Advertisement

American Journal of Clinical Dermatology

, Volume 20, Issue 1, pp 123–133 | Cite as

A Practical Guide to Curing Onychomycosis: How to Maximize Cure at the Patient, Organism, Treatment, and Environmental Level

  • Aditya K. GuptaEmail author
  • Sarah G. Versteeg
  • Neil H. Shear
  • Vincent Piguet
  • Antonella Tosti
  • Bianca Maria Piraccini
Therapy in Practice

Abstract

Onychomycosis is a fungal nail infection caused by dermatophytes, non-dermatophyte molds, and yeasts. Treatment of this infection can be difficult, with relapse likely to occur within 2.5 years of cure. The objective of this article is to review factors that can impact cure and to suggest practical techniques that physicians can use to maximize cure rates. Co-morbidities, as well as disease severity and duration, are among the many patient factors that could influence the efficacy of antifungal therapies. Furthermore, organism, treatment, and environmental factors that may hinder cure include point mutations, biofilms, affinity for non-target enzymes, and exposure to fungal reservoirs. To address patient-related factors, physicians are encouraged to conduct confirmatory testing and treat co-morbidities such as tinea pedis early and completely. To combat organism-focused factors, it is recommended that disruption of biofilms is considered, and drugs with multiple routes of delivery and unique mechanisms of action are prescribed when traditional agents are not effective. Extending follow-up periods, using combination treatments, and considering pulse regimens may also be of benefit. Through these practical techniques, physicians can maximize cure and limit the risk of relapse and re-infection.

Notes

Compliance with Ethical Standards

Funding

No funding was received for the writing of this manuscript.

Conflict of interest:

Dr. A.K. Gupta is a clinical trials investigator and speaker for Valeant Canada, and a clinical trials investigator for Moberg. S.G. Versteeg is employed by Mediprobe Research Inc., a site where clinical trials are run under supervision of Dr. A.K. Gupta. Dr. V. Piguet reports receiving educational grants in his role as Department Division Director, Dermatology, University of Toronto (on behalf of the Division of Dermatology Residency Program) from Abbvie, Celgene, Janssen, Naos, Lilly, Sanofi, and Valeant, and non-financial support from La Roche-Posay, outside the submitted work. Dr. B.M. Piraccini has received consulting fees and/or honoraria from Isdin, Pfizer, and Polichem. Dr. N.H. Shear and Dr. A. Tosti have no conflicts to declare.

