Advertisement

Twenty Clinically Pertinent Factors/Observations for Percutaneous Absorption in Humans

  • Rebecca M. LawEmail author
  • Mai A. Ngo
  • Howard I. Maibach
Review Article

Abstract

At least 20 clinically relevant factors affect percutaneous absorption of drugs and chemicals: relevant physico-chemical properties, vehicle/formulation, drug exposure conditions (dose, duration, surface area, exposure frequency), skin appendages (hair follicles, glands) as sub-anatomical pathways, skin application sites (regional variation in penetration), population variability (premature, infants, and aged), skin surface conditions (hydration, temperature, pH), skin health and integrity (trauma, skin diseases), substantivity and binding to different skin components, systemic distribution and systemic toxicity, stratum corneum exfoliation, washing-off and washing-in, rubbing/massaging, transfer to others (human to human and hard surface to human), volatility, metabolic biotransformation/cutaneous metabolism, photochemical transformation and photosensitivity, excretion pharmacokinetics, lateral spread, and chemical method of determining percutaneous absorption.

Notes

Author contributions

RML had the idea to provide a practical and clinically relevant version of MAN and HIM pivotal paper on 15 steps of percutaneous absorption—for practitioners—and in the process expanded the discussion to 20 factors, with contribution from HIM; RML performed the literature search, with additional sources from HIM vast experience; RML drafted the work; HIM critically revised the work at multiple timepoints, RML critically revised the work several times, and MAN critically revised the work twice.

Compliance with Ethical Standards

Funding

There were no sources of funding for this review.

Conflict of interest

Rebecca M. Law, Mai A. Ngo, and Howard I. Maibach have no conflicts of interest relating to this review.

