;78(5):406–12.CrossRefGoogle Scholar
  170. 170.
    Duffus GM, MacGillivray I, Dennis KJ. The relationship between baby weight and changes in maternal weight, total body water, plasma volume, electrolytes and proteins and urinary oestriol excretion. BJOG. 1971;78(2):97–104.CrossRefGoogle Scholar
  171. 171.
    McLennan C. Plasma volume late in pregnancy. Am J Obstet Gynecol. 1950;59(3):662–6.PubMedCrossRefGoogle Scholar
  172. 172.
    Paintin D. The size of the total red cell volume in pregnancy. BJOG. 1962;69(5):719–23.CrossRefGoogle Scholar
  173. 173.
    Myhrman P, Jansson I, Lundgren Y. Skin blood flow in normal pregnancy measured by venous occlusion plethysmography of the hand. Acta Obstet Gynecol Scand. 1980;59(2):107–10.PubMedCrossRefGoogle Scholar
  174. 174.
    Spetz S. Peripheral circulation during normal pregnancy. Acta Obstet Gynecol Scand. 1964;43(4):309–29.PubMedCrossRefGoogle Scholar
  175. 175.
    Edouard D, Pannier B, London G, et al. Venous and arterial behavior during normal pregnancy. Am J Physiol. 1998;274(5):H1605–12.PubMedGoogle Scholar
  176. 176.
    Sandström B. Calf blood flow during normal primipregnancy. Acta Obstet Gynecol Scand. 1973;52(3):199–204.PubMedCrossRefGoogle Scholar
  177. 177.
    Abramovich D. The volume of amniotic fluid in early pregnancy. BJOG. 1968;75(7):728–31.CrossRefGoogle Scholar
  178. 178.
    Charles D, Jacoby HE, Burgess F. Amniotic fluid volumes in the second half of pregnancy. Am J Obstet Gynecol. 1965;93(7):1042–7.PubMedCrossRefGoogle Scholar
  179. 179.
    Elliott P, Inman W. Volume of liquor amnii in normal and abnormal pregnancy. Obstet Gynecol Surv. 1962;17(2):193–4.CrossRefGoogle Scholar
  180. 180.
    Fuchs F. Volume of amniotic fluid at various stages of pregnancy. Clin Obstet Gynecol. 1966;9(2):449–60.PubMedCrossRefGoogle Scholar
  181. 181.
    Gadd RL. The volume of the liquor amnii in normal and abnormal pregnancies. BJOG. 1966;73(1):11–22.CrossRefGoogle Scholar
  182. 182.
    Gillibrand P. Changes in amniotic fluid volume with advancing pregnancy. BJOG. 1969;76(6):527–9.CrossRefGoogle Scholar
  183. 183.
    Hanon F, Coquoin-Carnot M, Pignard P. Le liquide amniotique. Paris: Masson et Cie Editeurs; 1955.Google Scholar
  184. 184.
    Hutchinson D, Hunter C, Neslen E, Plentl A. The exchange of water and electrolytes in the mechanism of amniotic fluid formation and the relationship to hydramnios. Surg Gynecol Obstet. 1955;100(4):391–6.PubMedGoogle Scholar
  185. 185.
    Lind T, Hytten F. Relation of amniotic fluid volume to fetal weight in the first half of pregnancy. Lancet. 1970;295(7657):1147–9.CrossRefGoogle Scholar
  186. 186.
    Monie I. The volume of the amniotic fluid in the early months of pregnancy. Am J Obstet Gynecol. 1953;66(3):616–25.PubMedCrossRefGoogle Scholar
  187. 187.
    Nelson MM. Amniotic fluid volumes in early pregnancy. BJOG. 1972;79(1):50–3.CrossRefGoogle Scholar
  188. 188.
    Lv Otterlo. Wladimiroff J, Wallenburg H. Relationship between fetal urine production and amniotic fluid volume in normal pregnancy and pregnancy complicated by diabetes. BJOG. 1977;84(3):205–9.CrossRefGoogle Scholar
  189. 189.
    Queenan JT, Thompson W, Whitfield C, Shah SI. Amniotic fluid volumes in normal pregnancies. Am J Obstet Gynecol. 1972;114(1):34–8.PubMedCrossRefGoogle Scholar
  190. 190.
    Rhodes P. The volume of liquor amnii in early pregnancy. BJOG. 1966;73(1):23–6.CrossRefGoogle Scholar
  191. 191.
    Sinha R, Carlton M. The volume and composition of amniotic fluid in early pregnancy. BJOG. 1970;77(3):211–4.CrossRefGoogle Scholar
  192. 192.
    Brace RA, Gilbert WM, Thornburg KL. Vascularization of the ovine amnion and chorion: a morphometric characterization of the surface area of the intramembranous pathway. Am J Obstet Gynecol. 1992;167(6):1747–55.PubMedCrossRefGoogle Scholar
  193. 193.
    Bourne G. The anatomy of the human amnion and chorion. Proc R Soc Med. 1966;59(11 Part 1):1127–8.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Bayer CM, Bani MR, Schneider M, et al. Assessment of breast volume changes during human pregnancy using a three-dimensional surface assessment technique in the prospective CGATE study. Eur J Cancer Prev. 2014;23(3):151–7.PubMedCrossRefGoogle Scholar
  195. 195.
    Cox DB, Kent JC, Casey TM, et al. Breast growth and the urinary excretion of lactose during human pregnancy and early lactation: endocrine relationships. Exp Physiol. 1999;84(02):421–34.PubMedCrossRefGoogle Scholar
  196. 196.
    Hartmann PE, Owns R, Cox DB. Establishing lactation: breast development and control of milk synthesis. Food Nutr Bull. 1996;17(4):1–10.Google Scholar
  197. 197.
    Hytten F. Clinical and chemical studies in human lactation: VI. The functional capacity of the breast. Br Med J. 1954;1(4867):912–5.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Thoresen M, Wesche J. Doppler measurements of changes in human mammary and uterine blood flow during pregnancy and lactation. Acta Obstet Gynecol Scand. 1988;67(8):741–5.PubMedCrossRefGoogle Scholar
  199. 199.
    Eder M, Schneider A, Feussner H, et al. Brustvolumenbestimmung anhand der 3-D-Oberflächengeometrie: Verifizierung der Methode mit Hilfe der Kernspintomographie/Breast volume assessment based on 3D surface geometry: verification of the method using MR imaging. Biomed Tech (Berl). 2008;53(3):112–21.PubMedCrossRefGoogle Scholar
  200. 200.
    Graham S, Stanchev P, Lloyd-Smith J, et al. Changes in fibroglandular volume and water content of breast tissue during the menstrual cycle observed by MR imaging at 1.5 T. J Magn Reson Imaging. 1995;5(6):695–701.PubMedCrossRefGoogle Scholar
  201. 201.
    Jernström H, Henningson M, Johansson U, Olsson H. Coffee intake and CYP1A2* 1F genotype predict breast volume in young women: implications for breast cancer. Br J Cancer. 2008;99(9):1534–8.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Kovacs L, Eder M, Hollweck R, et al. New aspects of breast volume measurement using 3-dimensional surface imaging. Ann Plast Surg. 2006;57(6):602–10.PubMedCrossRefGoogle Scholar
  203. 203.