References

  1. 1.
    Gupta A, Nakrieko K-A. Molecular determination of mixed infections of dermatophytes and nondermatophyte moulds in individuals with onychomycosis. J Am Podiatr Med Assoc. 2014;104(4):330–6.Google Scholar
  2. 2.
    Epstein E. How often does oral treatment of toenail onychomycosis produce a disease-free nail? An analysis of published data. Arch Dermatol. 1998;134(12):1551–4.Google Scholar
  3. 3.
    Murdan S. Enhancing the nail permeability of topically applied drugs. Expert Opin Drug Deliv. 2008;5(11):1267–82.Google Scholar
  4. 4.
    Tosti A, Piraccini BM, Stinchi C, Colombo MD. Relapses of onychomycosis after successful treatment with systemic antifungals: a three-year follow-up. Dermatology. 1998;197(2):162–6.Google Scholar
  5. 5.
    Sigurgeirsson B, Olafsson JH, Steinsson JB, Paul C, Billstein S, Evans EGV. Long-term effectiveness of treatment with terbinafine vs itraconazole in onychomycosis: a 5-year blinded prospective follow-up study. Arch Dermatol. 2002;138(3):353–7.Google Scholar
  6. 6.
    Shemer A. Update: medical treatment of onychomycosis. Dermatol Ther. 2012;25(6):582–93.Google Scholar
  7. 7.
    Elewski BE. The effect of toenail onychomycosis on patient quality of life. Int J Dermatol. 1997;36(10):754–6.Google Scholar
  8. 8.
    Gupta A, Mays R. The impact of onychomycosis on quality of life: a systematic review of the available literature. Skin Appendage Disord. 2018;4:1–9.Google Scholar
  9. 9.
    Gupta AK, Gupta G, Jain HC, Lynde CW, Foley KA, Daigle D, et al. The prevalence of unsuspected onychomycosis and its causative organisms in a multicentre Canadian sample of 30 000 patients visiting physicians’ offices. J Eur Acad Dermatol Venereol. 2016;30(9):1567–72.Google Scholar
  10. 10.
    Maraki S, Mavromanolaki VE. Epidemiology of onychomycosis in Crete, Greece: a 12-year study. Mycoses. 2016;59(12):798–802.Google Scholar
  11. 11.
    Oz Y, Qoraan I, Oz A, Balta I. Prevalence and epidemiology of tinea pedis and toenail onychomycosis and antifungal susceptibility of the causative agents in patients with type 2 diabetes in Turkey. Int J Dermatol. 2017;56(1):68–74.Google Scholar
  12. 12.
    Akkus G, Evran M, Gungor D, Karakas M, Sert M, Tetiker T. Tinea pedis and onychomycosis frequency in diabetes mellitus patients and diabetic foot ulcers: A cross sectional—observational study. Pak J Med Sci. 2016;32(4):891–5.Google Scholar
  13. 13.
    Gupta AK, Daigle D, Foley KA. The prevalence of culture-confirmed toenail onychomycosis in at-risk patient populations. J Eur Acad Dermatol Venereol. 2015;29(6):1039–44.Google Scholar
  14. 14.
    Ameen M, Lear JT, Madan V, Mohd Mustapa MF, Richardson M. British Association of Dermatologists’ guidelines for the management of onychomycosis 2014. Br J Dermatol. 2014;171(5):937–58.Google Scholar
  15. 15.
    Asz-Sigall D, López-García L, Vega-Memije ME, Lacy-Niebla RM, García-Corona C, Ramírez-Rentería C, et al. HLA-DR6 association confers increased resistance to T. rubrum onychomycosis in Mexican Mestizos. Int J Dermatol. 2010;49(12):1406–9.Google Scholar
  16. 16.
    García-Romero MT, Granados J, Vega-Memije ME, Arenas R. Analysis of genetic polymorphism of the HLA-B and HLA-DR loci in patients with dermatophytic onychomycosis and in their first-degree relatives. Actas Dermosifiliogr. 2012;103(1):59–62.Google Scholar
  17. 17.
    Gupta AK, Simpson FC, Brintnell WC. Do genetic mutations and genotypes contribute to onychomycosis? Dermatology. 2014;228(3):207–10.Google Scholar
  18. 18.
    Zaias N, Tosti A, Rebell G, Morelli R, Bardazzi F, Bieley H, et al. Autosomal dominant pattern of distal subungual onychomycosis caused by Trichophyton rubrum. J Am Acad Dermatol. 1996;34(2 Pt 1):302–4.Google Scholar
  19. 19.
    Gupta AK, Gupta MA, Summerbell RC, Cooper EA, Konnikov N, Albreski D, et al. The epidemiology of onychomycosis: possible role of smoking and peripheral arterial disease. J Eur Acad Dermatol Venereol. 2000;14(6):466–9.Google Scholar
  20. 20.
    Haneke E, Roseeuw D. The scope of onychomycosis: epidemiology and clinical features. Int J Dermatol. 1999;38(Suppl 2):7–12.Google Scholar
  21. 21.
    Gupta AK, Humke S. The prevalence and management of onychomycosis in diabetic patients. Eur J Dermatol. 2000;10(5):379–84.Google Scholar
  22. 22.
