American Journal of Clinical Dermatology

, Volume 19, Issue 2, pp 209–222 | Cite as

Pharmacogenetics and Pharmacogenomics in Moderate-to-Severe Psoriasis

  • María C. Ovejero-Benito
  • Ester Muñoz-Aceituno
  • Alejandra Reolid
  • Miriam Saiz-Rodríguez
  • Francisco Abad-Santos
  • Esteban Daudén
Review Article

Abstract

Pharmacogenetics is the study of variations in DNA sequence related to drug response. Moreover, the evolution of biotechnology and the sequencing of human DNA have allowed the creation of pharmacogenomics, a branch of genetics that analyzes human genes, the RNAs and proteins encoded by them, and the inter-and intra-individual variations in expression and function in relation to drug response. Pharmacogenetics and pharmacogenomics are being used to search for biomarkers that can predict response to systemic treatments, including those for moderate-to-severe psoriasis. Psoriasis is a chronic inflammatory disease with an autoimmune contribution. Although its etiology remains unknown, genetic, epigenetic, and environmental factors play a role in its development. Diverse systemic and biologic therapies are used to treat moderate-to-severe psoriasis. However, these treatments are not curative, and patients exhibit a wide range of responses to them. Moderate-to-severe psoriasis is usually treated with systemic immunomodulators such as acitretin, ciclosporin, and methotrexate. Anti-tumor necrosis factor (TNF) drugs (adalimumab, etanercept, or infliximab) are the first-line treatment for patients resistant to conventional systemic therapies. Although these therapies are very efficient, around 30–50% of patients have inadequate response. Ustekinumab is a monoclonal antibody that targets interleukin (IL)-12 and IL-23 and is used for moderate-to-severe psoriasis. New drugs (apremilast, brodalumab, guselkumab, ixekizumab, and secukinumab) have recently been approved for psoriasis. However, response rates to systemic treatments for moderate-to-severe psoriasis range from 35 to 80%, so it is necessary to identify non-invasive biomarkers that could help predict treatment outcomes of these therapies and individualize care for patients with psoriasis. These biomarkers could improve patient quality of life and reduce health costs and potential side effects. Pharmacogenetic studies have identified potential biomarkers for response to biologic treatments for moderate-to-severe psoriasis. These biomarkers need to be validated in clinical trials involving large cohorts of patients before they can be translated to the clinic. We review pharmacogenetics and pharmacogenomics studies for the treatment of moderate-to-severe plaque psoriasis.

Notes

Acknowledgements

This study was supported by Instituto de Salud Carlos III (FIS PI10/01740, FIS PI13/1598), Fundación Teófilo Hernando, and AbbVie.

Compliance with Ethical Standards

Conflicts of interest

F Abad-Santos has been a consultant or investigator in clinical trials sponsored by the following pharmaceutical companies: Abbott, Alter, Chemo, Cinfa, FAES, Farmalíder, Ferrer, Galenicum, GlaxoSmithKline, Gilead, Janssen-Cilag, Kern, Normon, Novartis, Servier, Silverpharma, Teva, and Zambon. E Daudén has potential conflicts of interest (advisory board member, consultant, grants, research support, participation in clinical trials, honoraria for speaking, and research support) with the following pharmaceutical companies: AbbVie (Abbott), Amgen, Janssen-Cilag, Leo Pharma, Novartis, Pfizer, MSD, and Celgene. M. Saiz-Rodriguez is co-financed by Consejería de Educación, Juventud y Deporte from Comunidad de Madrid, and Fondo Social Europeo. MC Ovejero-Benito, E Muñoz-Aceituno, and A Reolid have no conflicts of interest. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

References

  1. 1.
    Roden DM, Wilke RA, Kroemer HK, Stein CM. Pharmacogenomics: the genetics of variable drug responses. Circulation. 2011;123:1661–70.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mahlknecht U, Voelter-Mahlknecht S. Pharmacogenomics: questions and concerns. Curr Med Res Opin. 2005;21:1041–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Daudén E. Pharmacogenetics II. Research molecular methods, bioinformatics and ethical concerns. Actas Dermosifiliogr. 2007;98:3–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Sykiotis GP, Kalliolias GD, Papavassiliou AG. Pharmacogenetic principles in the Hippocratic writings. J Clin Pharmacol. 2005;45:1218–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Kalow W. Human pharmacogenomics: the development of a science. Hum Genom. 2004;1:375.CrossRefGoogle Scholar
  6. 6.