    Smith DJ Jr, Palin WE Jr, Katch VL, Bennett JE. Breast volume and anthropomorphic measurements: normal values. Plast Reconstruct Surg. 1986;78(3):331–5.CrossRefGoogle Scholar
  204. 204.
    Kovacs L, Eder M, Hollweck R, et al. Comparison between breast volume measurement using 3D surface imaging and classical techniques. Breast. 2007;16(2):137–45.PubMedCrossRefGoogle Scholar
  205. 205.
    Koch MC, Adamietz B, Jud SM, et al. Breast volumetry using a three-dimensional surface assessment technique. Aesthetic Plast Surg. 2011;35(5):847–55.PubMedCrossRefGoogle Scholar
  206. 206.
    Sambrook M, Bamber J, Minasian H, Hill C. Ultrasonic Doppler study of the hormonal response of blood flow in the normal human breast. Ultrasound Med Biol. 1987;13(3):121–9.PubMedCrossRefGoogle Scholar
  207. 207.
    Burd LI, Dorin M, Philipose V, Lemons JA. The relationship of mammary temperature to parturition in human subjects. Am J Obstet Gynecol. 1977;128(3):272–8.PubMedCrossRefGoogle Scholar
  208. 208.
    Abramovich D. Fetal factors influencing the volume and composition of liquor amnii. BJOG. 1970;77(10):865–77.CrossRefGoogle Scholar
  209. 209.
    Blaas HG, Taipale P, Torp H, Eik-Nes S. Three-dimensional ultrasound volume calculations of human embryos and young fetuses: a study on the volumetry of compound structures and its reproducibility. Ultrasound Obstet Gynecol. 2006;27(6):640–6.PubMedCrossRefGoogle Scholar
  210. 210.
    Blaas H-G, Eik-Nes SH, Berg S, Torp H. In-vivo three-dimensional ultrasound reconstructions of embryos and early fetuses. Lancet. 1998;352(9135):1182–6.PubMedCrossRefGoogle Scholar
  211. 211.
    Catalano PM, Tyzbir ED, Allen SR, et al. Evaluation of fetal growth by estimation of neonatal body composition. Obstet Gynecol. 1992;79(1):46–50.PubMedGoogle Scholar
  212. 212.
    Chien PF, Owen P, Khan KS. Validity of ultrasound estimation of fetal weight. Obstet Gynecol. 2000;95(6 Part 1):856–60.PubMedGoogle Scholar
  213. 213.
    Deurloo K, Spreeuwenberg M, Rekoert-Hollander M, van Vugt J. Reproducibility of 3-dimensional sonographic measurements of fetal and placental volume at gestational ages of 11–18 weeks. J Clin Ultrasound. 2007;35(3):125–32.PubMedCrossRefGoogle Scholar
  214. 214.
    Di Naro E, Ghezzi F, Raio L, Franchi M, et al. Umbilical vein blood flow in fetuses with normal and lean umbilical cord. Ultrasound Obstet Gynecol. 2001;17(3):224–8.PubMedCrossRefGoogle Scholar
  215. 215.
    Ghezzi F, Raio L, Di Naro E, et al. First-trimester sonographic umbilical cord diameter and the growth of the human embryo. Ultrasound Obstet Gynecol. 2001;18(4):348–51.PubMedCrossRefGoogle Scholar
  216. 216.
    Gong Q, Roberts N, Garden A, Whitehouse G. Fetal and fetal brain volume estimation in the third trimester of human pregnancy using gradient echo MR imaging. Magn Reson Imaging. 1998;16(3):235–40.PubMedCrossRefGoogle Scholar
  217. 217.
    Gruenwald P, Minh HN. Evaluation of body and organ weights in perinatal pathology. II. Weight of body and placenta of surviving and of autopsied infants. Am J Obstet Gynecol. 1961;82:312–9.PubMedCrossRefGoogle Scholar
  218. 218.
    Hafner E, Schuchter K, Van Leeuwen M, et al. Three-dimensional sonographic volumetry of the placenta and the fetus between weeks 15 and 17 of gestation. Ultrasound Obstet Gynecol. 2001;18(2):116–20.PubMedCrossRefGoogle Scholar
  219. 219.
    Hertig AT, Rock J, Adams EC. A description of 34 human ova within the first 17 days of development. Am J Anat. 1956;98(3):435–93.PubMedCrossRefGoogle Scholar
  220. 220.
    Jackson CM. On the prenatal growth of the human body and the relative growth of the various organs and parts. Am J Anat. 1909;9(1):119–65.CrossRefGoogle Scholar
  221. 221.
    Jirásek J, Uher J, Uhrova M. Water and nitrogen content of the body of young human embryos. Am J Obstet Gynecol. 1966;96:868–71.PubMedCrossRefGoogle Scholar
  222. 222.
    Lind T, Kendall A, Hytten F. The role of the fetus in the formation of amniotic fluid. BJOG. 1972;79(4):289–98.CrossRefGoogle Scholar
  223. 223.
    Little WA. The significance of placental/fetal weight ratios. Am J Obstet Gynecol. 1960;79:134–7.PubMedCrossRefGoogle Scholar
  224. 224.
    Maršál K, Persson PH, Larsen T, et al. Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr. 1996;85(7):843–8.PubMedCrossRefGoogle Scholar
  225. 225.
    Mayhew T, Sørensen FB, Klebe J, Jackson M. The effects of mode of delivery and sex of newborn on placental morphology in control and diabetic pregnancies. J Anat. 1993;183(Pt 3):545–52.PubMedPubMedCentralGoogle Scholar
  226. 226.
    McKeown T, Record R. The influence of placental size on foetal growth according to sex and order of birth. J Endocrinol. 1953;10(1):73–81.PubMedCrossRefGoogle Scholar
  227. 227.
    Milner R, Richards B. An analysis of birth weight by gestational age of infants born in England and Wales, 1967 to 1971. BJOG. 1974;81(12):956–67.CrossRefGoogle Scholar
  228. 228.
    Molteni R, Stys S, Battaglia F. Relationship of fetal and placental weight in human beings: fetal/placental weight ratios at various gestational ages and birth weight distributions. J Reprod Med. 1978;21(5):327–34.PubMedGoogle Scholar
  229. 229.
    Osei E, Faulkner K. Fetal position and size data for dose estimation. Br J Radiol. 1999;72(856):363–70.PubMedCrossRefGoogle Scholar
  230. 230.
    Pantarotto M, Capitani M, Cardone A, et al. Accrescimento intrauterino in una popolazione ligure. Minerva Ginecola. 1974;26:435–82.Google Scholar
  231. 231.
    Reece EA, Smikle C, O’connor TZ, et al. A longitudinal study comparing growth in diabetic pregnancies with growth in normal gestations: I. The fetal weight. Obstet Gynecol Surv. 1990;45(3):160–4.CrossRefGoogle Scholar
  232. 232.