References

  1. 1.
    Wester RC, Maibach HI. Cutaneous pharmacokinetics: 10 steps to percutaneous absorption. Drug Metab Rev. 1983;14(2):169–205.PubMedCrossRefGoogle Scholar
  2. 2.
    Ngo MA, Maibach HI. Chapter 6: 15 factors of percutaneous penetration of pesticides. In: Knaak JB, Timchalk C, Tornero-Velez R, editors. Parameters for pesticide QSAR and PBPK/PD models for human risk assessment. ACS Symposium Series. Washington, DC: American Chemical Society; 2012. p. 67–86.Google Scholar
  3. 3.
    Hui X, Lamel S, Qiao P, Maibach HI. Isolated human/animal stratum corneum as a partial model for 15 steps in percutaneous absorption: emphasizing decontamination, part I. J Appl Toxicol. 2013;33:157–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Hui X, Lamel S, Qiao P, Maibach HI. Isolated human and animal stratum corneum as a partial model for the 15 steps in percutaneous absorption: emphasizing decontamination, part II. J Appl Toxicol. 2013;33:173–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Li BS, Ngo MA, Maibach HI. Clinical relevance of complex factors of percutaneous penetration in man. Curr Top Pharmacol. 2017;21:85–107.Google Scholar
  6. 6.
    Keurentjes AJ, Maibach HI. Percutaneous penetration of drugs applied in transdermal delivery systems: an in vivo based approach for evaluating computer generated penetration models. Regul Toxicol Pharmacol. 2019;18:104428.CrossRefGoogle Scholar
  7. 7.
    Burton ME, Schentag JJ, Shaw LM, Evans WE. Applied pharmacokinetics and pharmacodynamics: principles of therapeutic drug monitoring. 4th ed. Philadelphia: Lippincott, Williams, and Wilkins; 2006.Google Scholar
  8. 8.
    Marechal Y. The water molecule in (bio)macromolecules. In: The hydrogen bond and the water molecule: the physics and chemistry of water, aqueous and bio media. Amsterdam: Elsevier; 2007. p. 249–275.  https://doi.org/10.1016/B978-044451957-3.50011-1.
  9. 9.
    Wester RC, Noonan PK, Maibach HI. Frequency of application on percutaneous absorption of hydrocortisone. Arch Dermatol. 1977;113:620–2.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Berardesca E, Mariano M, Cameli N. Biophysical properties of ethnic skin. In: Vashi NA, Maibach HI, editors. Dermatoanthropology of ethnic skin and hair. Cham: Springer Nature, Springer International Publishing AG; 2017.Google Scholar
  11. 11.
    Berardesca E, Maibach HI. Racial differences in sodium lauryl sulfate induced cutaneous irritation: black and white. Contact Dermatitis. 1988;18:65–70.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Berardesca E, Maibach HI. Sodium-lauryl-sulfate-induced cutaneous irritation. Comparison of white and Hispanic subjects. Contact Dermat. 1988;19:136–40.CrossRefGoogle Scholar
  13. 13.
    Roskos KV, Maibach HI, Guy RH. The effect of aging on percutaneous absorption in man. J Pharmacokinet Biopharm. 1989;17(6):617–30.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hoath SB, Maibach HI. Neonatal skin: structure and function. 2nd ed. Boca Raton: CRC Press; 2003.CrossRefGoogle Scholar
  15. 15.
    Sidbury R, Darmstadt GL. Chapter 2: Microbiology. In: Hoath SB, Maibach HI, editors. Neonatal skin: structure and function. 2nd ed. Boca Raton: CRC Press; 2003. p. 31.Google Scholar
  16. 16.
    Nikolovski J, Stamatas GN, Kollias N, et al. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol. 2008;128:1728–36.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Oranges T, Dini V, Romanelli M. Skin physiology of the neonate and infant: clinical implications. Adv Wound Care (New Rochelle). 2015;4(10):587–95.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hoeger PH, Enzmann CC. Skin physiology of the neonate and young infant: a prospective study of functional skin parameters during early infancy. Pediatr Dermatol. 2002;19:256–62.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Visscher MO, Chatterjee R, Munson KA, et al. Changes in diapered and non-diapered infant skin over the first month of life. Pediatr Dermatol. 2000;17:45–51.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Saijo S, Tagami HJ. Dry skin of newborn infants: functional analysis of the stratum corneum. Pediatr Dermatol. 1991;8:155–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Brayer C, Micheau P, Bony C, et al. Neonatal accidental burn by isopropyl alcohol [in French]. Arch Pediatr. 2004;11(8):932–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    DeBellonia RR, Marcus S, Shih R, et al. Curanderismo: consequences of folk medicine. Pediatr Emerg Care. 2008;24(4):228–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    George AJ. Toxicity of boric acid through skin and mucous membranes. Food Cosmet Toxicol. 1965;3:99–101.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Martin-Bouyer G, Toga M, Lebreton R, et al. Outbreak of accidental hexachlorophene poisoning in France. Lancet. 1982;319(8263):91–5.CrossRefGoogle Scholar
  25. 25.
    Mullick FG. Hexachlorophene toxicity—human experience at the Armed Forces Institute of Pathology. Pediatrics. 1973;51(2):395–9.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Li BS, Cary JH, Maibach HI. Should we instruct patients to rub topical agents into skin? The evidence. J Dermatolog Treat. 2018;19:1–5.Google Scholar