    Kalow W. Ethnic differences in drug metabolism. Clin Pharmacokinet. 1982;7:373–400.PubMedCrossRefGoogle Scholar
  7. 7.
    Agúndez JAG, Abad-Santos F, Aldea A, Alonso-Navarro H, Bernal ML, Borobia AM, et al. Toward a clinical practice guide in pharmacogenomics testing for functional polymorphisms of drug-metabolizing enzymes. Gene/drug pairs and barriers perceived in Spain. Front Genet 2012;3:273.Google Scholar
  8. 8.
    Sutherland A, Power RJ, Rahman P, O’Rielly DD. Pharmacogenetics and pharmacogenomics in psoriasis treatment: current challenges and future prospects. Expert Opin Drug Metab Toxicol. 2016;12:923–35.PubMedCrossRefGoogle Scholar
  9. 9.
    Valdes R, Yin (Tyler) D. Fundamentals of pharmacogenetics in personalized, precision medicine. Clin Lab Med. 2016;36:447–59.PubMedCrossRefGoogle Scholar
  10. 10.
    Daly AK. Candidate gene case–control studies. Pharmacogenomics. 2003;4:127–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Rabbani B, Nakaoka H, Akhondzadeh S, Tekin M, Mahdieh N. Next generation sequencing: implications in personalized medicine and pharmacogenomics. Mol BioSyst. 2016;12:1818–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Ovejero-Benito MC, Cabaleiro T, Sanz-García A, Llamas-Velasco M, Rodríguez MS, Prieto-Pérez R, et al. Epigenetic biomarkers associated with anti-TNF drugs response in moderate-to-severe psoriasis. Br J Dermatol. 2017. (Epub ahead of print).Google Scholar
  13. 13.
    Aterido A, Julià A, Ferrándiz C, Puig L, Fonseca E, Fernández-López E, et al. Genome-wide pathway analysis identifies genetic pathways associated with psoriasis. J Invest Dermatol. 2016;136:593–602.PubMedCrossRefGoogle Scholar
  14. 14.
    Musa A, Ghoraie LS, Zhang S-D, Galzko G, Yli-Harja O, Dehmer M, et al. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform. 2017. doi: 10.1093/bib/bbw112.
  15. 15.
    Boehncke W-H, Schön MP. Psoriasis. The Lancet. 2015;386:983–94.CrossRefGoogle Scholar
  16. 16.
    Eberle FC, Brück J, Holstein J, Hirahara K, Ghoreschi K. Recent advances in understanding psoriasis. F1000Research. 2016;5:770.CrossRefGoogle Scholar
  17. 17.
    Schleicher SM. Psoriasis: pathogenesis, assessment, and therapeutic update. Clin Podiatr Med Surg. 2016;33:355–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Nast A, Gisondi P, Ormerod AD, Saiag P, Smith C, Spuls PI, et al. European S3-guidelines on the systemic treatment of psoriasis vulgaris—update 2015—short version—EDF in cooperation with EADV and IPC. J Eur Acad Dermatol Venereol. 2015;29:2277–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Daudén E, Puig L, Ferrándiz C, Sánchez-Carazo JL, Hernanz-Hermosa JM, the Spanish Psoriasis Group of the Spanish Academy of Dermatology and Venereology. Consensus document on the evaluation and treatment of moderate-to-severe psoriasis: Psoriasis Group of the Spanish Academy of Dermatology and Venereology. J Eur Acad Dermatol Venereol. 2016;30:1–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Mrowietz U, Kragballe K, Reich K, Spuls P, Griffiths CEM, Nast A, et al. Definition of treatment goals for moderate to severe psoriasis: a European consensus. Arch Dermatol Res. 2011;303:1–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dauden E, Herrera E, Puig L, Sánchez-Carazo J, Toribio J, Caloto M, et al. Validation of a new tool to assess health-related quality of life in psoriasis: the PSO-LIFE questionnaire. Health Qual Life Outcomes. 2012;10:56.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Egeberg A. Psoriasis and comorbidities. Epidemiological studies. Dan Med J. 2016;63:B5201.PubMedGoogle Scholar
  24. 24.
