Advertisement

Role of Vitamin D in Patients with Heart Failure with Reduced Ejection Fraction

  • Meifang Wu
  • Kaizu Xu
  • Ying WuEmail author
  • Liming LinEmail author
Review Article
  • 5 Downloads

Abstract

Heart failure (HF) with reduced ejection fraction (HFrEF) presents as the severest phenotype on the spectrum of HF. Although great progress has been made with respect to its treatment over the past 3 decades, morbidity and mortality remain high, posing a big burden on human health. Recent evidence suggests vitamin D has a critical role in maintaining heart health through activation of the vitamin D receptor expressed in cardiomyocytes, and vitamin D deficiency may be implicated in the pathophysiology of HFrEF through activation of the renin-angiotensin system, impaired calcium handling, exaggerated inflammation, secondary hyperparathyroidism, pro-fibrotic properties, and proatherogenic potential. Additionally, epidemiological data disclosed that vitamin D deficiency is highly prevalent in patients with HFrEF and is associated with poor clinical outcomes. However, randomized control trials of vitamin D supplementation in HF, especially in HFrEF, have shown inconsistent results. Thus, this article aims to review the epidemiology, pathophysiology, and prognostic value of vitamin D deficiency in HF, with a special focus on randomized control trials associated with vitamin D supplementation in patients with HFrEF.

Notes

Compliance with Ethical Standards

Funding

This study was supported by Grants from the National Natural Science Foundation of China (Grant no. 81800278) and the Natural Science Foundation of Fujian Province (Grant no. 13171570) to Dr. Liming Lin and the Natural Science Foundation of Fujian Province (Grant no. 13181097) to Dr. Meifang Wu.

Conflict of interest

Meifang Wu, Kaizu Xu, Ying Wu, and Liming Lin declare that they have no potential conflicts of interest that might be relevant to the contents of this article.