  27. 27.
    Evans NJ, Rutter N, Hadgraft J, et al. Percutaneous administration of theophylline in the preterm infant. J Pediatr. 1985;107(2):307–11.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Zhai H, Maibach HI. Effects of skin occlusion on percutaneous absorption: an overview. Skin Pharmacol Appl Skin Physiol. 2001;14(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Shomaker TS, Zhang J, Ashburn MA. A pilot study assessing the impact of heat on the transdermal delivery of testosterone. J Clin Pharmacol. 2001;41(6):677–82.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Aly R, Shirley C, Cunico B, Maibach HI. Effect of prolonged occlusion on the microbial flora, pH, carbon dioxide and transepidermal water loss on human skin. J Invest Dermatol. 1978;71(6):378–81.PubMedCrossRefGoogle Scholar
  31. 31.
    Gattu S, Maibach HI. Modest but increased penetration through damaged skin: an overview of the in vivo human model. Skin Pharmacol Physiol. 2011;24(1):2–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Gattu S, Maibach HI. Enhanced absorption through damaged skin: an overview of the in vitro human model. Skin Pharmacol Physiol. 2010;23:171–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Morgan CJ, Renwick AG, Friedmann PS. The role of stratum corneum and dermal microvascular perfusion in penetration and tissue levels of water-soluble drugs investigated by microdialysis. Br J Dermatol. 2003;148:434–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Jakasa I, Verberk MM, Bunge AL, et al. Increased permeability for polyethylene glycols through skin compromised by sodium lauryl sulfate. Exp Dermatol. 2006;15:801–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Jacob SE. Percutaneous absorption risks in atopic dermatitis. Br J Dermatol. 2017;177:11–2.PubMedCrossRefGoogle Scholar
  36. 36.
    Halling-Overgaard AS, Kezic S, Jakasa I, et al. Skin absorption through atopic dermatitis skin: a systematic review. Br J Dermatol. 2017;177(1):84–106.PubMedCrossRefGoogle Scholar
  37. 37.
    Garcia OP, Hansen SH, Shah VP, et al. Impact of adult atopic dermatitis on topical drug absorption: assessment by cutaneous microdialysis and tape stripping. Acta Derm Venereol. 2009;89:33–8.CrossRefGoogle Scholar
  38. 38.
    Tauber M, Balica S, Hsu CY, et al. Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. J Allergy Clin Immunol. 2016;137:1272.e1–1274.e3.CrossRefGoogle Scholar
  39. 39.
    Jakasa I, de Jongh CM, Verberk MM, et al. Percutaneous penetration of sodium lauryl sulfate is increased in uninvolved skin of patients with atopic dermatitis compared with control subjects. Br J Dermatol. 2006;155:104–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Jakasa I, Verbek MM, Esposito M, et al. Altered penetration of polyethylene glycols into uninvolved skin of atopic dermatitis patients. J Invest Dermatol. 2007;127:129–34.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hata M, Tokura Y, Takigawa M, et al. Assessment of epidermal barrier function by photoacoustic spectrometry in relation to its importance in the pathogenesis of atopic dermatitis. Lab Invest. 2002;82:1451–61.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mochizuki J, Tadaki H, Takami S, et al. Evaluation of out-in skin transparency using a colorimeter and food dye in patients with atopic dermatitis. Br J Dermatol. 2009;160:972–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Alikhan FS, Maibach HI. Topical absorption and systemic toxicity. Cutan Ocul Toxicol. 2011;30(3):175–86.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lewis PR, Phillips TG, Sassani JW. Topical therapies for glaucoma: what family physicians need to know. Am Fam Phys. 1999;59:1871–9.Google Scholar
  45. 45.
    Goldberg I, Moloney G, McCluskey P. Topical ophthalmic medications: what potential for systemic side effects and interactions with other medications? Med J Aust. 2008;189:356–7.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Rubin Z. Ophthalmic sulfonamide-induced Stevens–Johnson syndrome. Arch Dermatol. 1977;113:235–6.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Raschke R, Arnold-Capell PA, Richeson R, et al. Refractory hypoglycemia secondary to topical salicylate intoxication. Arch Intern Med. 1991;151:591–3.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zheng Y, Vieille-Petit A, Chodoutard S, Maibach HI. Dislodgeable stratum corneum exfoliation: role in percutaneous penetration? Cutan Ocul Toxicol. 2011;30(3):198–204.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zhu H, Maibach HI. Skin decontamination. Heidelberg: Springer; 2019 (in press).Google Scholar
  50. 50.
    Rodriguez J, Maibach HI. Percutaneous penetration and pharmacodynamics: wash-in and wash-off of sunscreen and insect repellent. J Dermatolog Treat. 2016;27:11.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Moody RP. The safety of diethyltoluamide insect repellents [letter]. JAMA. 1989;262:28–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Moody RP, Benoit FM, Riedel R, Ritter L. Dermal absorption of the insect repellent DEET (N, N-diethyl-m-toluamide) in rats and monkeys: effect of anatomical site and multiple exposure. J Toxicol Environ Health. 1989;26:137–47.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lademann J, Patzelt A, Schanzer S, et al. In vivo laser scanning microscopic investigation of the decontamination of hazardous substances from the human skin. Laser Phys Lett. 2010;7:884–8.CrossRefGoogle Scholar