    Gupta AK, Konnikov N, MacDonald P, Rich P, Rodger NW, Edmonds MW, et al. Prevalence and epidemiology of toenail onychomycosis in diabetic subjects: a multicentre survey. Br J Dermatol. 1998;139(4):665–71.Google Scholar
  23. 23.
    Shapiro L, Shear N. Drug interactions: proteins, pumps, and P-450s. J Am Acad Dermatol. 2002;47(4):467–88.Google Scholar
  24. 24.
    Shapiro LE, Shear NH. Drug interactions: proteins, pumps, and P-450s. J Am Acad Dermatol. 2002;47(4):467–84.Google Scholar
  25. 25.
    Moura CS, Acurcio FA, Belo NO. Drug-drug interactions associated with length of stay and cost of hospitalization. J Pharm Sci. 2009;12(3):266–72.Google Scholar
  26. 26.
    Scher RK, Baran R. Onychomycosis in clinical practice: factors contributing to recurrence. Br J Dermatol. 2003;149(Suppl 65):5–9.Google Scholar
  27. 27.
    Gupta AK, Konnikov N, Lynde CW. Single-blind, randomized, prospective study on terbinafine and itraconazole for treatment of dermatophyte toenail onychomycosis in the elderly. J Am Acad Dermatol. 2001;44(3):479–84.Google Scholar
  28. 28.
    Lamisil (terbinafine hydrochloride) tablets, 250 mg (package insert). Drugs@FDA: FDA approved drug products. 2012. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020539s021lbl.pdf. Accessed 14 Jun 2018.
  29. 29.
    De Doncker P, Decroix J, Piérard GE, Roelant D, Woestenborghs R, Jacqmin P, et al. Antifungal pulse therapy for onychomycosis: A pharmacokinetic and pharmacodynamic investigation of monthly cycles of 1-week pulse therapy with itraconazole. Arch Dermatol. 1996;132(1):34–41.Google Scholar
  30. 30.
    Mayser P, Freund V, Budihardja D. Toenail onychomycosis in diabetic patients: issues and management. Am J Clin Dermatol. 2009;10(4):211–20.Google Scholar
  31. 31.
    Jo Siu WJ, Tatsumi Y, Senda H, Pillai R, Nakamura T, Sone D, et al. Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother. 2013;57(4):1610–6.Google Scholar
  32. 32.
    Vlahovic TC, Joseph WS. Efinaconazole topical, 10% for the treatment of toenail onychomycosis in patients with diabetes. J Drugs Dermatol. 2014;13(10):1186–90.Google Scholar
  33. 33.
    Cribier BJ, Bakshi R. Terbinafine in the treatment of onychomycosis: a review of its efficacy in high-risk populations and in patients with nondermatophyte infections. Br J Dermatol. 2004;150(3):414–20.Google Scholar
  34. 34.
    Tan JS, Joseph WS. Common fungal infections of the feet in patients with diabetes mellitus. Drugs Aging. 2004;21(2):101–12.Google Scholar
  35. 35.
    Gupta AK, Ryder JE, Skinner AR. Treatment of onychomycosis: pros and cons of antifungal agents. J Cutan Med Surg. 2004;8(1):25–30.Google Scholar
  36. 36.
    Rodriguez DA. Efinaconazole topical solution, 10%, for the treatment of mild and moderate toenail onychomycosis. J Clin Aesthetic Dermatol. 2015;8(6):24–9.Google Scholar
  37. 37.
    Gupta AK, Elewski BE, Sugarman JL, Ieda C, Kawabata H, Kang R, et al. The efficacy and safety of efinaconazole 10% solution for treatment of mild to moderate onychomycosis: a pooled analysis of two phase 3 randomized trials. J Drugs Dermatol. 2014;13(7):815–20.Google Scholar
  38. 38.
    Gupta AK, Korotzer A. Topical treatment of onychomycosis and clinically meaningful outcomes. J Drugs Dermatol. 2016;15(10):1260–6.Google Scholar
  39. 39.
    Elewski BE, Cantrell W, Lin T. Is severity of disease a prognostic factor for cure following treatment of onychomycosis? J Drugs Dermatol. 2018;17(2):175–8.Google Scholar
  40. 40.
    Rich P. Efinaconazole topical solution, 10%: the benefits of treating onychomycosis early. J Drugs Dermatol. 2015;14(1):58–62.Google Scholar
  41. 41.
    Rigopoulos D, Papanagiotou V, Daniel R, Piraccini BM. Onychomycosis in patients with nail psoriasis: a point to point discussion. Mycoses. 2017;60(1):6–10.Google Scholar
  42. 42.
    Cutrín Gómez E, Anguiano Igea S, Delgado-Charro MB, Gómez Amoza JL, Otero Espinar FJ. Microstructural alterations in the onychomycotic and psoriatic nail: relevance in drug delivery. Eur J Pharm Biopharm. 2018;128:48–56.Google Scholar
  43. 43.
    Piraccini BM, Alessandrini A. Drug-related nail disease. Clin Dermatol. 2013;31(5):618–26.Google Scholar
  44. 44.
    Cribier B, Mena ML, Rey D, Partisani M, Fabien V, Lang JM, et al. Nail changes in patients infected with human immunodeficiency virus. A prospective controlled study. Arch Dermatol. 1998;134(10):1216–20.Google Scholar