References

  1. 1.
    Dunlay SM, Roger VL. Understanding the epidemic of heart failure: past, present, and future. Curr Heart Fail Rep. 2014;11:404–15.CrossRefGoogle Scholar
  2. 2.
    Lin LM, Wu Y, Wu MF, Lin JX. Focus on the novel cardiovascular drug LZC696: from evidence to clinical consideration. Cardiovasc Drugs Ther. 2016;30:623–33.CrossRefGoogle Scholar
  3. 3.
    Jhund PS, Macintyre K, Simpson CR, et al. Long-term trends in first hospitalization for heart failure and subsequent survival between 1986 and 2003: a population study of 5.1 million people. Circulation. 2009;119:515–23.CrossRefGoogle Scholar
  4. 4.
    Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res. 1998;13:325–49.CrossRefGoogle Scholar
  5. 5.
    Lin LM, Peng F, Liu YP, et al. Coadministration of VDR and RXR agonists synergistically alleviates atherosclerosis through inhibition of oxidative stress: an in vivo and in vitro study. Atherosclerosis. 2016;251:273–81.CrossRefGoogle Scholar
  6. 6.
    Zhang M, Lin L. VDR agonist prevents diabetic endothelial dysfunction through inhibition of prolyl isomerase-1-mediated mitochondrial oxidative stress and inflammation. Oxid Med Cell Longev. 2018;2018:1714896.Google Scholar
  7. 7.
    Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best practice and research. Clin Endocrinol Metab. 2011;25:543–59.Google Scholar
  8. 8.
    Meems LM, van der Harst P, van Gilst WH, de Boer RA. Vitamin D biology in heart failure: molecular mechanisms and systematic review. Curr Drug Targets. 2011;12:29–41.CrossRefGoogle Scholar
  9. 9.
    Witham MD. Vitamin D in chronic heart failure. Curr Heart Fail Rep. 2011;8:123–30.CrossRefGoogle Scholar
  10. 10.
    Bae S, Singh SS, Yu H, et al. Vitamin D signaling pathway plays an important role in the development of heart failure after myocardial infarction. J Appl Physiol (Bethesda, Md.: 1985). 2013;114:979–87.CrossRefGoogle Scholar
  11. 11.
    Liu LC, Voors AA, van Veldhuisen DJ, et al. Vitamin D status and outcomes in heart failure patients. Eur J Heart Fail. 2011;13:619–25.CrossRefGoogle Scholar
  12. 12.
    Schleithoff SS, Zittermann A, Tenderich G, et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83:754–9.CrossRefGoogle Scholar
  13. 13.
    Witham MD, Crighton LJ, Gillespie ND, et al. The effects of vitamin D supplementation on physical function and quality of life in older patients with heart failure: a randomized controlled trial. Circ Heart Fail. 2010;3:195–201.CrossRefGoogle Scholar
  14. 14.
    Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.CrossRefGoogle Scholar
  15. 15.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.CrossRefGoogle Scholar
  16. 16.
    Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96:53–8.CrossRefGoogle Scholar
  17. 17.
    Holick MF. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18:153–65.CrossRefGoogle Scholar
  18. 18.
    Dawsonhughes B, Mithal A, Bonjour JP, et al. IOF position statement: vitamin D recommendations for older adults. Osteoporos Int. 2010;21:1151–4.CrossRefGoogle Scholar
  19. 19.
    McKeag NA, McKinley MC, Harbinson MT, et al. Dietary micronutrient intake and micronutrient status in patients with chronic stable heart failure: an observational study. J Cardiovasc Nurs. 2017;32:148–55.CrossRefGoogle Scholar
  20. 20.
    Alsafwah S, Laguardia SP, Nelson MD, et al. Hypovitaminosis D in African Americans residing in Memphis, Tennessee with and without heart failure. Am J Med Sci. 2008;335:292.CrossRefGoogle Scholar
  21. 21.
    Schroten NF, Ruifrok WP, Kleijn L, et al. Short-term vitamin D3 supplementation lowers plasma renin activity in patients with stable chronic heart failure: an open-label, blinded end point, randomized prospective trial (VitD-CHF trial). Am Heart J. 2013;166(357–364):e352.Google Scholar
  22. 22.
    Kim D, Sabour S, Un Adams S, Whellan D. Prevalence of hypovitaminosis D in cardiovascular diseases (from the National Health and Nutrition Examination Survey 2001 to 2004). Am J Cardiol. 2008;2008(102):1540–4.CrossRefGoogle Scholar
  23. 23.
    Gotsman I, Shauer A, Zwas DR, et al. Vitamin D deficiency is a predictor of reduced survival in patients with heart failure; vitamin D supplementation improves outcome. Eur J Heart Fail. 2012;14:357–66.CrossRefGoogle Scholar
  24. 24.
    Ameri P, Ronco D, Casu M, et al. High prevalence of vitamin D deficiency and its association with left ventricular dilation: an echocardiography study in elderly patients with chronic heart failure. Nutr Metab Cardiovasc Dis NMCD. 2010;20:633–40.CrossRefGoogle Scholar
  25. 25.