    Rooth G, Meirik O, Karlberg P. Estimation of the “normal” growth of Swedish infants at term preliminary report. Acta Paediatr. 1985;74(s319):76–9.CrossRefGoogle Scholar
  233. 233.
    Rousian M, Koning A, Van Oppenraaij R, et al. An innovative virtual reality technique for automated human embryonic volume measurements. Hum Reprod. 2010;25(9):2210–6.PubMedCrossRefGoogle Scholar
  234. 234.
    Schild R, Fimmers R, Hansmann M. Fetal weight estimation by three-dimensional ultrasound. Ultrasound Obstet Gynecol. 2000;16(5):445–52.PubMedCrossRefGoogle Scholar
  235. 235.
    Thomson A, Billewicz W, Hytten F. The weight of the placenta in relation to birthweight. BJOG. 1969;76(10):865–72.CrossRefGoogle Scholar
  236. 236.
    Verburg BO, Jaddoe VW, Wladimiroff JW, et al. Fetal hemodynamic adaptive changes related to intrauterine growth the generation R study. Circulation. 2008;117(5):649–59.PubMedCrossRefGoogle Scholar
  237. 237.
    Wilcox M, Gardosi J, Mongelli M, et al. Birth weight from pregnancies dated by ultrasonography in a multicultural British population. BMJ. 1993;307(6904):588–91.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Bloom W, Bartelmez G. Hematopoiesis in young human embryos. Am J Anat. 1940;67(1):21–53.CrossRefGoogle Scholar
  239. 239.
    Tavian M, Hallais M-F, Péault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development. 1999;126(4):793–803.PubMedGoogle Scholar
  240. 240.
    Kaplan S, Bolender DL. Embryology. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. 2nd ed. Philadelphia: W.B. Saunders; 1998.Google Scholar
  241. 241.
    Smith G, Cameron AD. Estimating human fetal blood volume on the basis of gestational age and fetal abdominal circumference. BJOG. 2002;109(6):721–2.PubMedCrossRefGoogle Scholar
  242. 242.
    Friis-Hansen B. Water distribution in the foetus and newborn infant. Acta Paediatr. 1983;72(s305):7–11.CrossRefGoogle Scholar
  243. 243.
    Pereira GR, Georgieff MK. Nutritional assessment. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. 2nd ed. Philadelphia: W.B. Saunders; 1998. p. 383–94.Google Scholar
  244. 244.
    Widdowson EM. Growth and composition of the fetus and newborn. In: Assali N, editor. Biology of gestation, 1st edition, vol. II., The fetus and neonateNew York: Academic Press; 1968. p. 1–49.Google Scholar
  245. 245.
    Iob V, Swanson WW. Mineral growth of the human fetus. Am J Dis Chil. 1934;47(2):302–6.Google Scholar
  246. 246.
    Fee B, Weil W. Body composition of infants of diabetic mothers by direct analysis. Ann NY Acad Sci. 1963;110(2):869–97.PubMedCrossRefGoogle Scholar
  247. 247.
    Gellén J, Pintér S, Falkay G, Kovács L. Total water content and chloride concentration in embryo, placenta and decidua in the course of early human pregnancy. BJOG. 1973;80(4):329–32.CrossRefGoogle Scholar
  248. 248.
    Snyder W, Cook M, Nasset E, et al. Report of the task group on reference man. International Commission of Radiological Protection. 1st ed. Oxford: Pergamon Press; 1974.Google Scholar
  249. 249.
    Deans H, Smith F, Lloyd D, et al. Fetal fat measurement by magnetic resonance imaging. Br J Radiol. 1989;62(739):603–7.PubMedCrossRefGoogle Scholar
  250. 250.
    Takashina T. Hematopoiesis in the human yolk-sac. Am J Anat. 1989;184(3):237–44.PubMedCrossRefGoogle Scholar
  251. 251.
    Palis J, Segel G. Developmental biology of erythropoiesis. Blood Rev. 1998;12(2):106–14.PubMedCrossRefGoogle Scholar
  252. 252.
    Kelemen E, Calvo W, Fliedner TM. Atlas of human hemopoietic development, 1st edn. Berlin: Springer; 1979. p. 1–266. doi: 10.1007/978-3-662-11193-2.
  253. 253.
    Buchan P. Maternal and fetal blood viscosity throughout normal pregnancy. J Obstet Gynaecol. 1984;4(3):143–50.CrossRefGoogle Scholar
  254. 254.
    D’Souza S, Black P, MacFarlane T, et al. Haematological values in cord blood in relation to fetal hypoxia. BJOG. 1981;88(2):129–32.CrossRefGoogle Scholar
  255. 255.
    Foley M, Isherwood D, McNicol G. Viscosity, haematocrit, fibrinogen and plasma proteins in maternal and cord blood. BJOG. 1978;85(7):500–4.CrossRefGoogle Scholar
  256. 256.
    Forestier F, Daffos F, Catherine N, et al. Developmental hematopoiesis in normal human fetal blood. Blood. 1991;77(11):2360–3.PubMedGoogle Scholar
  257. 257.
    Forestier F, Daffos F, Galactèros F, et al. Hematological values of 163 normal fetuses between 18 and 30 weeks of gestation. Pediatr Res. 1986;20(4):342–6.PubMedCrossRefGoogle Scholar
  258. 258.
    Linderkamp O, Nelle M, Kraus M, Zilow EP. The effect of early and late cord-clamping on blood viscosity and other hemorheological parameters in full-term neonates. Acta Paediatr. 1992;81(10):745–50.PubMedCrossRefGoogle Scholar
  259. 259.
    Millar D, Davis L, Rodeck C, et al. Normal blood cell values in the early mid-trimester fetus. Prenatal Diagn. 1985;5(6):367–73.CrossRefGoogle Scholar
  260. 260.
    Pahal GS, Jauniaux E, Kinnon C, et al. Normal development of human fetal hematopoiesis between eight and seventeen weeks’ gestation. Am J Obstet Gynecol. 2000;183(4):1029–34.PubMedCrossRefGoogle Scholar
  261. 261.
    Thomas DB, Yoffey J. Human foetal haemopoiesis : the cellular composition of foetal blood. Br J Haematol. 1962;8(3):290–5.PubMedCrossRefGoogle Scholar
  262. 262.
    Kaufmann P, Scheffen I. Placental development. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. 2nd ed. Philadelphia: W.B. Saunders; 1998. p. 59–70.Google Scholar
  263. 263.
    Riccabona M, Nelson T, Pretorius D. Three-dimensional ultrasound: accuracy of distance and volume measurements. Ultrasound Obstet Gynecol. 1996;7(6):429–34.PubMedCrossRefGoogle Scholar
  264. 264.
    Garrow J. The relationship of foetal growth to size and composition of the placenta. Proc R Soc Med. 1970;63(5):498.PubMedPubMedCentralGoogle Scholar
  265. 265.
    Laga EM, Driscoll SG, Munro HN. Comparison of placentas from two socioeconomic groups. I. Morphometry. Pediatrics. 1972;50(1):24–32.PubMedGoogle Scholar
  266. 266.