    Prieto-Pérez R, Solano-López G, Cabaleiro T, Román M, Ochoa D, Talegón M, et al. New immune system genetic polymorphisms associated with moderate-to-severe plaque psoriasis: a case-control study. Br J Dermatol. 2015;172:1432–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhou F, Wang W, Shen C, Li H, Zuo X, Zheng X, et al. Epigenome-wide association analysis identified nine skin DNA methylation loci for psoriasis. J Invest Dermatol. 2016;136:779–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Chandra A, Ray A, Senapati S, Chatterjee R. Genetic and epigenetic basis of psoriasis pathogenesis. Mol Immunol. 2015;64:313–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Tang H, Jin X, Li Y, Jiang H, Tang X, Yang X, et al. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet. 2013;46:45–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Gudjonsson JE, Karason A, Runarsdottir EH, Antonsdottir AA, Hauksson VB, Jónsson HH, et al. Distinct clinical differences between HLA-Cw* 0602 positive and negative psoriasis patients–an analysis of 1019 HLA-C-and HLA-B-typed patients. J Invest Dermatol. 2006;126:740–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Nair RP, Stuart PE, Nistor I, Hiremagalore R, Chia NV, Jenisch S, et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet. 2006;78:827–51.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lee YH, Song GG. Associations between interleukin-23R and interleukin-12B polymorphisms and psoriasis susceptibility: a meta-analysis. Immunol Invest. 2013;42:726–36.PubMedCrossRefGoogle Scholar
  31. 31.
    Prieto-Pérez R, Cabaleiro T, Daudén E, Ochoa D, Roman M, Abad-Santos F. Genetics of psoriasis and pharmacogenetics of biological drugs. Autoimmune Dis. 2013;2013:1–13.CrossRefGoogle Scholar
  32. 32.
    Yin X, Low HQ, Wang L, Li Y, Ellinghaus E, Han J, et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun. 2015;6:6916.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Warren RB, Smith RL, Campalani E, Eyre S, Smith CH, Barker JNWN, et al. Genetic variation in efflux transporters influences outcome to methotrexate therapy in patients with psoriasis. J Invest Dermatol. 2008;128:1925–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Indhumathi S, Rajappa M, Chandrashekar L, Ananthanarayanan PH, Thappa DM, Negi VS. Pharmacogenetic markers to predict the clinical response to methotrexate in south Indian Tamil patients with psoriasis. Pharmacol: Eur J Clin; 2017.Google Scholar
  35. 35.
    Campalani E, Arenas M, Marinaki AM, Lewis CM, Barker JNWN, Smith CH. Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis. J Invest Dermatol. 2007;127:1860–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Naesens M, Kuypers DRJ, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4:481–508.Google Scholar
  37. 37.
    Vasilopoulos Y, Sarri C, Zafiriou E, Patsatsi A, Stamatis C, Ntoumou E, et al. A pharmacogenetic study of ABCB1 polymorphisms and cyclosporine treatment response in patients with psoriasis in the Greek population. Pharmacogenomics J. 2014;14:523–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Young HS, Summers AM, Read IR, Fairhurst DA, Plant DJ, Campalani E, et al. Interaction between genetic control of vascular endothelial growth factor production and retinoid responsiveness in psoriasis. J Invest Dermatol. 2006;126:453–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Campalani E, Allen MH, Fairhurst D, Young HS, Mendonca CO, Burden AD, et al. Apolipoprotein E gene polymorphisms are associated with psoriasis but do not determine disease response to acitretin. Br J Dermatol. 2006;154:345–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Goldminz AM, Suarez-Farinas M, Wang AC, Dumont N, Krueger JG, Gottlieb AB. CCL20 and IL22 messenger RNA expression after adalimumab vs methotrexate treatment of psoriasis: a randomized clinical trial. JAMA Dermatol. 2015;151:837.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chaudhari U, Romano P, Mulcahy LD, Dooley LT, Baker DG, Gottlieb AB. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet Lond Engl. 2001;357:1842–7.CrossRefGoogle Scholar
  42. 42.
    Papp KA, Armstrong AW, Reich K, Karunaratne M, Valdecantos W. Adalimumab efficacy in patients with psoriasis who received or did not respond to prior systemic therapy: a pooled post hoc analysis of results from three double-blind, placebo-controlled clinical trials. Am J Clin Dermatol. 2016;17:79–86.PubMedCrossRefGoogle Scholar
  43. 43.
    Reich K, Nestle FO, Papp K, Ortonne J-P, Evans R, Guzzo C, et al. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. The Lancet. 2005;366:1367–74.CrossRefGoogle Scholar
  44. 44.
    Burmester GR, Panaccione R, Gordon KB, McIlraith MJ, Lacerda APM. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Ann Rheum Dis. 2013;72:517–24.PubMedCrossRefGoogle Scholar
  45. 45.
