Advertisement

Novel Therapeutic Approaches and Targets Currently Under Evaluation for Renal Cell Carcinoma: Waiting for the Revolution

  • Veronica Mollica
  • Vincenzo Di NunnoEmail author
  • Lidia Gatto
  • Matteo Santoni
  • Alessia Cimadamore
  • Liang Cheng
  • Antonio Lopez-Beltran
  • Rodolfo Montironi
  • Salvatore Pisconti
  • Nicola Battelli
  • Francesco Massari
Review Article
  • 67 Downloads

Abstract

Management of metastatic renal cell carcinoma has drastically changed in the last few years, witnessing the advent of more and more target therapies and, recently, of immune-checkpoint inhibitors. On the other hand, the adjuvant setting still lacks a clear beneficial treatment. Medical treatment still remains a compelling challenge. A large number of clinical trials is ongoing with the aim to identify new therapeutic approaches to expand the options in our repertoire. Several strategies are under investigation in renal cell carcinoma (RCC). These include new targeted agents and combinations of target therapy and immunotherapy. Programmed death receptor-1 (PD-1), programmed death receptor ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen 4 (CTLA4) are just part of the intricate network that regulates our immune response to cancer cells. Co-stimulators, such as glucocorticoid-induced TNFR-related protein (GITR) and tumor necrosis factor receptor superfamily, member 4 (OX40), and co-repressors, example.g. T cell immunoglobulin and mucin domain 3 (TIM-3) and lymphocyte-activation gene 3 (LAG-3), also take part. As knowledge of the functioning of the immune system grows, so do these pathways to target with new drugs. This review is an overview of the current state of the clinical research, providing a report of ongoing Phase I, II and III clinical trials for localized and metastatic RCC, including novel target therapies, novel immunotherapy agents and new combinations strategies.

Notes

Compliance with ethical standards

Funding

The authors declare that no source of funding was obtained for this research.