  45. 45.
    Gupta AK, Lynch LE. Management of onychomycosis: examining the role of monotherapy and dual, triple, or quadruple therapies. Cutis. 2004;74(1 Suppl):5–9.Google Scholar
  46. 46.
    Del Rosso JQ. Onychomycosis of toenails and post-hoc analyses with efinaconazole 10% solution once-daily treatment: impact of disease severity and other concomitant associated factors on selection of therapy and therapeutic outcomes. J Clin Aesthetic Dermatol. 2016;9(2):42–7.Google Scholar
  47. 47.
    Markinson BC, Caldwell BD. Efinaconazole topical solution, 10%: efficacy in patients with onychomycosis and coexisting tinea pedis. J Am Podiatr Med Assoc. 2015;105(5):407–11.Google Scholar
  48. 48.
    Gupta AK, Taborda P, Taborda V, Gilmour J, Rachlis A, Salit I, et al. Epidemiology and prevalence of onychomycosis in HIV-positive individuals. Int J Dermatol. 2000;39(10):746–53.Google Scholar
  49. 49.
    Gupta AK, Studholme C. Update on efinaconazole 10% topical solution for the treatment of onychomycosis. Skin Ther Lett. 2016;21(6):7–11.Google Scholar
  50. 50.
    Gupta AK, Lynde CW, Jain HC, Sibbald RG, Elewski BE, Daniel CR, et al. A higher prevalence of onychomycosis in psoriatics compared with non-psoriatics: a multicentre study. Br J Dermatol. 1997;136(5):786–9.Google Scholar
  51. 51.
    Herranz P, García J, De Lucas R, González J, Peña JM, Díaz R, et al. Toenail onychomycosis in patients with acquired immune deficiency syndrome: treatment with terbinafine. Br J Dermatol. 1997;137(4):577–80.Google Scholar
  52. 52.
    Gupta AK, Jain HC, Lynde CW, Macdonald P, Cooper EA, Summerbell RC. Prevalence and epidemiology of onychomycosis in patients visiting physicians’ offices: a multicenter Canadian survey of 15,000 patients. J Am Acad Dermatol. 2000;43(2 Pt 1):244–8.Google Scholar
  53. 53.
    Rosen T. Evaluation of gender as a clinically relevant outcome variable in the treatment of onychomycosis with efinaconazole topical solution 10. Cutis. 2015;96(3):197–201.Google Scholar
  54. 54.
    Bhatia N. Managing assessments and expectations: patient responses following therapy with efinaconazole topical solution, 10%. J Drugs Dermatol. 2015;14(7):694–8.Google Scholar
  55. 55.
    Elewski BE, Tosti A, Lin T. Efinaconazole 10% topical solution: case review of onychomycosis patients who were completely cured at week 24. Skin Appendage Disord. 2018;4(2):67–70.Google Scholar
  56. 56.
    Sigurgeirsson B. Prognostic factors for cure following treatment of onychomycosis. J Eur Acad Dermatol Venereol. 2010;24(6):679–84.Google Scholar
  57. 57.
    Zaias N, Escovar SX, Rebell G. Opportunistic toenail onychomycosis. The fungal colonization of an available nail unit space by non-dermatophytes is produced by the trauma of the closed shoe by an asymmetric gait or other trauma. A plausible theory. J Eur Acad Dermatol Venereol. 2014;28(8):1002–6.Google Scholar
  58. 58.
    Kanafani ZA, Perfect JR. Resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis. 2008;46(1):120–8.Google Scholar
  59. 59.
    Pemán J, Cantón E, Espinel-Ingroff A. Antifungal drug resistance mechanisms. Expert Rev Anti Infect Ther. 2009;7(4):453–60.Google Scholar
  60. 60.
    Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2012;125(1 Suppl):S3–13.Google Scholar
  61. 61.
    Rudramurthy SM, Shankarnarayan SA, Dogra S, Shaw D, Mushtaq K, Paul RA, et al. Mutation in the squalene epoxidase gene of Trichophyton interdigitale and Trichophyton rubrum associated with allylamine resistance. Antimicrob Agents Chemother. 2018;62(5):1–9.Google Scholar
  62. 62.
    Singh A, Masih A, Khurana A, Singh PK, Gupta M, Hagen F, et al. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses. 2018;61(7):477–84.Google Scholar
  63. 63.
    Perumal P, Mekala S, Chaffin WL. Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother. 2007;51(7):2454–63.Google Scholar
  64. 64.
    Costa-Orlandi CB, Sardi JCO, Santos CT, Fusco-Almeida AM, Mendes-Giannini MJS. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling. 2014;30(6):719–27.Google Scholar
  65. 65.
    Vila T, Ishida K, Seabra SH, Rozental S. Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells. Int J Antimicrob Agents. 2016;48(5):512–20.Google Scholar
  66. 66.
    Gupta AK, Nakrieko K-A. Trichophyton rubrum DNA strain switching increases in patients with onychomycosis failing antifungal treatments. Br J Dermatol. 2015;172(1):74–80.Google Scholar