    Aherne W, Dunnill M. Quantitative aspects of placental structure. J Pathol Bacteriol. 1966;91(1):123–39.PubMedCrossRefGoogle Scholar
  267. 267.
    Leary S, Godfrey K, Greenaway L, et al. Contribution of the umbilical cord and membranes to untrimmed placental weight. Placenta. 2003;24(2):276–8.PubMedCrossRefGoogle Scholar
  268. 268.
    Laga E, Driscoll S, Munro H. Quantitative studies of human placenta I. Morphometry. Neonatology. 1973;23(3–4):231–59.CrossRefGoogle Scholar
  269. 269.
    van den Akker C. Fetal food: preemie’s prerequisite?. Rotterdam: Erasmus Universiteit Rotterdam; 2008.Google Scholar
  270. 270.
    Bouw G, Stolte L, Baak J, Oort J. Quantitative morphology of the placenta II. The growth of the placenta and the problem of postmaturity. Eur J Obstet Gynecol Reprod Biol. 1978;8(1):31–42.PubMedCrossRefGoogle Scholar
  271. 271.
    Boyd PA. Quantitative structure of the normal human placenta from 10 weeks of gestation to term. Early Hum Dev. 1984;9(4):297–307.PubMedCrossRefGoogle Scholar
  272. 272.
    Boyd PA, Scott A. Quantitative structural studies on human placentas associated with pre-eclampsia, essential hypertension and intrauterine growth retardation. BJOG. 1985;92(7):714–21.CrossRefGoogle Scholar
  273. 273.
    Burton G, Jauniaux E. Sonographic, stereological and Doppler flow velocimetric assessments of placental maturity. BJOG. 1995;102(10):818–25.CrossRefGoogle Scholar
  274. 274.
    Bush P, Mayhew T, Abramovich D, et al. A quantitative study on the effects of maternal smoking on placental morphology and cadmium concentration. Placenta. 2000;21(2):247–56.PubMedCrossRefGoogle Scholar
  275. 275.
    Clapp JF, Kim H, Burciu B, et al. Continuing regular exercise during pregnancy: effect of exercise volume on fetoplacental growth. Am J Obstet Gynecol. 2002;186(1):142–7.PubMedCrossRefGoogle Scholar
  276. 276.
    Costoya AL, Leontic EA, Rosenberg HG, Delgado MA. Morphological study of placental terminal villi in intrahepatic cholestasis of pregnancy: histochemistry, light and electron microscopy. Placenta. 1980;1(4):361–8.PubMedCrossRefGoogle Scholar
  277. 277.
    Egbor M, Ansari T, Morris N, et al. Morphometric placental villous and vascular abnormalities in early-and late-onset pre-eclampsia with and without fetal growth restriction. BJOG. 2006;113(5):580–9.PubMedCrossRefGoogle Scholar
  278. 278.
    Egbor M, Ansari T, Morris N, et al. Pre-eclampsia and fetal growth restriction: how morphometrically different is the placenta? Placenta. 2006;27(6):727–34.PubMedCrossRefGoogle Scholar
  279. 279.
    Higgins M, Felle P, Mooney E, et al. Stereology of the placenta in type 1 and type 2 diabetes. Placenta. 2011;32(8):564–9.PubMedCrossRefGoogle Scholar
  280. 280.
    Kuzmina IY, Hubina-Vakulik GI, Burton GJ. Placental morphometry and Doppler flow velocimetry in cases of chronic human fetal hypoxia. Eur J Obstet Gynecol Reprod Biol. 2005;120(2):139–45.PubMedCrossRefGoogle Scholar
  281. 281.
    Mayhew T, Joy C, Haas J. Structure-function correlation in the human placenta: the morphometric diffusing capacity for oxygen at full term. J Anat. 1984;139(Pt 4):691–708.PubMedPubMedCentralGoogle Scholar
  282. 282.
    Lee R, Mayhew T. Star volumes of villi and intervillous pores in placentae from low and high altitude pregnancies. J Anat. 1995;186(Pt 2):349.PubMedPubMedCentralGoogle Scholar
  283. 283.
    Mayhew T. Patterns of villous and intervillous space growth in human placentas from normal and abnormal pregnancies. Eur J Obstet Gynecol Reprod Biol. 1996;68:75–82.PubMedCrossRefGoogle Scholar
  284. 284.
    Mayhew T, Bowles C, Yücel F. Hypobaric hypoxia and villous trophoblast: evidence that human pregnancy at high altitude (3600 m) perturbs epithelial turnover and coagulation-fibrinolysis in the intervillous space. Placenta. 2002;23(2):154–62.PubMedCrossRefGoogle Scholar
  285. 285.
    Mayhew T, Jenkins H, Todd B, Clifton V. Maternal asthma and placental morphometry: effects of severity, treatment and fetal sex. Placenta. 2008;29(4):366–73.PubMedCrossRefGoogle Scholar
  286. 286.
    Odibo A, Zhong Y, Longtine M, et al. First-trimester serum analytes, biophysical tests and the association with pathological morphometry in the placenta of pregnancies with preeclampsia and fetal growth restriction. Placenta. 2011;32(4):333–8.PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Ong S, Tyler D, Moore R, et al. Functional magnetic resonance imaging (magnetization transfer) and stereological analysis of human placentae in normal pregnancy and in pre-eclampsia and intrauterine growth restriction. Placenta. 2004;25(5):408–12.PubMedCrossRefGoogle Scholar
  288. 288.
    Reshetnikova OS, Burton GJ, Teleshova OV. Placental histomorphometry and morphometric diffusing capacity of the villous membrane in pregnancies complicated by maternal iron-deficiency anemia. Am J Obstet Gynecol. 1995;173(3):724–7.PubMedCrossRefGoogle Scholar
  289. 289.
    Teasdale F. Histomorphometry of the placenta of the diabetic woman: class A diabetes mellitus. Placenta. 1981;2(3):241–51.PubMedCrossRefGoogle Scholar
  290. 290.
    Rocha J, Matheus M, Sala M. Effect of cigarette smoke on human placenta morphometry. Int J Gynecol Obstet. 1998;62(3):237–42.CrossRefGoogle Scholar
  291. 291.
    Antsaklis A, Anastasakis E, Komita O, et al. First trimester 3D volumetry: association of the gestational volumes with the birth weight. J Matern Fetal Neonatal Med. 2011;24(8):1055–9.PubMedCrossRefGoogle Scholar
  292. 292.
    Bergmann A, Zygmunt M, Clapp J. Running throughout pregnancy: effect on placental villous vascular volume and cell proliferation. Placenta. 2004;25(8):694–8.PubMedCrossRefGoogle Scholar
  293. 293.
    Bleker O, Kloosterman G, Breur W, Mieras D. The volumetric growth of the human placenta: a longitudinal ultrasonic study. Am J Obstet Gynecol. 1977;127(6):657–61.PubMedCrossRefGoogle Scholar
  294. 294.