Conflict of interest

Mollica V, Di Nunno V, Gatto L, Santoni M, Cimadamore A, Cheng L, Lopez- Beltran A, Montironi R, Pisconti S, Battelli N and Massari F declare no potential conflicts of interest with respect to the research, authorship, and/or publication of the article.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.  https://doi.org/10.3322/caac.21442.Google Scholar
  2. 2.
    Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med. 2017;376:354–66.  https://doi.org/10.1056/NEJMra1601333.Google Scholar
  3. 3.
    Santoni M, Massari F, Piva F, Carrozza F, Di Nunno V, Cimadamore A, et al. Tivozanib for the treatment of renal cell carcinoma. Expert Opin Pharmacother. 2018;19(9):1021–5.  https://doi.org/10.1080/14656566.2018.1480722.Google Scholar
  4. 4.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.  https://doi.org/10.1056/NEJMoa1510665.Google Scholar
  5. 5.
    Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.  https://doi.org/10.1056/NEJMoa1712126.Google Scholar
  6. 6.
    Bhindi B, Abel EJ, Albiges L, Bensalah K, Boorjian SA, Daneshmand S, et al. Systematic review of the role of cytoreductive nephrectomy in the targeted therapy era and beyond: an individualized approach to metastatic renal cell carcinoma. Eur Urol. 2019;75(1):111–28.  https://doi.org/10.1016/j.eururo.2018.09.016.Google Scholar
  7. 7.
    Massari F, Di Nunno V, Gatto L, Santoni M, Schiavina R, Cosmai L, et al. Should carmena really change our attitude towards cytoreductive nephrectomy in metastatic renal cell carcinoma? A systematic review and meta-analysis evaluating cytoreductive nephrectomy in the era of targeted therapy. Target Oncol. 2018;13(6):705–14.  https://doi.org/10.1007/s11523-018-0601-2.Google Scholar
  8. 8.
    Ravaud A, Motzer RJ, Pandha HS, George DJ, Pantuck AJ, Patel A, et al. Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N Engl J Med. 2016;375(23):2246–54.  https://doi.org/10.1056/NEJMoa1611406.Google Scholar
  9. 9.
    Massari F, Di Nunno V, Ciccarese C, Graham J, Porta C, Comito F, et al. Adjuvant therapy in renal cell carcinoma. Cancer Treat Rev. 2017;60:152–7.  https://doi.org/10.1016/j.ctrv.2017.09.004.Google Scholar
  10. 10.
    Leonetti A, Zielli T, Buti S. Adjuvant tyrosine kinase inhibitors for renal cell carcinoma? No, thank you (at least for the present). Future Oncol. 2018;14(22):2223–4.  https://doi.org/10.2217/fon-2018-0304.Google Scholar
  11. 11.
    Massari F, Di Nunno V, Mollica V, Graham J, Gatto L, Heng D. Adjuvant tyrosine kinase inhibitors in treatment of renal cell carcinoma: a meta-analysis of available clinical trials. Clin Genitourin Cancer. 2019.  https://doi.org/10.1016/j.clgc.2018.12.011.Google Scholar
  12. 12.
    Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, et al. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 2011;30(1):83–95.  https://doi.org/10.1007/s10555-011-9281-4.Google Scholar
  13. 13.
    Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12(4):237–51.  https://doi.org/10.1038/nrc3237.Google Scholar
  14. 14.
    Guislain A, Gadiot J, Kaiser A, Jordanova ES, Broeks A, Sanders J, et al. Sunitinib pretreatment improves tumor-infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma. Cancer Immunol Immunother. 2015;64(10):1241–50.  https://doi.org/10.1007/s00262-015-1735-z (Epub 2015 Jun 24).Google Scholar
  15. 15.
    Liu XD, Hoang A, Zhou L, Kalra S, Yetil A, Sun M, et al. Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma. Cancer Immunol Res. 2015;3(9):1017–29.  https://doi.org/10.1158/2326-6066.CIR-14-0244 (Epub 2015 May 26).Google Scholar
  16. 16.
    Kuusk T, Albiges L, Escudier B, Grivas N, Haanen J, Powles T, Bex A. Antiangiogenic therapy combined with immune checkpoint blockade in renal cancer. Angiogenesis. 2017;20(2):205–15.  https://doi.org/10.1007/s10456-017-9550-0 (Epub 2017 Apr 11).Google Scholar
  17. 17.
    Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion Phase 1b trial. Lancet Oncol. 2018;19:405–15.  https://doi.org/10.1016/S1470-2045(18)30081-0 (Epub 2018 Feb 10).Google Scholar