  67. 67.
    Jackson CJ, Barton RC, Evans EG. Species identification and strain differentiation of dermatophyte fungi by analysis of ribosomal-DNA intergenic spacer regions. J Clin Microbiol. 1999;37(4):931–6.Google Scholar
  68. 68.
    Gupta A, Nakrieko K-A. Trichophyton rubrum DNA strains are more stable in onychomycosis patients with persistent mixed infections involving a nondermatophyte mould. J Am Podiatr Med Assoc (in press).Google Scholar
  69. 69.
    Elewski BE, El Charif M, Cooper KD, Ghannoum M, Birnbaum JE. Reactivity to trichophytin antigen in patients with onychomycosis: effect of terbinafine. J Am Acad Dermatol. 2002;46(3):371–5.Google Scholar
  70. 70.
    Guoling Y, Xiaohong Y, Jingrong L, Liji J, Lijia A. A study on stability of phenotype and genotype of Trichophyton rubrum. Mycopathologia. 2006;161(4):205–12.Google Scholar
  71. 71.
    Gupta AK. In vitro activities of posaconazole, ravuconazole, terbinafine, itraconazole and fluconazole against dermatophyte, yeast and non-dermatophyte species. Med Mycol. 2005;43(2):179–85.Google Scholar
  72. 72.
    Gupta AK, Daigle D. Potential role of tavaborole for the treatment of onychomycosis. Future Microbiol. 2014;9(11):1243–50.Google Scholar
  73. 73.
    Gupta AK, Zaman M, Singh J. Fast and sensitive detection of Trichophyton rubrum DNA from the nail samples of patients with onychomycosis by a double-round polymerase chain reaction-based assay. Br J Dermatol. 2007;157(4):698–703.Google Scholar
  74. 74.
    Gupta AK, Drummond-Main C, Paquet M. Evidence-based optimal fluconazole dosing regimen for onychomycosis treatment. J Dermatol Treat. 2013;24(1):75–80.Google Scholar
  75. 75.
    Elewski BE, Aly R, Baldwin SL, González Soto RF, Rich P, Weisfeld M, et al. Efficacy and safety of tavaborole topical solution, 5%, a novel boron-based antifungal agent, for the treatment of toenail onychomycosis: results from 2 randomized phase-III studies. J Am Acad Dermatol. 2015;73(1):62–9.Google Scholar
  76. 76.
    Elewski BE, Rich P, Pollak R, Pariser DM, Watanabe S, Senda H, et al. Efinaconazole 10% solution in the treatment of toenail onychomycosis: two phase III multicenter, randomized, double-blind studies. J Am Acad Dermatol. 2013;68(4):600–8.Google Scholar
  77. 77.
    Gupta AK, Versteeg SG. A critical review of improvement rates for laser therapy used to treat toenail onychomycosis. J Eur Acad Dermatol Venereol. 2017;31(7):1111–8.Google Scholar
  78. 78.
    Gupta AK, Daigle D, Foley KA. Network meta-analysis of onychomycosis treatments. Skin Appendage Disord. 2015;1(2):74–81.Google Scholar
  79. 79.
    Pollak RA, Ilie C. Long-term follow-up of onychomycosis patients treated with efinaconazole. J Drugs Dermatol. 2017;16(12):1269–73.Google Scholar
  80. 80.
    Murdan S. Drug delivery to the nail following topical application. Int J Pharm. 2002;236(1–2):1–26.Google Scholar
  81. 81.
    Ghannoum M, Rice L. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12(4):501–17.Google Scholar
  82. 82.
    Elewski BE. Mechanisms of action of systemic antifungal agents. J Am Acad Dermatol. 1993;28(5 Pt 1):S28–34.Google Scholar
  83. 83.
    Lipner S, Scher RK. Onychomycosis: current and future therapies. Cutis. 2014;93(2):60–3.Google Scholar
  84. 84.
    US Food and Drug Administration. Medical devices and clinical trial design for the treatment or improvement in the appearance of fungally-infected nails: guidance for industry and FDA staff. 2016. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM431312.pdf. Accessed 14 Jun 2018.
  85. 85.
    Hilmarsdottir I, Haraldsson H, Sigurdardottir A, Sigurgeirsson B. Dermatophytes in a swimming pool facility: difference in dermatophyte load in men’s and women’s dressing rooms. Acta Derm Venereol. 2005;85(3):267–8.Google Scholar
  86. 86.
    Shemer A, Gupta AK, Amichai B, Baum S, Barzilai A, Farhi R, et al. Increased risk of tinea pedis and onychomycosis among swimming pool employees in Netanya area, Israel. Mycopathologia. 2016;181(11–12):851–6.Google Scholar
  87. 87.
    Rafiei A, Amirrajab N. Fungal contamination of indoor public swimming pools, Ahwaz, South-west of Iran. Iran J Public Health. 2010;39(3):124–8.Google Scholar
  88. 88.