  54. 54.
    Trauer S, Richter H, Kuntsche J, et al. Influence of massage and occlusion on the ex vivo skin penetration of rigid liposomes and invasomes. Eur J Pharm Biopharm. 2014;86:301–6.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Phuong C, Maibach HI. Effect of massage on percutaneous penetration and skin decontamination: man and animal. Cutan Ocul Toxicol. 2016;35(2):153–6.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Delamour E, Miksa S, Lutz D, Guy C. How to prove ‘rub-resistant’ sun protection. Cosmetics & Toiletries Science Applied. 2016. https://www.cosmeticsandtoiletries.com/testing/efficacyclaims/How-to-Prove-Rub-resistant-Sun-Protection-373779591.html. Accessed 12 Mar 2019.
  57. 57.
    Franklin SF, Geffner ME. Precocious puberty secondary to topical testosterone exposure. J Pediatr Endocr Metab. 2003;16:107–10.CrossRefGoogle Scholar
  58. 58.
    Wester RC, Hui X, Maibach HI. In vivo human transfer of topical bioactive drug between individuals: estradiol. J Invest Dermatol. 2006;126:2190–3.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Linck M. Screens detect all: mom, dad, kids, newborns all test positive for meth. Sioux City J. 2003. https://siouxcityjournal.com/news/screens-detect-all-mom-dad-kids-newborns-all-test-postive/article_5c9a48cf-4855-5308-ba83-c11bf1b44239.html. Accessed 13 Mar 2019.
  60. 60.
    Dmochowski RR, Newman DK, Sand PK, et al. Pharmacokinetics of oxybutynin chloride topical gel. Clin Drug Investig. 2011;31(8):559–71.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Isnardo D, Vidal J, Panyella D, Vilaplana J. Nickel transfer by fingers. Actas Dermosifiliogr (English Edition). 2015;106(5):e22–6.  https://doi.org/10.1016/j.adengl.2015.04.011.CrossRefGoogle Scholar
  62. 62.
    Salocks CB, Hui X, Lamel S, et al. Dermal exposure to methamphetamine hydrochloride contaminated residential surfaces: surface pH values, volatility, and in vitro human skin. Food Chem Toxicol. 2012;50(12):4426–40.CrossRefGoogle Scholar
  63. 63.
    Rouse NC, Maibach HI. The effect of volatility on percutaneous absorption. J Dermatol Treat. 2016;27(1):5–10.CrossRefGoogle Scholar
  64. 64.
    Bruze M. Thoughts on how to improve the quality of multicentre patch test studies. Contact Dermatitis. 2016;74:168–74.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Gilpin SJ, Hui X, Maibach HI. Volatility of fragrance chemicals: patch testing implications. Dermatitis. 2009;20(40):200–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kasting GB, Miller MA. Kinetics of finite dose absorption through skin 2: volatile compounds. J Pharm Sci. 2006;95:268–80.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Norris EJ, Coats JR. Current and future repellent technologies: the potential of spatial repellents and their place in mosquito-borne disease control. Int J Environ Res Public Health. 2017;14(2):124–68.PubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kawada H, Temu EA, Minjas JN, et al. Field evaluation of field repellency of metofluthrin impregnated latticework plastic strips against Aedes aegypti (L.) and analysis of environmental factors affecting its efficacy in My Tho City, Tien Giang, Vietnam. Am J Trop Med Hyg. 2006;75:1153–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kazem S, Linssen EC, Gibbs S. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov Today. 2019;24(9):1899–910.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Bando H, Mohri S, Yamashita F, et al. Effects of skin metabolism on percutaneous penetration of lipophilic drugs. J Pharm Sci. 1997;86(6):759–61.PubMedCrossRefGoogle Scholar
  71. 71.
    Vieille-Petit A, Blickenstaff N, Coman G, Maibach H. Metrics and clinical relevance of percutaneous penetration and lateral spreading. Skin Pharmacol Physiol. 2015;28:57–64.PubMedCrossRefGoogle Scholar
  72. 72.
    Jacobi U, Schanzer S, Weigmann H-J, et al. Pathways of lateral spreading. Skin Pharmacol Physiol. 2011;24:231–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Feldman RJ, Maibach HI. Absorption of some organic compounds through the skin in man. J Invest Dermatol. 1970;54:399–404.CrossRefGoogle Scholar

Further Reading

  1. Dragicevic N, Maibach HI, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement. Berlin: Springer; 2015.  https://doi.org/10.1007/978-3-662-47039-8.CrossRefGoogle Scholar
  2. Berardesca E, Leveque J-L, Maibach HI, editors. Ethnic skin and hair. 1st ed. Boca Raton: CRC Press; 2019 (ISBN: 978-0-3673-8999-4).Google Scholar
  3. Berardesca E, Leveque J-L, Maibach HI, editors. Ethnic skin and hair. Boca Raton: CRC Press; 2006 (ISBN: 978-0-8493-3088-9).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of PharmacyMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Department of DermatologyUCSF School of MedicineSan FranciscoUSA
  3. 3.California Department of Toxic Substances ControlSacramentoUSA

Personalised recommendations