    Bujold E, Effendi M, Girard M, et al. Reproducibility of first trimester three-dimensional placental measurements in the evaluation of early placental insufficiency. J Obstet Gynaecol Can. 2009;31(12):1144–8.PubMedCrossRefGoogle Scholar
  295. 295.
    Burton G, Reshetnikova O, Milovanov A, Teleshova O. Stereological evaluation of vascular adaptations in human placental villi to differing forms of hypoxic stress. Placenta. 1996;17(1):49–55.PubMedCrossRefGoogle Scholar
  296. 296.
    Clapp JF, Kim H, Burciu B, Lopez B. Beginning regular exercise in early pregnancy: effect on fetoplacental growth. Am J Obstet Gynecol. 2000;183(6):1484–8.PubMedCrossRefGoogle Scholar
  297. 297.
    Clapp JF, Rizk KH, Appleby-Wineberg SK, Crass JR. Second-trimester placental volumes predict birth weight at term. J Soc Gynecol Invest. 1995;2(1):19–22.CrossRefGoogle Scholar
  298. 298.
    Derwig IE, Akolekar R, Zelaya FO, et al. Association of placental volume measured by MRI and birth weight percentile. J Magn Reson Imaging. 2011;34(5):1125–30.PubMedCrossRefGoogle Scholar
  299. 299.
    Flo K, Wilsgaard T, Vårtun Å, Acharya G. A longitudinal study of the relationship between maternal cardiac output measured by impedance cardiography and uterine artery blood flow in the second half of pregnancy. BJOG. 2010;117(7):837–44.PubMedCrossRefGoogle Scholar
  300. 300.
    Geirsson R, Ogston S, Patel N, Christie A. Growth of total intrauterine, intra-amniotic and placental volume in normal singleton pregnancy measured by ultrasound. Br J Obstet Gynaecol. 1985;92(1):46–53.PubMedCrossRefGoogle Scholar
  301. 301.
    Guyomard A, Macé G, Ferdynus C, et al. Reference ranges and distribution of placental volume by 3-dimensional virtual organ computer-aided analysis between 11 and 13 weeks 6 days. J Ultrasound Med. 2013;32(8):1477–82.PubMedCrossRefGoogle Scholar
  302. 302.
    Hafner E, Metzenbauer M, Höfinger D, et al. Placental growth from the first to the second trimester of pregnancy in SGA-foetuses and pre-eclamptic pregnancies compared to normal foetuses. Placenta. 2003;24(4):336–42.PubMedCrossRefGoogle Scholar
  303. 303.
    Hellman LM, Kobayashi M, Tolles W, Cromb E. Ultrasonic studies on the volumetric growth of the human placenta. Am J Obstet Gynecol. 1970;108(5):740–50.PubMedCrossRefGoogle Scholar
  304. 304.
    Hohler CW II, Bardawil WA, Mitchell GW Jr. Placental weight and water content relative to blood types of human mothers and their offspring. Obstet Gynecol. 1972;40(6):799–806.PubMedGoogle Scholar
  305. 305.
    Hoopmann M, Schermuly S, Abele H, et al. First trimester pregnancy volumes and subsequent small for gestational age fetuses. Arch Gynecol Obstet. 2014;290(1):41–6.PubMedCrossRefGoogle Scholar
  306. 306.
    Howe D, Wheeler T, Osmond C. The influence of maternal haemoglobin and ferritin on mid-pregnancy placental volume. Br J Obstet Gynaecol. 1995;102(3):213–9.PubMedCrossRefGoogle Scholar
  307. 307.
    Huster KM, Haas K, Schoenborn J, et al. Reproducibility of placental volume and vasculature indices obtained by 3-dimensional power Doppler sonography. J Ultrasound Med. 2010;29(6):911–6.PubMedCrossRefGoogle Scholar
  308. 308.
    Jones NW, Raine-Fenning NJ, Mousa HA, et al. Evaluating the intra-and interobserver reliability of three-dimensional ultrasound and power Doppler angiography (3D-PDA) for assessment of placental volume and vascularity in the second trimester of pregnancy. Ultrasound Med Biol. 2011;37(3):376–85.PubMedCrossRefGoogle Scholar
  309. 309.
    Jones TB, Price RR, Gibbs SJ. Volumetric determination of placental and uterine growth relationships from B-mode ultrasound by serial area-volume determinations. Invest Radiol. 1981;16(2):101–6.PubMedCrossRefGoogle Scholar
  310. 310.
    Larsen LG, Clausen HV, Andersen B, Græm N. A stereologic study of postmature placentas fixed by dual perfusion. Am J Obstet Gynecol. 1995;172(2):500–7.PubMedCrossRefGoogle Scholar
  311. 311.
    Little RE, Zadorozhnaja TD, Hulchiy OP, et al. Placental weight and its ratio to birthweight in a Ukrainian city. Early Hum Dev. 2003;71(2):117–27.PubMedCrossRefGoogle Scholar
  312. 312.
    Michailidis G, Morris R, Mamopoulos A, et al. The influence of maternal hematocrit on placental development from the first to the second trimesters of pregnancy. Ultrasound Obstet Gynecol. 2002;20(4):351–5.PubMedCrossRefGoogle Scholar
  313. 313.
    Pala HG, Artunc-Ulkumen B, Koyuncu FM, Bulbul-Baytur Y. Three-dimensional ultrasonographic placental volume in gestational diabetes mellitus. J Maternal-Fetal Neonatal Med. 2016;29(4):610–4. doi: 10.3109/14767058.2015.1012066.CrossRefGoogle Scholar
  314. 314.
    Pardi G, Cetin I. Human fetal growth and organ development: 50 years of discoveries. Am J Obstet Gynecol. 2006;194(4):1088–99.PubMedCrossRefGoogle Scholar
  315. 315.
    Perry IJ, Beevers D, Whincup P, Bareford D. Predictors of ratio of placental weight to fetal weight in multiethnic community. BMJ. 1995;310(6977):436–9.PubMedPubMedCentralCrossRefGoogle Scholar
  316. 316.
    Pomorski M, Zimmer M, Florjanski J, et al. Comparative analysis of placental vasculature and placental volume in normal and IUGR pregnancies with the use of three-dimensional power Doppler. Arch Gynecol Obstet. 2012;285(2):331–7.PubMedCrossRefGoogle Scholar
  317. 317.
    Pomorski M, Zimmer M, Fuchs T, et al. Quantitative assessment of placental vasculature and placental volume in normal pregnancies with the use of 3D power Doppler. Adv Med Sci. 2014;59(1):23–7.PubMedCrossRefGoogle Scholar
  318. 318.
    Rizzo G, Capponi A, Pietrolucci ME, Arduini D. Effects of maternal cigarette smoking on placental volume and vascularization measured by 3-dimensional power Doppler ultrasonography at 11 + 0 to 13 + 6 weeks of gestation. Am J Obstet Gynecol. 2009;200(4):415 (e1–5).PubMedCrossRefGoogle Scholar
  319. 319.