    English MP, Gibson MD. Studies in the epidemiology of tinea pedis. II. Dermatophytes on the floors of swimming-baths. Br Med J. 1959;1(5135):1446–8.Google Scholar
  89. 89.
    Broughton R. Reinfection from socks and shoes in tinea pedis. Br J Dermatol. 1955;67:249.Google Scholar
  90. 90.
    Gupta AK, Brintnell WC. Sanitization of contaminated footwear from onychomycosis patients using ozone gas: a novel adjunct therapy for treating onychomycosis and tinea pedis? J Cutan Med Surg. 2013;17(4):243–9.Google Scholar
  91. 91.
    Bonar L, Dreyer A. Studies on ringworm funguses with reference to public health problems. Am J Public Health Nations Health. 1932;22(9):909–26.Google Scholar
  92. 92.
    Bonifaz A, Vázquez-González D, Hernández M, Araiza J, Tirado-Sánchez A, Ponce R. Dermatophyte isolation in the socks of patients with tinea pedis and onychomycosis. J Dermatol. 2013;40(6):504–5.Google Scholar
  93. 93.
    Totri CR, Feldstein S, Admani S, Friedlander SF, Eichenfield LF. Epidemiologic analysis of onychomycosis in the San Diego pediatric population. Pediatr Dermatol. 2017;34(1):46–9.Google Scholar
  94. 94.
    Segal R, Shemer A, Hochberg M, Keness Y, Shvarzman R, Mandelblat M, et al. Onychomycosis in Israel: epidemiological aspects. Mycoses. 2015;58(3):133–9.Google Scholar
  95. 95.
    Otašević S, Barac A, Pekmezovic M, Tasic S, Ignjatović A, Momčilović S, et al. The prevalence of Candida onychomycosis in Southeastern Serbia from 2011 to 2015. Mycoses. 2016;59(3):167–72.Google Scholar
  96. 96.
    Gupta C, Jongman M, Das S, Snehaa K, Bhattacharya SN, Seyedmousavi S, et al. Genotyping and in vitro antifungal susceptibility testing of fusarium isolates from onychomycosis in India. Mycopathologia. 2016;181(7–8):497–504.Google Scholar
  97. 97.
    Williams R, Mikailov A, Cohen J, Canales A, Mostaghlmi A. The clinical diagnosis of onychomycosis by physicians: is a confirmatory test necessary? AAD meeting, San Francisco. J Amer Acad Dermatol. 2015;72(5S1):AB116.Google Scholar
  98. 98.
    Koshnick R, Lilly K, St Clair K, Finnegan M, Warshaw E. Use of diagnostic tests by dermatologists, podiatrists and family practitioners in the United States: pilot data from a cross-sectional survey. Mycoses. 2007;50(6):463–9.Google Scholar
  99. 99.
    Guibal F, Baran R, Duhard E, Feuilha de Dechauvin M. Epidemiology and management of onychomycosis in private dermatological practice in France (in French). Ann Dermatol Vénéréol. 2008;135(8–9):561–6.Google Scholar
  100. 100.
    Lipner SR, Scher RK. Confirmatory testing for onychomycosis. JAMA Dermatol. 2016;152(7):847.Google Scholar
  101. 101.
    Wang AL, Elewski BE, Elmets CA. Confirmatory testing for onychomycosis. JAMA Dermatol. 2016;152(7):848.Google Scholar
  102. 102.
    Gupta AK, Versteeg SG, Shear NH. Confirmatory testing prior to initiating onychomycosis therapy is cost-effective. J Cutan Med Surg. 2018;22(2):129–41.Google Scholar
  103. 103.
    Verrier J, Monod M. Diagnosis of dermatophytosis using molecular biology. Mycopathologia. 2017;182(1–2):193–202.Google Scholar
  104. 104.
    Hayette M-P, Seidel L, Adjetey C, Darfouf R, Wéry M, Boreux R, et al. Clinical evaluation of the DermaGenius® nail real-time PCR assay for the detection of dermatophytes and Candida albicans in nails. Med Mycol.  https://doi.org/10.1093/mmy/myy020 (epub 2018 May 11).
  105. 105.
    Gupta AK, Nakrieko K-A. Onychomycosis infections: do polymerase chain reaction and culture reports agree? J Am Podiatr Med Assoc. 2017;107(4):280–6.Google Scholar
  106. 106.
    Zane LT, Chanda S, Coronado D, Del Rosso J. Antifungal agents for onychomycosis: new treatment strategies to improve safety. Dermatol Online J. 2016;22(3):1–12.Google Scholar
  107. 107.
    Noxafil® (posaconazole) injection 18 mg/mL; Noxafil® (posaconazole) delayed-release tablets 100 mg; Noxafil® (posaconazole) oral suspension 40 mg/mL (prescribing information). U.S. Food and Drug Administration (FDA); 2015. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/022003s018s020,0205053s002s004,0205596s001s003lbl.pdf. Accessed 16 May 2018.
  108. 108.
    Pfizer. DIFLUCAN® (fluconazole tablets) (fluconazole for oral suspension). U.S. Food and Drug Administration (FDA); 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/019949s060,020090s044lbl.pdf. Accessed 16 May 2018.
  109. 109.