  18. 18.
    Lee C-H, Makker V, Rasco DW, Taylor MH, Stepan DE, Shumaker RC, et al. Lenvatinib + pembrolizumab in patients with renal cell carcinoma: updated results. J Clin Oncol. 2018;36:4560.  https://doi.org/10.1200/JCO.2018.36.15_suppl.4560.Google Scholar
  19. 19.
    Lara P, Bauer TM, Hamid O, Smith DC, Gajewski T, Gangadhar TC, et al. Epacadostat plus pembrolizumab in patients with advanced RCC: preliminary Phase I/II results from ECHO-202/KEYNOTE-037. J Clin Oncol. 2017;35:4515.  https://doi.org/10.1200/JCO.2017.35.15_suppl.4515.Google Scholar
  20. 20.
    Nadal RM, Mortazavi A, Stein M, Pal SK, Davarpanah NN, Parnes HL, et al. Results of Phase I plus expansion cohorts of cabozantinib (Cabo) plus nivolumab (Nivo) and CaboNivo plus ipilimumab (Ipi) in patients (pts) with metastatic urothelial carcinoma (mUC) and other genitourinary (GU) malignancies. J Clin Oncol. 2018;36:515.  https://doi.org/10.1200/JCO.2018.36.6_suppl.515.Google Scholar
  21. 21.
    Choueiri TK, Larkin J, Oya M, Thistlethwaite F, Martignoni M, Nathan P, et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear- cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose- finding and dose-expansion, Phase 1b trial. Lancet Oncol. 2018;19:451–60.  https://doi.org/10.1016/S1470-2045(18)30107-4 (Epub 2018 Mar 9).Google Scholar
  22. 22.
    Escudier B, Barthelemy P, Ravaud A, Negrier S, Needle MN, Albiges L. Tivozanib combined with nivolumab: phase Ib/II study in meta- static renal cell carcinoma (mRCC). J Clin Oncol. 2018;36:618.  https://doi.org/10.1200/JCO.2018.36.6_suppl.618.Google Scholar
  23. 23.
    Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624.  https://doi.org/10.1038/ncomms12624.Google Scholar
  24. 24.
    Motzer R, Thomas Powles, Michael B. Atkins, Bernard Escudier, David F. McDermott, Cristina Suarez et al. IMmotion 151: randomized Phase III study of atezolizumab plus bevacizumab versus sunitinib in untreated metastatic renal cell carcinoma. J Clin Oncol. 2018.  https://doi.org/10.1200/jco.2018.36.6_suppl.578.
  25. 25.
    Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019.  https://doi.org/10.1056/nejmoa1816047.
  26. 26.
    Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019.  https://doi.org/10.1056/nejmoa1816714.
  27. 27.
    Bhaumik SR, Smith E, Shilatifard A. Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol. 2007;14(11):1008–16.  https://doi.org/10.1038/nsmb1337.Google Scholar
  28. 28.
    Qin HT, Li HQ, Liu F. Selective histone deacetylase small molecule inhibitors: recent progress and perspectives. Expert Opin Ther Pat. 2017;27(5):621–36.  https://doi.org/10.1080/13543776.2017.1276565 (Epub 2016 Dec 29).Google Scholar
  29. 29.
    Du W, Huang H, Sorrelle N, Brekken RA. Sitravatinib potentiates immune checkpoint blockade in refractory cancer models. JCI Insight. 2018.  https://doi.org/10.1172/jci.insight.124184. (Epub ahead of print).
  30. 30.
    Choueiri TK, Plimack E, Arkenau HT, Jonasch E, Heng DYC, Powles T, et al. Biomarker-based Phase II trial of savolitinib in patients with advanced papillary renal cell cancer. J Clin Oncol. 2017;35(26):2993–3001.  https://doi.org/10.1200/JCO.2017.72.2967 (Epub 2017 Jun 23).Google Scholar
  31. 31.
    Dimopoulos MA, Tedeschi A, Trotman J, García-Sanz R, Macdonald D, Leblond V, et al. Phase 3 trial of ibrutinib plus rituximab in Waldenström’s macroglobulinemia. N Engl J Med. 2018;378(25):2399–410.  https://doi.org/10.1056/NEJMoa1802917.Google Scholar
  32. 32.
    Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S, Hicks RJ, et al. Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med. 2018;378(13):1211–23.  https://doi.org/10.1056/NEJMoa1715519.Google Scholar
  33. 33.
    Molina-Cerrillo J, Alonso-Gordoa T, Gajate P, Grande E. Bruton’s tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treat Rev. 2017;58:41–50.  https://doi.org/10.1016/j.ctrv.2017.06.001 (Epub 2017 Jun 9).Google Scholar
  34. 34.