    Semczuk-Sikora A, Krzyzanowski A, Stachowicz N, et al. Maternal serum concentration of angiogenic factors: PIGF, VEGF and VEGFR-1 and placental volume in pregnancies complicated by intrauterine growth restriction. Ginekologia Polska. 2007;78(10):783–6.PubMedGoogle Scholar
  320. 320.
    Simpson R, Mayhew T, Barnes P. From 13 weeks to term, the trophoblast of human placenta grows by the continuous recruitment of new proliferative units: a study of nuclear number using the disector. Placenta. 1992;13(5):501–12.PubMedCrossRefGoogle Scholar
  321. 321.
    Stampalija T, Pagnini G, Di Martino D, et al. Placental volume and uterine artery Doppler correlation in first trimester of pregnancy. Ultrasound Obstet Gynecol. 2011;38(S1):80–1.Google Scholar
  322. 322.
    Veersema D, Vossen M, Uttendorfsky O, Hoogland H. The volumetric growth of the human placenta: a preliminary report of a computer-supported ultrasonographic study. In: Rolfe P, editor. Fetal physiological measurements. 1st ed. Oxford: Butterworth-Heinemann; 1986. p. 49–52.CrossRefGoogle Scholar
  323. 323.
    Wegrzyn P, Faro C, Falcon O, et al. Placental volume measured by three-dimensional ultrasound at 11 to 13 + 6 weeks of gestation: relation to chromosomal defects. Ultrasound Obstet Gynecol. 2005;26(1):28–32.PubMedCrossRefGoogle Scholar
  324. 324.
    Woelfer B, Hafner E, Metzenbauer M, et al. The influence of leptin on placental and fetal volume measured by three-dimensional ultrasound in the second trimester. Placenta. 2005;26(2):124–8.PubMedCrossRefGoogle Scholar
  325. 325.
    Wolf H, Oosting H, Treffers PE. Placental volume measurement by ultrasonography: evaluation of the method. Am J Obstet Gynecol. 1987;156(5):1191–4.PubMedCrossRefGoogle Scholar
  326. 326.
    Wolf H, Oosting H, Treffers PE. Second-trimester placental volume measurement by ultrasound: prediction of fetal outcome. Am J Obstet Gynecol. 1989;160(1):121–6.PubMedCrossRefGoogle Scholar
  327. 327.
    Wolf H, Oosting H, Treffers PE. A longitudinal study of the relationship between placental and fetal growth as measured by ultrasonography. Am J Obstet Gynecol. 1989;161(5):1140–5.PubMedCrossRefGoogle Scholar
  328. 328.
    Artunc Ulkumen B, Pala H, Uyar Y, et al. The alteration in placental volume and placental mean grey value in growth-restricted pregnancies assessed by 3D ultrasound (growth restriction and 3D ultrasonography). J Obstet Gynaecol. J Obstet Gynaecol. 2015;35(5):447–50.PubMedCrossRefGoogle Scholar
  329. 329.
    Bouw G, Stolte L, Baak J, Oort J. Quantitative morphology of the placenta 1. Standardization of sampling. Eur J Obstet Gynecol Reprod Biol. 1976;6(6):325–31.CrossRefGoogle Scholar
  330. 330.
    Cabezon C, Jurado M, López G. Histometry of the placental structures involved in the respiratory interchange. Acta Obstet Gynecol Scand. 1985;64(5):411–6.PubMedCrossRefGoogle Scholar
  331. 331.
    Larsen LG, Clausen HV, Jønsson L. Stereologic examination of placentas from mothers who smoke during pregnancy. Am J Obstet Gynecol. 2002;186(3):531–7.PubMedCrossRefGoogle Scholar
  332. 332.
    Yin T, Loughna P, Ong S, et al. No correlation between ultrasound placental grading at 31–34 weeks of gestation and a surrogate estimate of organ function at term obtained by stereological analysis. Placenta. 2009;30(8):726–30.PubMedCrossRefGoogle Scholar
  333. 333.
    Kliman HJ. The umbilical cord. In: Knobil EN, Jimmy D, editors. Encyclopedia of Reproduction. New York: Academic Press; 1998. p. 585–96.Google Scholar
  334. 334.
    Hill LM, DiNofrio DM, Guzick D. Sonographic determination of first trimester umbilical cord length. J Clin Ultrasound. 1994;22(7):435–8.PubMedCrossRefGoogle Scholar
  335. 335.
    Naeye RL. Umbilical cord length: clinical significance. J Pediatr. 1985;107(2):278–81.PubMedCrossRefGoogle Scholar
  336. 336.
    Stefos T, Sotiriadis A, Vasilios D, et al. Umbilical cord length and parity: the Greek experience. Eur J Obstet Gynecol Reprod Biol. 2003;107(1):41–4.PubMedCrossRefGoogle Scholar
  337. 337.
    Predanic M, Perni SC. Absence of a relationship between umbilical cord thickness and coiling patterns. J Ultrasound Med. 2005;24(11):1491–6.PubMedCrossRefGoogle Scholar
  338. 338.
    Raio L, Ghezzi F, Cromi A, et al. Sonographic morphology and hyaluronan content of umbilical cords of healthy and Down syndrome fetuses in early gestation. Early Hum Dev. 2004;77(1):1–12.PubMedCrossRefGoogle Scholar
  339. 339.
    Raio L, Ghezzi F, Di Naro E, et al. Sonographic measurement of the umbilical cord and fetal anthropometric parameters. Eur J Obstet Gynecol Reprod Biol. 1999;83(2):131–5.PubMedCrossRefGoogle Scholar
  340. 340.
    Sgambati E, Marini M, Thyrion GDZ, et al. Lectin binding in the umbilical cord in altered glycemia. Eur J Obstet Gynecol Reprod Biol. 2007;130(1):30–41.PubMedCrossRefGoogle Scholar
  341. 341.
    Weissman A, Jakobi P, Bronshtein M, Goldstein I. Sonographic measurements of the umbilical cord and vessels during normal pregnancies. J Ultrasound Med. 1994;13(1):11–4.PubMedCrossRefGoogle Scholar
  342. 342.
    Fitzgerald D, Drumm J. Non-invasive measurement of human fetal circulation using ultrasound: a new method. BMJ. 1977;2(6100):1450–1.PubMedPubMedCentralCrossRefGoogle Scholar
  343. 343.
    Barbera A, Galan HL, Ferrazzi E, et al. Relationship of umbilical vein blood flow to growth parameters in the human fetus. Am J Obstet Gynecol. 1999;181(1):174–9.PubMedCrossRefGoogle Scholar
  344. 344.
    Bellotti M, Pennati G, De Gasperi C, et al. Role of ductus venosus in distribution of umbilical blood flow in human fetuses during second half of pregnancy. Am J Physiol. 2000;279(3):H1256–63.Google Scholar
  345. 345.
    Bellotti M, Pennati G, De Gasperi C, et al. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am J Obstet Gynecol. 2004;190(5):1347–58.PubMedCrossRefGoogle Scholar
  346. 346.
    Boito S, Struijk P, Ursem N, et al. Umbilical venous volume flow in the normally developing and growth-restricted human fetus. Ultrasound Obstet Gynecol. 2002;19(4):344–9.PubMedCrossRefGoogle Scholar
  347. 347.