    Kerydin (tavaborole) topical solution, 5% (package insert). U.S. Food and Drug Administration (FDA). http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204427s000lbl.pdf. Accessed 16 May 2018.
  110. 110.
    Takahata S, Kubota N, Takei-Masuda N, Yamada T, Maeda M, Alshahni MM, et al. Mechanism of action of ME1111, a novel antifungal agent for topical treatment of onychomycosis. Antimicrob Agents Chemother. 2016;60(2):873–80.Google Scholar
  111. 111.
    Efficacy and safety study of ME1111 in patients with onychomycosis. ClinicalTrials.gov. 2013. https://clinicaltrials.gov/ct2/show/NCT02022215. Accessed 16 May 2018.
  112. 112.
    Rajendran R, Williams C, Lappin DF, Millington O, Martins M, Ramage G. Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot Cell. 2013;12(3):420–9.Google Scholar
  113. 113.
    Pulcrano G, Panellis D, De Domenico G, Rossano F, Catania MR. Ambroxol influences voriconazole resistance of Candida parapsilosis biofilm. FEMS Yeast Res. 2012;12(4):430–8.Google Scholar
  114. 114.
    Shemer A, Gupta A, Amichai B, Farhi R, Baran R, Daniel CR, et al. An open comparative study of nail drilling as adjunctive treatment for toenail onychomycosis. J Dermatol Treat. 2016;27(5):480–3.Google Scholar
  115. 115.
    Vila TVM, Rozental S, de Sá Guimarães CMD. A new model of in vitro fungal biofilms formed on human nail fragments allows reliable testing of laser and light therapies against onychomycosis. Lasers Med Sci. 2015;30(3):1031–9.Google Scholar
  116. 116.
    Valeant. Product monograph: Penlac (ciclopirox topical solution, 8% w/w) nail lacquer. 2012. https://pdf.hres.ca/dpd_pm/00015736.PDF.
  117. 117.
    Valeant Pharmaceuticals. JUBLIA® (efinaconazole) topical solution, 10%. Drugs@FDA. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/203567s000lbl.pdf. Accessed 14 Jun 2018.
  118. 118.
    Novartis Pharmaceuticals Canada Inc. Pr LAMISIL* (terbinafine hydrochloride) 250 mg tablets (expressed as base) topical cream 1% w/w (10 mg/g) topical spray solution 1% w/w (10 mg/g) antifungal agent. 2013 Health Canada Drug Product Database. https://www.ask.novartispharma.ca/download.htm?res=lamisil_scrip_e.pdf&resTitleId=728. Accessed 14 Jun 2018.
  119. 119.
    Novartis. LAMISIL (terbinafine hydrochloride) tablets, 250 mg. Drugs@FDA. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020539s021lbl.pdf. Accessed 14 Jun 2018.
  120. 120.
    Janssen Pharma. Sporanox® (itraconazole) capsules. Drugs@FDA. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020083s048s049s050lbl.pdf. Accessed 14 Jun 2018.
  121. 121.
    Jublia® (efinaconazole) topical solution, 10%. Drugs@FDA: FDA approved drug products. 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/203567s000lbl.pdf. Accessed 12 Jun 2018.
  122. 122.
    Xu Y, Miao X, Zhou B, Luo D. Combined oral terbinafine and long-pulsed 1,064-nm Nd:YAG laser treatment is more effective for onychomycosis than either treatment alone. Dermatol Surg. 2014;40(11):1201–7.Google Scholar
  123. 123.
    Tavakkol A, Fellman S, Kianifard F. Safety and efficacy of oral terbinafine in the treatment of onychomycosis: analysis of the elderly subgroup in Improving Results in ONychomycosis-Concomitant Lamisil and Debridement (IRON-CLAD), an open-label, randomized trial. Am J Geriatr Pharmacother. 2006;4(1):1–13.Google Scholar
  124. 124.
    Gupta AK, Hall S, Zane LT, Lipner SR, Rich P. Evaluation of the efficacy and safety of tavaborole topical solution, 5%, in the treatment of onychomycosis of the toenail in adults: a pooled analysis of an 8-week, post-study follow-up from two randomized phase 3 studies. J Dermatol Treat. 2018;29(1):44–8.Google Scholar
  125. 125.
    Gupta AK, Paquet M, Simpson F, Tavakkol A. Terbinafine in the treatment of dermatophyte toenail onychomycosis: a meta-analysis of efficacy for continuous and intermittent regimens. J Eur Acad Dermatol Venereol. 2013;27(3):267–72.Google Scholar
  126. 126.
    Gupta AK. Management of toe onychomycosis: what is the potential for improving efficacy of treatment? Clin Dermatol. 2002;20(5):607–9.Google Scholar
  127. 127.
    Gupta AK, Simpson FC. Routes of drug delivery into the nail apparatus: implications for the efficacy of topical nail solutions in onychomycosis. J Dermatol Treat. 2016;27(1):2–4.Google Scholar
  128. 128.
    Elewski BE, Pollak RA, Pillai R, Olin JT. Access of efinaconazole topical solution, 10%, to the infection site by spreading through the subungual space. J Drugs Dermatol. 2014;13(11):1394–8.Google Scholar