    Ramapriyan R, Caetano MS, Barsoumian HB, Mafra ACP, Zambalde EP, Menon H et al. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther. 2018.  https://doi.org/10.1016/j.pharmthera.2018.11.004. (Epub ahead of print).
  35. 35.
    Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.  https://doi.org/10.1146/annurev-cellbio-092910-154237.Google Scholar
  36. 36.
    Liu J, Wang LN. The efficacy and safety of riluzole for neurodegenerative movement disorders: a systematic review with meta-analysis. Drug Deliv. 2018;25(1):43–8.  https://doi.org/10.1080/10717544.2017.1413446.Google Scholar
  37. 37.
    Wang Q, Feng F, Wang J, Ren M, Shi Z, Mao X et al. Liver X receptor activation reduces gastric cancer cell proliferation by suppressing Wnt signalling via LXRβ relocalization. J Cell Mol Med. 2018.  https://doi.org/10.1111/jcmm.13974. (Epub ahead of print).
  38. 38.
    Wu Y, Yu DD, Yan DL, Hu Y, Chen D, Liu Y, et al. Liver X receptor as a drug target for the treatment of breast cancer. Anticancer Drugs. 2016;27(5):373–82.  https://doi.org/10.1097/CAD.0000000000000348.Google Scholar
  39. 39.
    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.  https://doi.org/10.1038/20459.Google Scholar
  40. 40.
    Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell. 2002;1(3):237–46.  https://doi.org/10.1016/S1535-6108(02)00043-0.Google Scholar
  41. 41.
    Wang V, Davis DA, Haque M, Huang LE, Yarchoan R. Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 2005;65(8):3299–306.  https://doi.org/10.1158/0008-5472.CAN-04-4130.Google Scholar
  42. 42.
    Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science. 2001;294(5544):1102–5.  https://doi.org/10.1126/science.1063518.Google Scholar
  43. 43.
    Laplante M, Sabatini DM. MTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.  https://doi.org/10.1016/j.cell.2012.03.017.Google Scholar
  44. 44.
    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.  https://doi.org/10.1016/j.cell.2006.01.016.Google Scholar
  45. 45.
    Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83.  https://doi.org/10.1016/j.molcel.2010.06.022.Google Scholar
  46. 46.
    Huffman TA, Mothe-Satney I, Lawrence JC Jr. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc Natl Acad Sci USA. 2002;99(2):1047–52.  https://doi.org/10.1073/pnas.022634399.Google Scholar
  47. 47.
    Gherardi E, Birchmeier W, Birchmeier C, et al. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103.  https://doi.org/10.1038/nrc3205.Google Scholar
  48. 48.
    Bendell JC, Patel MR, Moore KN, Chua CC, Arkenau HT, Dukart G et al. Phase I, First-in-human, dose-escalation study to evaluate the safety, tolerability, and pharmacokinetics of vorolanib in patients with advanced solid tumors. Oncologist. 2018.  https://doi.org/10.1634/theoncologist.2018-0740. (Epub ahead of print).
  49. 49.
    Di Nunno V, Cubelli M, Massari F. The role of the MET/AXL pathway as a new target for multikinase inhibitors in renal cell carcinoma. Exp Rev Precis Med Drug Dev. 2017;2(3):169–75.  https://doi.org/10.1080/23808993.2017.1347481.Google Scholar
  50. 50.
    Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1814–23.  https://doi.org/10.1056/NEJMoa1510016.Google Scholar
  51. 51.
    Choueiri TK, Halabi S, Sanford BL, Hahn O, Michaelson MD, Walsh MK, et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the alliance A031203 CABOSUN trial. J Clin Oncol. 2017;35(6):591–7.  https://doi.org/10.1200/JCO.2016.70.7398.Google Scholar
  52. 52.
    Tate DJ Jr, Vonderhaar DJ, Caldas YA, Metoyer T, Patterson JR 4th, Aviles DH, Zea AH. Effect of arginase II on l-arginine depletion and cell growth in murine cell lines of renal cell carcinoma. J Hematol Oncol. 2008;1:14.  https://doi.org/10.1186/1756-8722-1-14.Google Scholar
  53. 53.
    June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379:64–73.  https://doi.org/10.1056/NEJMra1706169.Google Scholar
  54. 54.
    Baybutt TR, Flickinger JC Jr, Caparosa EM, Snook AE. Advances in chimeric antigen receptor (CAR)-T cell therapies for solid tumors. Clin Pharmacol Ther. 2018.  https://doi.org/10.1002/cpt.1280. (Epub ahead of print).