    Di Naro E, Raio L, Ghezzi F, et al. Longitudinal umbilical vein blood flow changes in normal and growth-retarded fetuses. Acta Obstet Gynecol Scand. 2002;81(6):527–33.PubMedCrossRefGoogle Scholar
  348. 348.
    Flo K, Wilsgaard T, Acharya G. Longitudinal reference ranges for umbilical vein blood flow at a free loop of the umbilical cord. Ultrasound Obstet Gynecol. 2010;36(5):567–72.PubMedCrossRefGoogle Scholar
  349. 349.
    Gerson AG, Wallace DM, Stiller RJ, et al. Doppler evaluation of umbilical venous and arterial blood flow in the second and third trimesters of normal pregnancy. Obstet Gynecol. 1987;70(4):622–6.PubMedGoogle Scholar
  350. 350.
    Haugen G, Kiserud T, Godfrey K, et al. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol. 2004;24(6):599–605.PubMedCrossRefGoogle Scholar
  351. 351.
    Kiserud T, Rasmussen S, Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol. 2000;182(1):147–53.PubMedCrossRefGoogle Scholar
  352. 352.
    Lees C, Albaiges G, Deane C, et al. Assessment of umbilical arterial and venous flow using color Doppler. Ultrasound Obstet Gynecol. 1999;14(4):250–5.PubMedCrossRefGoogle Scholar
  353. 353.
    Link G, Clark KE, Lang U. Umbilical blood flow during pregnancy: evidence for decreasing placental perfusion. Am J Obstet Gynecol. 2007;196(5):489 (e1–7).PubMedCrossRefGoogle Scholar
  354. 354.
    Rizzo G, Capponi A, Elena Pietrolucci M, Arduini D. Umbilical vein blood flow at 11 + 0 to 13 + 6 weeks of gestation. J Matern Fetal Neonatal Med. 2010;23(4):315–9.PubMedCrossRefGoogle Scholar
  355. 355.
    Sutton MGSJ, Plappert T, Doubilet P. Relationship between placental blood flow and combined ventricular output with gestational age in normal human fetus. Cardiovasc Res. 1991;25(7):603–8.PubMedCrossRefGoogle Scholar
  356. 356.
    Sutton MSJ, Theard MA, Bhatia SJ, et al. Changes in placental blood flow in the normal human fetus with gestational age. Pediatr Res. 1990;28(4):383–7.PubMedCrossRefGoogle Scholar
  357. 357.
    Tchirikov M, Rybakowski C, Hüneke B, et al. Umbilical vein blood volume flow rate and umbilical artery pulsatility as ‘venous-arterial index’in the prediction of neonatal compromise. Ultrasound Obstet Gynecol. 2002;20(6):580–5.PubMedCrossRefGoogle Scholar
  358. 358.
    Tchirikov M, Rybakowski C, Hüneke B, Schröder HJ. Blood flow through the ductus venosus in singleton and multifetal pregnancies and in fetuses with intrauterine growth retardation. Am J Obstet Gynecol. 1998;178(5):943–9.PubMedCrossRefGoogle Scholar
  359. 359.
    Tchirikov M, Strohner M, Förster D, Hüneke B. A combination of umbilical artery PI and normalized blood flow volume in the umbilical vein: venous-arterial index for the prediction of fetal outcome. Eur J Obstet Gynecol Reprod Biol. 2009;142(2):129–33.PubMedCrossRefGoogle Scholar
  360. 360.
    Vimpeli T, Huhtala H, Wilsgaard T, Acharya G. Fetal cardiac output and its distribution to the placenta at 11–20 weeks of gestation. Ultrasound Obstet Gynecol. 2009;33(3):265–71.PubMedCrossRefGoogle Scholar
  361. 361.
    Yamada T, Okamoto Y, Kasamatsu H, et al. Factors affecting the volume of umbilical cord blood collections. Acta Obstet Gynecol Scand. 2000;79(10):830–3.PubMedGoogle Scholar
  362. 362.
    Togni F, Araújo E, Vasques F, et al. The cross-sectional area of umbilical cord components in normal pregnancy. Int J Gynecol Obstet. 2007;96(3):156–61.CrossRefGoogle Scholar
  363. 363.
    Hytten F, Cheyne G. The size and composition of the human pregnant uterus. BJOG. 1969;76(5):400–3.CrossRefGoogle Scholar
  364. 364.
    Morrione TG, Seifter S. Alteration in the collagen content of the human uterus during pregnancy and post partum involution. J Exp Med. 1962;115(2):357–65.PubMedPubMedCentralCrossRefGoogle Scholar
  365. 365.
    Stieve H. Über die Neubildung von Muskelzellen in der Wand der schwangeren menschlichen Gebärmutter. Zentralbl Gynakol. 1932;56:1442–51.Google Scholar
  366. 366.
    Woessner J. Formation and breakdown of collagen and elastin in the human uterus during pregnancy and post-partum involution. Biochem J. 1963;89(1):75–81.PubMedCrossRefGoogle Scholar
  367. 367.
    Lee A, Sator M, Kratochwil A, et al. Endometrial volume change during spontaneous menstrual cycles: volumetry by transvaginal three-dimensional ultrasound. Fertil Steril. 1997;68(5):831–5.PubMedCrossRefGoogle Scholar
  368. 368.
    Raine-Fenning N, Campbell B, Collier J, et al. The reproducibility of endometrial volume acquisition and measurement with the VOCAL-imaging program. Ultrasound Obstet Gynecol. 2002;19(1):69–75.PubMedCrossRefGoogle Scholar
  369. 369.
    Schild R, Indefrei D, Eschweiler S, et al. Three-dimensional endometrial volume calculation and pregnancy rate in an in vitro fertilization programme. Hum Reprod. 1999;14(5):1255–8.PubMedCrossRefGoogle Scholar
  370. 370.
    Schild RL, Knobloch C, Dorn C, et al. Endometrial receptivity in an in vitro fertilization program as assessed by spiral artery blood flow, endometrial thickness, endometrial volume, and uterine artery blood flow. Fertil Steril. 2001;75(2):361–6.PubMedCrossRefGoogle Scholar
  371. 371.
    Lai C, Yung S, Ng E. Endometrial vascularity is lower in pregnancies with pregnancy-induced hypertension or small-for-gestational-age fetus in live birth after in vitro fertilization. Ultrasound Obstet Gynecol. 2014;44(4):455–60.PubMedCrossRefGoogle Scholar
  372. 372.
    Pates JA, Hatab MR, McIntire DD, et al. Determining uterine blood flow in pregnancy with magnetic resonance imaging. Magn Reson Imaging. 2010;28(4):507–10.PubMedCrossRefGoogle Scholar
  373. 373.
    Rosenfeld C, Morriss F Jr, Makowski E, et al. Circulatory changes in the reproductive tissues of ewes during pregnancy. Gynecol Obstet Invest. 1974;5(5–6):252–68.CrossRefGoogle Scholar
  374. 374.