    Horiuchi T, Mitoma H, Harashima S-I, Tsukamoto H, Shimoda T. ransmembrane TNF-: structure, function and interaction with anti-TNF agents. Rheumatology. 2010;49:1215–28.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Puig PL, Carrascosa JM, Daudén E, Sánchez-Carazo JL, Ferrándiz C, Sánchez-Regaña M, García-Bustinduy M, Bordas X, Moreno JC, Hernanz JM, Laguarda S, García-Patos V, Grupo Español de Psoriasis de la Academia Española de Dermatología y Venereología. Spanish evidence-based guidelines on the treatment of moderate-to-severe psoriasis with biologic agents. Actas Dermosifiliogr. 2009;100:386–413 (PubMed - NCBI).PubMedCrossRefGoogle Scholar
  47. 47.
    Navarro R, Daudén E. Reacciones psoriasiformes paradójicas durante el tratamiento con terapia anti-factor de necrosis tumoral. Manejo clínico. Actas Dermo-Sifiliográficas. 2014;105:752–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Papp KA, Tyring S, Lahfa M, Prinz J, Griffiths CEM, Nakanishi AM, et al. A global phase III randomized controlled trial of etanercept in psoriasis: safety, efficacy, and effect of dose reduction. Br J Dermatol. 2005;152:1304–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Knight D, Trinh H, Le J, Siegel S, Shealy D, Scallon B, et al. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol Immunol. 1993;30:1443–53 (PubMed-NCBI).PubMedCrossRefGoogle Scholar
  50. 50.
    Scallon B. Chimeric anti-TNF-α monoclonal antibody cA2 binds recombinant transmembrane TNF-α and activates immune effector functions. Cytokine. 1995;7:251–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Caldarola G, Sgambato A, Fanali C, Moretta G, Farina M, Lucchetti D, et al. HLA-Cw6 allele, NFkB1 and NFkBIA polymorphisms play no role in predicting response to etanercept in psoriatic patients. Pharmacogenet Genomics. 2016;26:423–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Ryan C, Kelleher J, Fagan MF, Rogers S, Collins P, Barker JNWN, et al. Genetic markers of treatment response to tumour necrosis factor-α inhibitors in the treatment of psoriasis. Clin Exp Dermatol. 2014;39:519–24.PubMedCrossRefGoogle Scholar
  53. 53.
    Gallo E, Cabaleiro T, Román M, Solano-López G, Abad-Santos F, García-Díez A, et al. The relationship between tumour necrosis factor (TNF)-α promoter and IL12B / IL-23R genes polymorphisms and the efficacy of anti-TNF-α therapy in psoriasis: a case-control study. Br J Dermatol. 2013;169:819–29.PubMedCrossRefGoogle Scholar
  54. 54.
    Talamonti M, Galluzzo M, Zangrilli A, Papoutsaki M, Egan CG, Bavetta M, et al. HLA-C*06:02 does not predispose to clinical response following long-term adalimumab treatment in psoriatic patients: a retrospective cohort study. Mol Diagn Ther. 2017;21:295–301.PubMedCrossRefGoogle Scholar
  55. 55.
    Batalla A, Coto E, González-Fernández D, González-Lara L, Gómez J, Santos-Juanes J, et al. The Cw6 and late-cornified envelope genotype plays a significant role in anti-tumor necrosis factor response among psoriatic patients. Pharmacogenet Genomics. 2015;25:313–6.Google Scholar
  56. 56.
    Masouri S, Stefanaki I, Ntritsos G, Kypreou KP, Drakaki E, Evangelou E, et al. A pharmacogenetic study of psoriasis risk variants in a greek population and prediction of responses to anti-TNF-α and anti-IL-12/23 agents. Mol Diagn Ther. 2016;20:221–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Bournazos S, Ravetch JV. Fcγ receptor pathways during active and passive immunization. Immunol Rev. 2015;268:88–103.PubMedCrossRefGoogle Scholar
  58. 58.
    Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997;90:1109–14.PubMedGoogle Scholar
  59. 59.
    Tutuncu Z, Kavanaugh A, Zvaifler N, Corr M, Deutsch R, Boyle D. Fcγ receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor α-blocking agents. Arthritis Rheum. 2005;52:2693–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Julià M, Guilabert A, Lozano F, Suarez-Casasús B, Moreno N, Carrascosa JM, et al. The role of Fcγ receptor polymorphisms in the response to anti-tumor necrosis factor therapy in psoriasis: a pharmacogenetic study. JAMA Dermatol. 2013;149:1033.PubMedCrossRefGoogle Scholar
  61. 61.
