Advertisement

KIT as an Oncogenic Driver in Melanoma: An Update on Clinical Development

  • Da Meng
  • Richard D. CarvajalEmail author
Leading Article

Abstract

Metastatic melanoma is a heterogenous disease that has served as a model for the development of both targeted therapy and immunotherapy. KIT-mutated melanoma represents a rare subset, most commonly arising from acral, mucosal, and chronically sun-damaged skin. Additionally, KIT alterations are enriched in the triple wild-type subtype of cutaneous melanoma. Activating alterations of KIT—a transmembrane receptor tyrosine kinase important for cell development, growth, and differentiation—have been shown to be critical to oncogenesis across many tumor subtypes. Following the successes of BRAF-targeted therapy in melanoma and KIT-targeted therapy in gastrointestinal stromal tumors, small-molecule tyrosine kinase inhibitors targeting KIT have been examined in KIT-mutated melanoma. KIT inhibitors that have been investigated in relevant clinical trials in advanced melanoma include imatinib, sunitinib, dasatinib, and nilotinib. In these studies, selected patients with KIT-mutated melanoma were shown to be responsive to therapy with KIT inhibition, especially patients with L576P and K642E mutations. This has led to the incorporation of KIT-targeted therapy in the National Comprehensive Cancer Network guidelines for systemic therapy for metastatic or unresectable melanoma. Current research and development efforts include novel KIT-targeted therapies and testing KIT inhibitors in combination with immunotherapy.

Notes

Acknowledgements

The results published or shown here are in part based upon data generated by The Cancer Genome Atlas (TCGA) research network: http://cancergenome.nih.gov/.

Compliance with Ethical Standards

Funding

Da Meng was funded by the Columbia University Vagelos College of Physicians and Surgeons 2018 Summer Research Program for the preparation of this manuscript.

Conflict of interest

Richard D. Carvajal is a consultant for AstraZeneca, Bristol-Myers Squibb, Castle Biosciences, Foundation Medicine, Immunocore, Incyte Merck, Novartis, Roche/Genentech, Aura Biosciences, Chimeron, and Rgenix. Da Meng has no conflicts of interest that might be relevant to the contents of this manuscript.

Supplementary material

40257_2018_414_MOESM1_ESM.xlsx (21 kb)
Supplementary table 1: In a pooled analysis of 1406 patient samples from 10 recent melanoma genomics studies using cBioPortal, 36 different KIT mutations were found. 18 of the 36 were rated “oncogenic” or “likely oncogenic” due to experimentally supported or predicted gain-of-function changes of the KIT protein. Additionally, 4 of 36 KIT mutations (K642E, V559A, L576P, W557R) in melanoma are recurrent mutations found in large patient cohorts of other cancers, supporting the critical role of KIT signaling in oncogenesis beyond melanoma. (XLSX 21 kb)