    Wehrenberg W, Chaichareon D, Dierschke D, et al. Vascular dynamics of the reproductive tract in the female rhesus monkey: relative contributions of ovarian and uterine arteries. Biol Reprod. 1977;17(1):148–53.PubMedCrossRefGoogle Scholar
  375. 375.
    Konje JC, Kaufmann P, Bell SC, Taylor DJ. A longitudinal study of quantitative uterine blood flow with the use of color power angiography in appropriate for gestational age pregnancies. Am J Obstet Gynecol. 2001;185(3):608–13.PubMedCrossRefGoogle Scholar
  376. 376.
    Rigano S, Ferrazzi E, Boito S, et al. Blood flow volume of uterine arteries in human pregnancies determined using 3D and bi-dimensional imaging, angio-Doppler, and fluid-dynamic modeling. Placenta. 2010;31(1):37–43.PubMedCrossRefGoogle Scholar
  377. 377.
    Bernstein IM, Ziegler WF, Leavitt T, Badger GJ. Uterine artery hemodynamic adaptations through the menstrual cycle into early pregnancy. Obstet Gynecol. 2002;99(4):620–4.PubMedGoogle Scholar
  378. 378.
    Hale SA, Schonberg A, Badger GJ, Bernstein IM. Relationship between prepregnancy and early pregnancy uterine blood flow and resistance index. Reprod Sci. 2009;16(11):1091–6.PubMedPubMedCentralCrossRefGoogle Scholar
  379. 379.
    Konje JC, Howarth ES, Kaufmann P, Taylor DJ. Longitudinal quantification of uterine artery blood volume flow changes during gestation in pregnancies complicated by intrauterine growth restriction. BJOG. 2003;110(3):301–5.PubMedCrossRefGoogle Scholar
  380. 380.
    Novy M, Thomas C, Lees M. Uterine contractility and regional blood flow responses to oxytocin and prostaglandin E2 in pregnant rhesus monkeys. Am J Obstet Gynecol. 1975;122(4):419–33.PubMedCrossRefGoogle Scholar
  381. 381.
    Jouppila R, Jouppila P, Hollmen A, Kuikka J. Effect of segmental extradural analgesia on placental blood flow during normal labour. Br J Anaesth. 1978;50(6):563–7.PubMedCrossRefGoogle Scholar
  382. 382.
    Kauppila A, Koskinen M, Puolakka J, et al. Decreased intervillous and unchanged myometrial blood flow in supine recumbency. Obstet Gynecol. 1980;55(2):203–5.PubMedGoogle Scholar
  383. 383.
    Rekonen A, Luotola H, Pltkänen M, et al. Measurement of intervillous and myometrial blood flow by an intravenous 133Xe method. Br J Obstet Gynaecol. 1976;83(9):723–8.PubMedCrossRefGoogle Scholar
  384. 384.
    Jansson I. 133xenon clearance in the myometrium of pregnant and non-pregnant women. Acta Obstet Gynecol Scand. 1969;48(3):302–21.PubMedCrossRefGoogle Scholar
  385. 385.
    Browne J, Veall N. The maternal placental blood flow in normotensive and hypertensive women. BJOG. 1953;60(2):141–7.CrossRefGoogle Scholar
  386. 386.
    Wang YZ, Shuang Z. Vascular biology of the placenta. In: Wang YZ, ediotr. Colloquium series on integrated systems physiology: from molecule to function. Vol. 2. No. 1. San Rafael: Morgan & Claypool Life Sciences; 2010. p. 3–12. doi: 10.4199/C00016ED1V01Y201008ISP009.
  387. 387.
    Hustin J, Schaaps J-P. Echocardiograhic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol. 1987;157(1):162–8.PubMedCrossRefGoogle Scholar
  388. 388.
    Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;80(2):283–5.PubMedGoogle Scholar
  389. 389.
    Jauniaux E, Johnson MR, Jurkovic D, et al. The role of relaxin in the development of the uteroplacental circulation in early pregnancy. Obstet Gynecol. 1994;84(3):338–42.PubMedGoogle Scholar
  390. 390.
    Forssman L. Distribution of blood flow in myomatous uteri as measured by locally injected 133Xenon. Acta Obstet Gynecol Scand. 1976;55(2):101–4.PubMedCrossRefGoogle Scholar
  391. 391.
    Roberts VH, Lo JO, Salati JA, et al. Quantitative assessment of placental perfusion by contrast-enhanced ultrasound in macaques and human subjects. Am J Obstet Gynecol. 2016;214(3):369 (e1–8).PubMedPubMedCentralCrossRefGoogle Scholar
  392. 392.
    McGuire S. IOM (Institute of Medicine) and NRC (National Research Council). 2013. Supplemental nutrition assistance program: examining the evidence to define benefit adequacy. Washington, DC: The National Academies Press, 2013. Adv Nutr. 2013;4(4):477–8.PubMedPubMedCentralCrossRefGoogle Scholar
  393. 393.
    Krutzen E, Olofsson P, Bäck S-E, Nilsson-Ehle P. Glomerular filtration rate in pregnancy: a study in normal subjects and in patients with hypertension, preeclampsia and diabetes. Scand J Clin Lab Invest. 1992;52(5):387–92.PubMedCrossRefGoogle Scholar
  394. 394.
    Chesley LC. Plasma and red cell volumes during pregnancy. Am J Obstet Gynecol. 1972;112(3):440–50.PubMedCrossRefGoogle Scholar
  395. 395.
    Hays PM, Cruikshank DP, Dunn LJ. Plasma volume determination in normal and preeclamptic pregnancies. Am J Obstet Gynecol. 1985;151(7):958–66.PubMedCrossRefGoogle Scholar
  396. 396.
    Käauäaur K, Jouppila P, Kuikka J, et al. Intervillous blood flow in normal and complicated late pregnancy measured by means of an intravenous 133Xe method. Acta Obstet Gynecol Scand. 1980;59(1):7–10.CrossRefGoogle Scholar
  397. 397.
    de Almeida Pimenta EJ, de Paula CFS, Campos JADB, et al. Three-dimensional sonographic assessment of placental volume and vascularization in pregnancies complicated by hypertensive disorders. J Ultrasound Med. 2014;33(3):483–91.PubMedCrossRefGoogle Scholar
  398. 398.
    Willmann S, Edginton A, Coboeken K, et al. Risk to the breast-fed neonate from codeine treatment to the mother: a quantitative mechanistic modeling study. Clin Pharmacol Ther. 2009;86(6):634–43.PubMedCrossRefGoogle Scholar
  399. 399.
    Stultz EE, Stokes JL, Shaffer ML, et al. Extent of medication use in breastfeeding women. Breastfeed Med. 2007;2(3):145–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Pharmaceutical and Medical Chemistry, Clinical PharmacyWestfälische Wilhelm-University MünsterMünsterGermany
  2. 2.ET-TD-ET Systems Pharmacology CVBayer AGLeverkusenGermany
  3. 3.DD-CS Clinical PharmacometricsBayer AGWuppertalGermany

Personalised recommendations