    Isailovic N, Daigo K, Mantovani A, Selmi C. Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun. 2015;60:1–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Prieto-Pérez R, Solano-López G, Cabaleiro T, Román M, Ochoa D, Talegón M, et al. The polymorphism rs763780 in the IL-17F gene is associated with response to biological drugs in patients with psoriasis. Pharmacogenomics. 2015;16:1723–31.PubMedCrossRefGoogle Scholar
  63. 63.
    Marinoni B, Ceribelli A, Massarotti MS, Selmi C. The Th17 axis in psoriatic disease: pathogenetic and therapeutic implications. Autoimmun Highlights. 2014;5:9–19.CrossRefGoogle Scholar
  64. 64.
    Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, et al. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology. 2008;149:6251–61.PubMedCrossRefGoogle Scholar
  65. 65.
    Julià A, Ferrándiz C, Dauden E, Fonseca E, Fernández-López E, Sanchez-Carazo JL, et al. Association of the PDE3A-SLCO1C1 locus with the response to anti-TNF agents in psoriasis. Pharmacogenomics J. 2015;15:322–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Linares-Pineda TM, Cañadas-Garre M, Sánchez-Pozo A, Calleja-Hernández MÁ. Gene polymorphisms as predictors of response to biological therapies in psoriasis patients. Pharmacol Res. 2016;113:71–80.PubMedCrossRefGoogle Scholar
  67. 67.
    Vasilopoulos V, Manolika M, Zafiriou E, Sarafidou T, Sotiriadis D, Bagiatis V, et al. Pharmacogenetic analysis of TNF, TNFRSF1A, and TNFRSF1B gene polymorphisms and prediction of response to anti-TNF therapy in psoriasis patients in the Greek population. Mol Diagn Ther. 2012;16:29–34.PubMedCrossRefGoogle Scholar
  68. 68.
    Murdaca G, Gulli R, Spanò F, Lantieri F, Burlando M, Parodi A, et al. TNF-α gene polymorphisms: association with disease susceptibility and response to anti-TNF-α treatment in psoriatic arthritis. J Invest Dermatol. 2014;134:2503–9.PubMedCrossRefGoogle Scholar
  69. 69.
    De Simone C, Farina M, Maiorino A, Fanali C, Perino F, Flamini A, et al. TNF-alpha gene polymorphisms can help to predict response to etanercept in psoriatic patients. J Eur Acad Dermatol Venereol. 2015;29:1786–90.PubMedCrossRefGoogle Scholar
  70. 70.
    González-Lara L, Batalla A, Coto E, Gómez J, Eiris N, Santos-Juanes J, et al. The TNFRSF1B rs1061622 polymorphism (p. M196R) is associated with biological drug outcome in psoriasis patients. Arch Dermatol Res. 2015;307:405–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Chen W, Xu H, Wang X, Gu J, Xiong H, Shi Y. The tumor necrosis factor receptor superfamily member 1B polymorphisms predict response to anti-TNF therapy in patients with autoimmune disease: a meta-analysis. Int Immunopharmacol. 2015;28:146–53.PubMedCrossRefGoogle Scholar
  72. 72.
    Prieto-Pérez R, Solano-López G, Cabaleiro T, Román M, Ochoa D, Talegón M, et al. New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics J. 2016. doi: 10.1038/tpj.2016.64.
  73. 73.
    Loft ND, Skov L, Iversen L, Gniadecki R, Dam TN, Brandslund I, et al. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis. Pharmacogenomics J. [Internet]. 2017. http://www.nature.com/doifinder/10.1038/tpj.2017.31. Accessed 31 Jul 2017.
  74. 74.
    Ovejero-Benito MC, Prieto-Perez R, Llamas-Velasco M, Belmonte C, Cabaleiro T, Roman M, et al. Polymorphisms associated with etanercept response in moderate-to-severe plaque psoriasis. Pharmacogenomics. 2017;18:631–8.PubMedCrossRefGoogle Scholar
  75. 75.
    van den Reek JMPA, Coenen MJH, van de L’Isle Arias M, Zweegers J, Rodijk-Olthuis D, Schalkwijk J, et al. Polymorphisms in CD84, IL12B and TNFAIP3 are associated with response to biologics in patients with psoriasis. Br. J. Dermatol. [Internet]. 2016. http://doi.wiley.com/10.1111/bjd.15005. Accessed 3 Sep 2016.