References

  1. 1.
    Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96.  https://doi.org/10.1016/j.cell.2015.05.044.CrossRefGoogle Scholar
  2. 2.
    Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80.  https://doi.org/10.1038/nature22071.CrossRefPubMedGoogle Scholar
  3. 3.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.  https://doi.org/10.1038/nature00766.CrossRefPubMedGoogle Scholar
  4. 4.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.  https://doi.org/10.1056/NEJMoa1103782.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.  https://doi.org/10.1016/S0140-6736(12)60868-X.CrossRefPubMedGoogle Scholar
  6. 6.
    Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–76.  https://doi.org/10.1056/NEJMoa1408868.CrossRefPubMedGoogle Scholar
  7. 7.
    Long GV, Hauschild A, Santinami M, Atkinson V, Mandala M, Chiarion-Sileni V, et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med. 2017;377(19):1813–23.  https://doi.org/10.1056/NEJMoa1708539.CrossRefPubMedGoogle Scholar
  8. 8.
    Dummer R, Ascierto PA, Gogas HJ, Arance A, Mondala M, Liszkay G, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanom (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet. 2018;19(5):603–15.CrossRefGoogle Scholar
  9. 9.
    Geissler EN, Ryan MA, Housman DE. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell. 1988;55(1):185–92.CrossRefGoogle Scholar
  10. 10.
    Spritz RA, Giebel LB, Holmes SA. Dominant negative and loss of function mutations of the c-kit (mast/stem cell growth factor receptor) proto-oncogene in human piebaldism. Am J Hum Genet. 1992;50(2):261–9.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995;373(6512):347–9.  https://doi.org/10.1038/373347a0.CrossRefPubMedGoogle Scholar
  12. 12.
    Russell ES. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357–459.CrossRefGoogle Scholar
  13. 13.
    Tian Q, Frierson HF Jr, Krystal GW, Moskaluk CA. Activating c-kit gene mutations in human germ cell tumors. Am J Pathol. 1999;154(6):1643–7.  https://doi.org/10.1016/S0002-9440(10)65419-3.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987;6(11):3341–51.CrossRefGoogle Scholar
  15. 15.
    Ronnstrand L. Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol Life Sci. 2004;61(19–20):2535–48.  https://doi.org/10.1007/s00018-004-4189-6.CrossRefPubMedGoogle Scholar
  16. 16.
    Joensuu H, DeMatteo RP. The management of gastrointestinal stromal tumors: a model for targeted and multidisciplinary therapy of malignancy. Ann Rev Med. 2012;63:247–58.CrossRefGoogle Scholar
  17. 17.
    Rubin BP, Singer S, Tsao C, Duensing A, Lux ML, Ruiz R, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res. 2001;61(22):8118–21.PubMedGoogle Scholar
  18. 18.
    Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21(23):4342–9.  https://doi.org/10.1200/JCO.2003.04.190.CrossRefPubMedGoogle Scholar
  19. 19.
    Demetri GD, Von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. NEJM. 2002;347:472–80.CrossRefGoogle Scholar
  20. 20.
    Woodman SE, Davies MA. Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol. 2010;5(80):568–74.CrossRefGoogle Scholar
  21. 21.
    Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman R-A, Teicher J, et al. KIT as a therapeutic targer in metastatic melanoma. JAMA. 2011;22(305):2327–34.CrossRefGoogle Scholar
  22. 22.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.  https://doi.org/10.1158/2159-8290.CD-12-0095.CrossRefPubMedGoogle Scholar
  23. 23.
    Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.  https://doi.org/10.1126/scisignal.2004088.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature. 2012;485(7399):502–6.  https://doi.org/10.1038/nature11071.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.  https://doi.org/10.1016/j.cell.2012.06.024.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44.  https://doi.org/10.1016/j.cell.2016.02.065.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006–14.  https://doi.org/10.1038/ng.2359.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liang WS, Hendricks W, Kiefer J, Schmidt J, Sekar S, Carpten J, et al. Integrated genomic analyses reveal frequent TERT aberrations in acral melanoma. Genome Res. 2017;27(4):524–32.  https://doi.org/10.1101/gr.213348.116.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shain AH, Garrido M, Botton T, Talevich E, Yeh I, Sanborn JZ, et al. Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet. 2015;47(10):1194–9.  https://doi.org/10.1038/ng.3382.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4(1):94–109.  https://doi.org/10.1158/2159-8290.CD-13-0617.CrossRefPubMedGoogle Scholar