    Li YC, Qiao G, Uskokovic M, et al. Vitamin D: a negative endocrine regulator of the renin–angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004;89–90:387–92.CrossRefGoogle Scholar
  26. 26.
    Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726–76.CrossRefGoogle Scholar
  27. 27.
    Li YC, Kong J, Wei M, et al. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin–angiotensin system. J Clin Investig. 2002;110:229–38.CrossRefGoogle Scholar
  28. 28.
    Forman JP, Williams JS, Fisher ND. Plasma 25-hydroxyvitamin D and regulation of the renin-angiotensin system in humans. Hypertension (Dallas, Tex.: 1979). 2010;55:1283–8.CrossRefGoogle Scholar
  29. 29.
    Morgan JP, Erny RE, Allen PD, et al. Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation. 1990;81:Iii21–32.Google Scholar
  30. 30.
    Wehrens XH, Lehnart SE, Reiken SR, Marks AR. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res. 2004;94:e61.CrossRefGoogle Scholar
  31. 31.
    Simpson R, Hershey S, Nibbelink K. Characterization of heart size and blood pressure in the vitamin D receptor knockout mouse. J Steroid Biochem Mol Biol. 2007;103:521–4.CrossRefGoogle Scholar
  32. 32.
    Choudhury S, Bae S, Ke Q, et al. Abnormal calcium handling and exaggerated cardiac dysfunction in mice with defective vitamin d signaling. PLoS One. 2014;9:e108382.CrossRefGoogle Scholar
  33. 33.
    Bartekova M, Radosinska J, Jelemensky M, Dhalla NS. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev. 2018;23:733–58.CrossRefGoogle Scholar
  34. 34.
    Gupta GK, Agrawal T, Delcore MG, et al. Vitamin D deficiency induces cardiac hypertrophy and inflammation in epicardial adipose tissue in hypercholesterolemic swine. Exp Mol Pathol. 2012;93:82–90.CrossRefGoogle Scholar
  35. 35.
    Ma Y, Zhou Y, Yue C, et al. Vitamin D deficiency contributes to the reduction and impaired function of naïve CD45RA+ regulatory T cell in chronic heart failure. J Immunol Res. 2015;2015:1–18.CrossRefGoogle Scholar
  36. 36.
    Rigby WF, Denome S, Fanger MW. Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. Specific inhibition at the level of messenger RNA. J Clin Investig. 1987;79:1659–64.CrossRefGoogle Scholar
  37. 37.
    Schleithoff SS, Zittermann A, Tenderich G, et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83:754–9.CrossRefGoogle Scholar
  38. 38.
    Rodriguez AJ, Mousa A, Ebeling PR, et al. Effects of vitamin D supplementation on inflammatory markers in heart failure: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2018;8:1169.CrossRefGoogle Scholar
  39. 39.
    Saliba W, Barnett O, Rennert HS, et al. The relationship between serum 25(OH)D and parathyroid hormone levels. Am J Med. 2011;124:1165–70.CrossRefGoogle Scholar
  40. 40.
    Schluter KD, Piper HM. Cardiovascular actions of parathyroid hormone and parathyroid hormone-related peptide. Cardiovasc Res. 1998;37:34–41.CrossRefGoogle Scholar
  41. 41.
    Wannamethee SG, Welsh P, Papacosta O, et al. Elevated parathyroid hormone, but not vitamin D deficiency, is associated with increased risk of heart failure in older men with and without cardiovascular disease. Circ Heart Fail. 2014;7:732–9.CrossRefGoogle Scholar
  42. 42.
    Peiris AN, Youssef D, Grant WB. Secondary hyperparathyroidism: benign bystander or culpable contributor to adverse health outcomes? South Med J. 2012;105:36–42.CrossRefGoogle Scholar
  43. 43.
    Rahman A, Hershey S, Ahmed S, et al. Heart extracellular matrix gene expression profile in the vitamin D receptor knockout mice. J Steroid Biochem Mol Biol. 2007;103:416–9.CrossRefGoogle Scholar
  44. 44.
    Meredith A, Boroomand S, Carthy J, et al. 1,25 Dihydroxyvitamin D3 inhibits TGFβ1-mediated primary human cardiac myofibroblast activation. PLoS One. 2015;10:e0128655.CrossRefGoogle Scholar
  45. 45.
    Le T, Ogawa M, Kizana E, et al. Vitamin D improves cardiac function after myocardial infarction through modulation of resident cardiac progenitor cells. Heart Lung Circ. 2018;27:967–75.CrossRefGoogle Scholar
  46. 46.
    Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Investig. 2007;117:568–75.CrossRefGoogle Scholar
  47. 47.
    Weber KT, Weglicki WB, Simpson RU. Macro- and micronutrient dyshomeostasis in the adverse structural remodelling of myocardium. Cardiovasc Res. 2009;81:500.CrossRefGoogle Scholar
  48. 48.
    Khalili H, Talasaz AH, Salarifar M. Serum vitamin D concentration status and its correlation with early biomarkers of remodeling following acute myocardial infarction. Clin Res Cardiol. 2012;101:321–7.CrossRefGoogle Scholar
  49. 49.