  76. 76.
    Julià A, Marsal S. Pharmacogenomics of anti-TNF response in psoriasis, where are we? Pharmacogenomics. 2016;17:323–6.PubMedCrossRefGoogle Scholar
  77. 77.
    O’Rielly DD, Rahman P. Pharmacogenetics of psoriasis. Pharmacogenomics. 2011;12:87–101.PubMedCrossRefGoogle Scholar
  78. 78.
    Talamonti M, D’Adamio S, Bianchi L, Galluzzo M. The role of pharmacogenetics in chronic plaque psoriasis: update of the literature. Mol Diagn Ther [Internet]. 2017. http://link.springer.com/10.1007/s40291-017-0274-z. Accessed 22 Jun 2017.
  79. 79.
    Lebwohl M. Psoriasis therapy: breakthroughs in pharmacogenomics or in pharmacology? J Invest Dermatol. 2016;136:2339–40.PubMedCrossRefGoogle Scholar
  80. 80.
    Nishikawa R, Nagai H, Bito T, Ikeda T, Horikawa T, Adachi A, et al. Genetic prediction of the effectiveness of biologics for psoriasis treatment. J Dermatol. 2016;43:1273–7.PubMedCrossRefGoogle Scholar
  81. 81.
    van Vugt LJ, van den Reek JMPA, Coenen MJH, de Jong EMGJ. A systematic review of pharmacogenetic studies on the response to biologics in psoriasis patients. Br J Dermatol [Internet]. 2017. http://doi.wiley.com/10.1111/bjd.15753. Accessed 31 Jul 2017.
  82. 82.
    Suárez-Fariñas M, Fuentes-Duculan J, Lowes MA, Krueger JG. Resolved psoriasis lesions retain expression of a subset of disease-related genes. J Invest Dermatol. 2011;131:391–400.PubMedCrossRefGoogle Scholar
  83. 83.
    Zaba LC, Suárez-Fariñas M, Fuentes-Duculan J, Nograles KE, Guttman-Yassky E, Cardinale I, et al. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immunol. 2009;124(1022–1030):e395.Google Scholar
  84. 84.
    Gottlieb A, Chamian F, Masud S, Irma Cardinale, Abello M, Lowes MA, et al. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol. 2005;175:2721–9.Google Scholar
  85. 85.
    Skarmoutsou E, Trovato C, Granata M, Rossi GA, Mosca A, Longo V, et al. Biological therapy induces expression changes in Notch pathway in psoriasis. Arch Dermatol Res. 2015;307:863–73.PubMedCrossRefGoogle Scholar
  86. 86.
    Vageli D, Exarchou A, Zafiriou E, Doukas P, Doukas S, Roussaki-Schulze A. Effect of TNF- inhibitors on transcriptional levels of pro-inflammatory interleukin-33 and Toll-like receptors-2 and-9 in psoriatic plaques. Exp Ther Med. 2015;10:1573–7.Google Scholar
  87. 87.
    Lembo S, Balato N, Caiazzo G, Megna M, Ayala F, Balato A. The effects of etanercept on replication, proliferation, survival, and apoptosis markers in moderate to severe psoriasis. J Eur Acad Dermatol Venereol. 2017;31:e9–11.PubMedCrossRefGoogle Scholar
  88. 88.
    Pivarcsi A, Meisgen F, Xu N, Ståhle M, Sonkoly E. Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-α therapy. Br J Dermatol. 2013;169:563–70.PubMedCrossRefGoogle Scholar
  89. 89.
    Markham T, Mullan R, Golden-Mason L, Rogers S, Bresnihan B, FitzGerald O, et al. Resolution of endothelial activation and down-regulation of Tie2 receptor in psoriatic skin after infliximab therapy. J Am Acad Dermatol. 2006;54:1003–12.PubMedCrossRefGoogle Scholar
  90. 90.
    Rosenberg A, Fan H, Chiu YG, Bolce R, Tabechian D, Barrett R, et al. Divergent gene activation in peripheral blood and tissues of patients with rheumatoid arthritis, psoriatic arthritis and psoriasis following infliximab therapy. Proost P, editor. PLoS One. 2014;9:e110657.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Balato A, Mattii M, Caiazzo G, Raimondo A, Patruno C, Balato N, et al. IL-36? is involved in psoriasis and allergic contact dermatitis. J Invest Dermatol. 2016;136:1520–3.PubMedCrossRefGoogle Scholar
  92. 92.