  55. 55.
    Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276(1):80–96.  https://doi.org/10.1111/imr.12519.Google Scholar
  56. 56.
    Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3–potential mechanisms of action. Nat Rev Immunol. 2015;15(1):45–56.  https://doi.org/10.1038/nri3790.Google Scholar
  57. 57.
    Leone RD, Emens LA. Targeting adenosine for cancer immunotherapy. J Immunother Cancer. 2018;6(1):57.  https://doi.org/10.1186/s40425-018-0360-8.Google Scholar
  58. 58.
    Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer. 2016;67:1–10.  https://doi.org/10.1016/j.ejca.2016.06.028.Google Scholar
  59. 59.
    Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276(1):97–111.  https://doi.org/10.1111/imr.12520.Google Scholar
  60. 60.
    Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targe ng Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187–94.  https://doi.org/10.1084/jem.20100643.Google Scholar
  61. 61.
    Piao YR, Piao LZ, Zhu LH, Jin ZH, Dong XZ. Prognostic value of T cell immunoglobulin mucin-3 in prostate cancer. Asian Pac J Cancer Prev. 2013;14:3897–901.  https://doi.org/10.7314/APJCP.2013.14.6.3897.Google Scholar
  62. 62.
    Yuan J, Jiang B, Zhao H, Huang Q. Prognostic implication of TIM-3 in clear cell renal cell carcinoma. Neoplasma. 2014;61:35–40.  https://doi.org/10.4149/neo_2014_006.Google Scholar
  63. 63.
    Zhou E, Huang Q, Wang J, Fang C, Yang L, Zhu M, et al. Up-regulation of Tim-3 is associated with poor prognosis of patients with colon cancer. Int J Clin Exp Pathol. 2015;8:8018–27.Google Scholar
  64. 64.
    Yang M, Yu Q, Liu J, Fu W, Cao Y, Yu L, et al. T-cell immunoglobulin mucin-3 expression in bladder urothelial carcinoma: clinicopathologic correlations and association with survival. J Surg Oncol. 2015;112:430–5.  https://doi.org/10.1002/jso.24012.Google Scholar
  65. 65.
    Cao Y, Zhou X, Huang X, Li Q, Gao L, Jiang L, et al. Tim-3 expression in cervical cancer promotes tumor metastasis. PLoS One. 2013;8:e53834.  https://doi.org/10.1371/journal.pone.0053834.Google Scholar
  66. 66.
    Jiang J, Jin MS, Kong F, Cao D, Ma HX, Jia Z, et al. Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer. PLoS One. 2013;8:e81799.  https://doi.org/10.1371/journal.pone.0081799.Google Scholar
  67. 67.
    Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy—challenges and opportunities. Trends Pharmacol Sci. 2018;39(3):307–25.  https://doi.org/10.1016/j.tips.2017.11.007.Google Scholar
  68. 68.
    Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, et al. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res. 2015;21(24):5427–33.  https://doi.org/10.1158/1078-0432.CCR-15-0420.Google Scholar
  69. 69.
    Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A, et al. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer. 2016;52:50–66.  https://doi.org/10.1016/j.ejca.2015.08.021.Google Scholar
  70. 70.
    Breitbach CJ, Burke J, Jonker D, Stephenson J, Haas AR, Chow LQ, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 2011;477(7362):99–102.  https://doi.org/10.1038/nature10358.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Veronica Mollica
    • 1
  • Vincenzo Di Nunno
    • 1
    Email author
  • Lidia Gatto
    • 2
  • Matteo Santoni
    • 3
  • Alessia Cimadamore
    • 4
  • Liang Cheng
    • 5
  • Antonio Lopez-Beltran
    • 6
  • Rodolfo Montironi
    • 4
  • Salvatore Pisconti
    • 2
  • Nicola Battelli
    • 3
  • Francesco Massari
    • 1
  1. 1.Division of OncologyS.Orsola-Malpighi HospitalBolognaItaly
  2. 2.Oncology UnitSG Moscati Hospital of TarantoTarantoItaly
  3. 3.Macerata HospitalMacerataItaly
  4. 4.Section of Pathological Anatomy, United Hospital, School of MedicinePolytechnic University of the Marche RegionAnconaItaly
  5. 5.Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisUSA
  6. 6.Department of Pathology and Surgery, Faculty of MedicineCordoba UniversityCordobaSpain

Personalised recommendations