  31. 31.
    Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340–6.  https://doi.org/10.1200/JCO.2006.06.2984.CrossRefPubMedGoogle Scholar
  32. 32.
    Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14(21):6821–8.  https://doi.org/10.1158/1078-0432.CCR-08-0575.CrossRefPubMedGoogle Scholar
  33. 33.
    Handolias D, Salemi R, Murray W, Tan A, Liu W, Viros A, et al. Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell Melanoma Res. 2010;23(2):210–5.  https://doi.org/10.1111/j.1755-148X.2010.00671.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Kong Y, Si L, Zhu Y, Xu X, Corless CL, Flaherty KT, et al. Large-scale analysis of KIT aberrations in Chinese patients with melanoma. Clin Cancer Res. 2011;17(7):1684–91.  https://doi.org/10.1158/1078-0432.CCR-10-2346.CrossRefPubMedGoogle Scholar
  35. 35.
    Sakaizawa K, Ashida A, Uchiyama A, Ito T, Fujisawa Y, Ogata D, et al. Clinical characteristics associated with BRAF, NRAS and KIT mutations in Japanese melanoma patients. J Dermatol Sci. 2015;80:33–7.CrossRefGoogle Scholar
  36. 36.
    Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation of amplification. J Clin Oncol. 2011;29(21):2904–9.CrossRefGoogle Scholar
  37. 37.
    Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol. 2013;31(26):3182–90.CrossRefGoogle Scholar
  38. 38.
    Minor DR, Kashani-Sabet M, Garrido M, O’Day SJ, Hamid O, Bastian BC. Sunitinib therapy for melanoma patients with KIT mutations. Clin Cancer Res. 2012;18(5):1457–63.CrossRefGoogle Scholar
  39. 39.
    Demetri GD, Heinrich MC, Fletcher JA, Fletcher CD, Van den Abbeele AD, Corless CL, et al. Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin Cancer Res. 2009;15(18):5902–9.  https://doi.org/10.1158/1078-0432.CCR-09-0482.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kollmannsberger C, Soulieres D, Wong R, Scalera A, Gaspo R, Bjarnason G. Sunitinib therapy for metastatic renal cell carcinoma: recommendations for management of side effects. Can Urol Assoc J. 2007;1(2 Suppl):S41–54.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Kalinsky K, Lee S, Rubin KM, Lawrence DP, Iafrarte AJ, Borger DR, et al. A phase 2 trial of dasatinib in patients with locally advanced or stage IV mucosal, acral, or vulvovaginal melanoma: a trial of the ECOG-ACRIN Cancer Research Group (E2607). Cancer. 2017;123(14):2688–97.CrossRefGoogle Scholar
  42. 42.
    Carvajal RD, Lawrence DP, Weber JS, Gajewski TF, Gonzalez R, Lutzky J, et al. Phase II study of nilotinib in melanoma harboring KIT alterations following progression to prior KIT inhibition. Clin Cancer Res. 2015;21(10):2289–96.CrossRefGoogle Scholar
  43. 43.
    Lee SJ, Kim TM, Kim YJ, Jang K-T, Lee HJ, Lee SN, et al. Phase II trial of nilotinib in patients with metastatic malignant melanoma harboring kit gene aberration: a multicenter trial of Korean Cancer Study Group (UN10-06). Oncologist. 2015;20(11):1312–9.CrossRefGoogle Scholar
  44. 44.
    Guo J, Carvajal R, Dummer R, Hauschild A, Daud A, Bastian B, et al. Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: final results from the global, single-arm, phase II TEAM trial. Ann Oncol. 2017;28(6):1380–7.CrossRefGoogle Scholar
  45. 45.
    Delyon J, Chevret S, Jouary T, Dalac S, Dalle S, Guillot B, et al. STAT3 mediates nilotinib response in kit-altered melanoma: a phase II multicenter trial of the French skin cancer network. J Investig Dermatol. 2018;138(1):58–67.CrossRefGoogle Scholar
  46. 46.
    Yang J, Komatsubara KM, Carvajal TD. JAK-ing up the response to KIT inhibition. J Investig Dermatol. 2018;138:6–8.CrossRefGoogle Scholar
  47. 47.
    Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, Obaid H, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17(9):1094–100.  https://doi.org/10.1038/nm.2438.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Seifert AM, Zeng S, Zhang JQ, Kim TS, Cohen NA, Beckman MJ, et al. PD-1/PD-L1 blockade enhances T-cell activity and antitumor efficacy of imatinib in gastrointestinal stromal tumors. Clin Cancer Res. 2017;23(2):454–65.  https://doi.org/10.1158/1078-0432.CCR-16-1163.CrossRefPubMedGoogle Scholar