    Zweegers J, Groenewoud JMM, van den Reek JMPA, Otero ME, van de Kerkhof PCM, Driessen RJB, et al. Comparison of the 1-and 5-year effectiveness of adalimumab, etanercept and ustekinumab in patients with psoriasis in daily clinical practice: results from the prospective BioCAPTURE registry. Br J Dermatol. 2017;176:1001–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Talamonti M, Botti E, Galluzzo M, Teoli M, Spallone G, Bavetta M, et al. Pharmacogenetics of psoriasis: HLA-Cw6 but not LCE3B/3C deletion nor TNFAIP3 polymorphism predisposes to clinical response to interleukin 12/23 blocker ustekinumab. Br J Dermatol. 2013;169:458–63.PubMedCrossRefGoogle Scholar
  94. 94.
    Prieto-Pérez R, Llamas-Velasco M, Cabaleiro T, Solano-López G, Márquez B, Román M, et al. Pharmacogenetics of ustekinumab in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics. 2017;18:157–64.PubMedCrossRefGoogle Scholar
  95. 95.
    Talamonti M, Galluzzo M, Chimenti S, Costanzo A. HLA-C*06 and response to ustekinumab in Caucasian patients with psoriasis: Outcome and long-term follow-up. J Am Acad Dermatol. 2016;74:374–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Talamonti M, Galluzzo M, van den Reek JM, de Jong EM, Lambert JLW, Malagoli P, et al. Role of the HLA-C*06 allele in clinical response to ustekinumab: evidence from real life in a large cohort of European patients. Br. J. Dermatol. [Internet]. 2017. http://doi.wiley.com/10.1111/bjd.15387. Accessed 31 Jul 2017.
  97. 97.
    Chiu HY, Huang P-Y, Jee S-H, Hu C-Y, Chou C-T, Chang Y-T, et al. HLA polymorphism among Chinese patients with chronic plaque psoriasis: subgroup analysis: HLA polymorphism among Chinese patients with psoriasis. Br J Dermatol. 2012;166:288–97.PubMedCrossRefGoogle Scholar
  98. 98.
    Li K, Huang CC, Randazzo B, Li S, Szapary P, Curran M, et al. HLA-C*06:02 allele and response to IL-12/23 Inhibition: results from the ustekinumab phase 3 psoriasis program. J Invest Dermatol. 2016;136:2364–71.PubMedCrossRefGoogle Scholar
  99. 99.
    Galluzzo M, Boca AN, Botti E, Potenza C, Malara G, Malagoli P, et al. IL12B (p40) gene polymorphisms contribute to ustekinumab response prediction in psoriasis. Dermatology. 2015;232:230–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Gedebjerg A, Johansen C, Kragballe K, Iversen L. IL-20, IL-21 and p40: potential biomarkers of treatment response for ustekinumab. Acta Derm Venereol. 2013;93:150–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Yiu ZZ, Warren RB. Efficacy and safety of emerging immunotherapies in psoriasis. Immunotherapy. 2015;7:119–33.PubMedCrossRefGoogle Scholar
  102. 102.
    Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CEM, Papp K, et al. Secukinumab in plaque psoriasis—results of Two phase 3 trials. N Engl J Med. 2014;371:326–38.PubMedCrossRefGoogle Scholar
  103. 103.
    Farahnik B, Beroukhim K, Zhu TH, Abrouk M, Nakamura M, Singh R, et al. Ixekizumab for the treatment of psoriasis: a review of phase III trials. Dermatol Ther. 2016;6:25–37.CrossRefGoogle Scholar
  104. 104.
    Ixekizumab Markham A. First global approval. Drugs. 2016;76:901–5.CrossRefGoogle Scholar
  105. 105.
    Puig L. Brodalumab: the first anti-IL-17 receptor agent for psoriasis. Drugs Today. 2017;53:283.PubMedCrossRefGoogle Scholar
  106. 106.
    Amin M, Darji K, No DJ, Wu JJ. Review of phase III trial data on IL-23 inhibitors tildrakizumab and guselkumab for psoriasis. J. Eur. Acad. Dermatol. Venereol. [Internet]. 2017. http://doi.wiley.com/10.1111/jdv.14451. Accessed 7 Aug 2017.
  107. 107.
    Deeks ED. Apremilast: a review in psoriasis and psoriatic arthritis. Drugs. 2015;75:1393–403.PubMedCrossRefGoogle Scholar
  108. 108.