  129. 129.
    Sakamoto M, Sugimoto N, Kawabata H, Yamakawa E, Kodera N, Pillai R, et al. Transungual delivery of efinaconazole: its deposition in the nail of onychomycosis patients and in vitro fungicidal activity in human nails. J Drugs Dermatol. 2014;13(11):1388–92.Google Scholar
  130. 130.
    Zeichner JA, Stein Gold L, Korotzer A. Penetration of ((14)C)-efinaconazole topical solution, 10%, does not appear to be influenced by nail polish. J Clin Aesthetic Dermatol. 2014;7(9):34–6.Google Scholar
  131. 131.
    Gupta AK, Vlahovic TC, Foley KA, Gellings Lowe N, Turner R, Brown M, Hall S. In vitro efficacy of tavaborole topical solution, 5% after penetration through nail polish on ex vivo human fingernails. J Dermatolog Treat. 2018;29(6):633–6.Google Scholar
  132. 132.
    Elewski BE, Coronado D, Chanda S, Merchant T, Lin H, Zane LT, et al. An in vitro study demonstrating nail penetration of tavaborole from tavaborole topical solution, 5% through multiple layers of nail polish. In: Society for investigative dermatology meeting; 7–10 May 2014, Albuquerque.Google Scholar
  133. 133.
    Salakshna N, Bunyaratavej S, Matthapan L, Lertrujiwanit K, Leeyaphan C. A cohort study of risk factors, clinical presentations and outcomes for dermatophyte, non-dermatophyte and mixed toenail infections. J Am Acad Dermatol.  https://doi.org/10.1016/j.jaad.2018.05.041 (epub 2018 May 31).
  134. 134.
    Gupta AK, Paquet M. Management of onychomycosis in Canada in 2014. J Cutan Med Surg. 2015;19(3):260–73.Google Scholar
  135. 135.
    Shuster S, Baran R. Recurrence of fungal nail disease and the dissociation of relapse from re-infection. Acta Derm Venereol. 2001;81(2):154–5.Google Scholar
  136. 136.
    Sigurgeirsson B, Olafsson JH, Steinsson JT, Kerrouche N, Sidou F. Efficacy of amorolfine nail lacquer for the prophylaxis of onychomycosis over 3 years. J Eur Acad Dermatol Venereol. 2010;24(8):910–5.Google Scholar
  137. 137.
    Piraccini BM, Sisti A, Tosti A. Long-term follow-up of toenail onychomycosis caused by dermatophytes after successful treatment with systemic antifungal agents. J Am Acad Dermatol. 2010;62(3):411–4.Google Scholar
  138. 138.
    Gupta AK, Elewski BE, Rosen T, Caldwell B, Pariser DM, Kircik LH, et al. Onychomycosis: strategies to minimize recurrence. J Drugs Dermatol. 2016;15(3):279–82.Google Scholar
  139. 139.
    Ghannoum MA, Mukherjee PK, Warshaw EM, Evans S, Korman NJ, Tavakkol A. Molecular analysis of dermatophytes suggests spread of infection among household members. Cutis. 2013;91(5):237–45.Google Scholar
  140. 140.
    English MP. Trichophyton rubrum infection in families. Br Med J. 1957;1(5021):744–6.Google Scholar
  141. 141.
    Ghannoum MA, Isham N, Long L. Optimization of an infected shoe model for the evaluation of an ultraviolet shoe sanitizer device. J Am Podiatr Med Assoc. 2012;102(4):309–13.Google Scholar
  142. 142.
    Gupta A, Brintnell W. Ozone gas effectively kills laboratory strains of Trichophyton rubrum and Trichophyton mentagrophytes using an in vitro test system. J Dermatol Treat. 2014;25(3):251–5.Google Scholar
  143. 143.
    Gupta AK, Brintnell WC. Sanitization of contaminated footwear from onychomycosis patients using ozone gas: a novel adjunct therapy for treating onychomycosis and tinea pedis? J Cutan Med Surg. 2013;17(4):243–9.Google Scholar
  144. 144.
    MacCallum DM, Coste A, Ischer F, Jacobsen MD, Odds FC, Sanglard D. Genetic dissection of azole resistance mechanisms in Candida albicans and their validation in a mouse model of disseminated infection. Antimicrob Agents Chemother. 2010;54(4):1476–83.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Aditya K. Gupta
    • 1
    • 2
    Email author
  • Sarah G. Versteeg
    • 2
  • Neil H. Shear
    • 1
  • Vincent Piguet
    • 1
    • 3
  • Antonella Tosti
    • 4
  • Bianca Maria Piraccini
    • 5
  1. 1.Division of Dermatology, Department of MedicineUniversity of Toronto School of MedicineTorontoCanada
  2. 2.Mediprobe Research Inc.LondonCanada
  3. 3.Division of DermatologyWomen’s College HospitalTorontoCanada
  4. 4.Department of Dermatology and Cutaneous Surgery, Miller School of MedicineUniversity of MiamiMiamiUSA
  5. 5.Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly

Personalised recommendations