  49. 49.
    Lee KC, Ouwehand I, Giannini AL, Thomas NS, Dibb NJ, Bijlmakers MJ. Lck is a key target of imatinib and dasatinib in T-cell activation. Leukemia. 2010;24(4):896–900.  https://doi.org/10.1038/leu.2010.11.CrossRefPubMedGoogle Scholar
  50. 50.
    Kreutzman A, Juvonen V, Kairisto V, Ekblom M, Stenke L, Seggewiss R, et al. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood. 2010;116(5):772–82.  https://doi.org/10.1182/blood-2009-12-256800.CrossRefPubMedGoogle Scholar
  51. 51.
    Mustjoki S, Ekblom M, Arstila TP, Dybedal I, Epling-Burnette PK, Guilhot F, et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 2009;23(8):1398–405.  https://doi.org/10.1038/leu.2009.46.CrossRefPubMedGoogle Scholar
  52. 52.
    Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 2009;69(6):2514–22.  https://doi.org/10.1158/0008-5472.CAN-08-4709.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Borg C, Terme M, Taieb J, Menard C, Flament C, Robert C, et al. Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Investig. 2004;114(3):379–88.  https://doi.org/10.1172/JCI21102.CrossRefPubMedGoogle Scholar
  54. 54.
    Rusakiewicz S, Semeraro M, Sarabi M, Desbois M, Locher C, Mendez R, et al. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res. 2013;73(12):3499–510.  https://doi.org/10.1158/0008-5472.CAN-13-0371.CrossRefPubMedGoogle Scholar
  55. 55.
    Kreutzman A, Ilander M, Porkka K, Vakkila J, Mustjoki S. Dasatinib promotes Th1-type responses in granzyme B expressing T-cells. Oncoimmunology. 2014;3:e28925.  https://doi.org/10.4161/onci.28925.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Christiansson L, Soderlund S, Mangsbo S, Hjorth-Hansen H, Hoglund M, Markevarn B, et al. The tyrosine kinase inhibitors imatinib and dasatinib reduce myeloid suppressor cells and release effector lymphocyte responses. Mol Cancer Ther. 2015;14(5):1181–91.  https://doi.org/10.1158/1535-7163.MCT-14-0849.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang H, Cheng F, Cuenca A, Horna P, Zheng Z, Bhalla K, et al. Imatinib mesylate (STI-571) enhances antigen-presenting cell function and overcomes tumor-induced CD4+ T-cell tolerance. Blood. 2005;105(3):1135–43.  https://doi.org/10.1182/blood-2004-01-0027.CrossRefPubMedGoogle Scholar
  58. 58.
    D’Angelo SP, Shoushtari AN, Keohan ML, Dickson MA, Gounder MM, Chi P, et al. Combined KIT and CTLA-4 blockade in patients with refractory GIST and other advanced sarcomas: a phase Ib study of dasatinib plus ipilimumab. Clin Cancer Res. 2017;23(12):2972–80.  https://doi.org/10.1158/1078-0432.CCR-16-2349.CrossRefPubMedGoogle Scholar
  59. 59.
    Reilley MJ, Bailey A, Subbiah V, Janku F, Naing A, Falchook G, et al. Phase I clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies. J Immunother Cancer. 2017;5:35.  https://doi.org/10.1186/s40425-017-0238-1.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A, Daves A, et al. A precision therapy against cancers driven by KIT/PDGFRA mutations. Science Translational Medicine. 2017;9(414):1–11.CrossRefGoogle Scholar
  61. 61.
    Evans E, Gardino A, Hodous B, Davis A, Zhu J, Kohl NE, et al. Blu-285, a potent and selective inhibitor for hematologic malignancies with KIT Exon 17 mutations. Blood. 2015;126:568.Google Scholar
  62. 62.
    Janku F, Razak A, Gordon M, Flynn D, Kaufman M, Pitman J, et al. Encouraging activity of novel pan-KIT and PDGFRα inhibitor DCC-2618 in patients (pts) with gastrointestinal stromal tumor (GIST). Ann Oncol. 2017;28(5):14730.Google Scholar
  63. 63.
    Tsujimura A, Kiyoi H, Shiotsu Y, Ishikawa Y, Mori Y, Ishida H, et al. Selective KIT inhibitor KI-328 and HSP90 inhibitor show different potency against the type of KIT mutations recurrently identified in acute myeloid leukemia. Int J Hematol. 2010;92(4):624–33.CrossRefGoogle Scholar
  64. 64.
    Abrams T, Connor A, Fanton C, Cohen SB, Huber T, Miller K, et al. Preclinical antitumor activity of a novel anti-c-KIT antibody-drug conjugate against mutant and wild-type c-KIT-positive solid tumors. Clin Cancer Res. 2018;24(17):4297–308.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Columbia University Vagelos College of Physicians and SurgeonsNew YorkUSA
  2. 2.Division of Hematology/Oncology, Department of MedicineColumbia University Irving Medical Center and the Herbert Irving Comprehensive Cancer CenterNew YorkUSA

Personalised recommendations