    Prieto-Pérez R, Cabaleiro T, Daudén E, Abad-Santos F. Gene polymorphisms that can predict response to anti-TNF therapy in patients with psoriasis and related autoimmune diseases. Pharmacogenomics J. 2013;13:297–305.PubMedCrossRefGoogle Scholar
  109. 109.
    Prieto-Pérez R, Cabaleiro T, Daudén E, Ochoa D, Román M, Abad-Santos F. Pharmacogenetics of topical and systemic treatment of psoriasis. Pharmacogenomics. 2013;14:1623–34.PubMedCrossRefGoogle Scholar
  110. 110.
    Lynch M, Kirby B, Warren RB. Treating moderate to severe psoriasis—best use of biologics. Expert Rev Clin Immunol. 2014;10:269–79.PubMedCrossRefGoogle Scholar
  111. 111.
    Cascorbi I, Werk AN. Advances and challenges in hereditary cancer pharmacogenetics. Expert Opin Drug Metab Toxicol. 2017;13:73–82.PubMedCrossRefGoogle Scholar
  112. 112.
    Mallal S, Phillips E, Carosi G, Molina J-M, Workman C, Tomažič J, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358:568–79.PubMedCrossRefGoogle Scholar
  113. 113.
    Cabaleiro T, Roman M, Gisbert JP, Abad-Santos F. Utility of assessing thiopurine S-methyltransferase polymorphisms before azathioprine therapy. PubMed-NCBI. https://www.ncbi.nlm.nih.gov/pubmed/?term=22493988. Accessed 7 Aug 2017.
  114. 114.
    Krop I, Ismaila N, Andre F, Bast RC, Barlow W, Collyar DE, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline Focused Update. J Clin Oncol. 2017;35:2838–47.Google Scholar
  115. 115.
    Jeong E, Moon SU, Song M, Yoon S. Transcriptome modeling and phenotypic assays for cancer precision medicine. Arch. Pharm. Res. [Internet]. 2017. http://link.springer.com/10.1007/s12272-017-0940-z. Accessed 7 Aug 2017.
  116. 116.
    Le Large TYS, Bijlsma MF, Kazemier G, van Laarhoven HWM, Giovannetti E, Jimenez CR. Key biological processes driving metastatic spread of pancreatic cancer as identified by multi-omics studies. Semin Cancer Biol. 2017;44:153–69.PubMedCrossRefGoogle Scholar
  117. 117.
    Lin S, Yin YA, Jiang X, Sahni N, Yi S. Multi-OMICs and genome editing perspectives on liver cancer signaling networks. BioMed Res Int. 2016;2016:1–14.Google Scholar
  118. 118.
    Huang S, Chaudhary K, Garmire LX. More Is better: recent progress in multi-omics data integration methods. Front Genet [Internet]. 2017;8. http://journal.frontiersin.org/article/10.3389/fgene.2017.00084/full. Accessed 7 Aug 2017.
  119. 119.
    Batalla A, Coto E, Gómez J, Eirís N, González-Fernández D, Gómez-De Castro C, et al. IL17RA gene variants and anti-TNF response among psoriasis patients. Pharmacogenomics J. 2016. (Epub ahead of print).Google Scholar
  120. 120.
    Murdaca G, Spanò F, Contatore M, Guastalla A, Magnani O, Puppo F. Pharmacogenetics of etanercept: role of TNF-α gene polymorphisms in improving its efficacy. Expert Opin Drug Metab Toxicol. 2014;10:1703–10.PubMedCrossRefGoogle Scholar
  121. 121.
    Song GG, Seo YH, Kim J-H, Choi SJ, Ji JD, Lee YH. Association between TNF-α (-308 A/G, -238 A/G, -857 C/T) polymorphisms and responsiveness to TNF-α blockers in spondyloarthropathy, psoriasis and Crohn’s disease: a meta-analysis. Pharmacogenomics. 2015;16:1427–37.PubMedCrossRefGoogle Scholar
  122. 122.
    Tejasvi T, Stuart PE, Chandran V, Voorhees JJ, Gladman DD, Rahman P, et al. TNFAIP3 Gene polymorphisms are associated with response to TNF blockade in psoriasis. J Invest Dermatol. 2012;132:593–600.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Clinical Pharmacology DepartmentHospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP)MadridSpain
  2. 2.Dermatology DepartmentHospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP)MadridSpain
  3. 3.SCReN Spanish Clinical Research NetworkInstituto de Salud Carlos III (IIS-IP)MadridSpain

Personalised recommendations