    Timms PM, Mannan N, Hitman GA, et al. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders? QJM Mon J Assoc Physicians. 2002;95:787–96.CrossRefGoogle Scholar
  50. 50.
    Equils O, Naiki Y, Shapiro AM, et al. 1,25-Dihydroxyvitamin D inhibits lipopolysaccharide-induced immune activation in human endothelial cells. Clin Exp Immunol. 2006;143:58–64.CrossRefGoogle Scholar
  51. 51.
    Zhang M, Lin L, Xu C, et al. VDR agonist prevents diabetic endothelial dysfunction through inhibition of prolyl isomerase-1-mediated mitochondrial oxidative stress and inflammation. Oxid Med Cell Longev. 2018;2018:1714896.Google Scholar
  52. 52.
    Chen S, Law CS, Gardner DG. Vitamin D-dependent suppression of endothelin-induced vascular smooth muscle cell proliferation through inhibition of CDK2 activity. J Steroid Biochem Mol Biol. 2010;118:135–41.CrossRefGoogle Scholar
  53. 53.
    Menezes AR, Lamb MC, Lavie CJ, DiNicolantonio JJ. Vitamin D and atherosclerosis. Curr Opin Cardiol. 2014;29:571–7.CrossRefGoogle Scholar
  54. 54.
    Kassi E, Adamopoulos C, Basdra EK, Papavassiliou AG. Role of vitamin D in atherosclerosis. Circulation. 2013;128:2517–31.CrossRefGoogle Scholar
  55. 55.
    Fall T, Shiue I, Bergea af Geijerstam P, et al. Relations of circulating vitamin D concentrations with left ventricular geometry and function. Eur J Heart Fail. 2012;14:985–91.CrossRefGoogle Scholar
  56. 56.
    Boxer RS, Dauser DA, Walsh SJ, et al. The association between vitamin D and inflammation with the 6-minute walk and frailty in patients with heart failure. J Am Geriatr Soc. 2008;56:454–61.CrossRefGoogle Scholar
  57. 57.
    Boxer RS, Kenny AM, Cheruvu VK, et al. Serum 25-hydroxyvitamin D concentration is associated with functional capacity in older adults with heart failure. Am Heart J. 2010;160:893–9.CrossRefGoogle Scholar
  58. 58.
    Saponaro F, Marcocci C, Zucchi R, et al. Hypovitaminosis D in patients with heart failure: effects on functional capacity and patients’ survival. Endocrine. 2017;58:574–81.CrossRefGoogle Scholar
  59. 59.
    Pilz S, Marz W, Wellnitz B, et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab. 2008;93:3927–35.CrossRefGoogle Scholar
  60. 60.
    Dorsch MP, Nemerovski CW, Ellingrod VL, et al. Vitamin D receptor genetics on extracellular matrix biomarkers and hemodynamics in systolic heart failure. J Cardiovasc Pharmacol Ther. 2014;19:439–45.CrossRefGoogle Scholar
  61. 61.
    Otani K, Higa Y, Tanaka K, et al. Relations of vitamin D status with B-type natriuretic peptide levels and the risk of cardiac events in Japanese subjects with heart failure. J Cardiac Fail. 2018;24:803–5.CrossRefGoogle Scholar
  62. 62.
    Chen WR, Liu ZY, Shi Y, et al. Relation of low vitamin D to nonvalvular persistent atrial fibrillation in Chinese patients. Ann Noninvasive Electrocardiol. 2014;19:166–73.CrossRefGoogle Scholar
  63. 63.
    Gode S, Aksu T, Demirel A, et al. Effect of vitamin D deficiency on the development of postoperative atrial fibrillation in coronary artery bypass patients. J Cardiovasc Thorac Res. 2016;8:140–6.CrossRefGoogle Scholar
  64. 64.
    Hanafy DA, Chang SL, Lu YY, et al. Electromechanical effects of 1,25-dihydroxyvitamin D with antiatrial fibrillation activities. J Cardiovasc Electrophysiol. 2014;25:317–23.CrossRefGoogle Scholar
  65. 65.
    Separham A, Pourafkari L, Kazemi B, et al. Vitamin D deficiency and functional response to CRT in heart failure patients. Herz. 2019;44:147–54.CrossRefGoogle Scholar
  66. 66.
    Obeid FA, Yost G. Effect of vitamin D level on clinical outcomes in patients undergoing left ventricular assist device implantation. Nutr Clin Pract. 2018;33:825–30.CrossRefGoogle Scholar
  67. 67.
    Cubbon RM, Lowry JE, Drozd M, et al. Vitamin D deficiency is an independent predictor of mortality in patients with chronic heart failure. Eur J Nutr. 2018.  https://doi.org/10.1007/s00394-018-1806-y.Google Scholar
  68. 68.
    Saponaro F, Saba A, Frascarelli S, et al. Vitamin D measurement and effect on outcome in a cohort of patients with heart failure. Endocr Connect. 2018;7:957–64.CrossRefGoogle Scholar
  69. 69.
    Zittermann A, Schleithoff SS, Gotting C, et al. Poor outcome in end-stage heart failure patients with low circulating calcitriol levels. Eur J Heart Fail. 2008;10:321–7.CrossRefGoogle Scholar
  70. 70.
    Lutsey PL, Michos ED, Misialek JR, et al. Race and vitamin D binding protein gene polymorphisms modify the association of 25-hydroxyvitamin D and incident heart failure: the ARIC (Atherosclerosis Risk in Communities) Study. JACC Heart Fail. 2015;3:347–56.CrossRefGoogle Scholar
  71. 71.
    Moretti HD, Colucci VJ, Berry BD. Vitamin D3 repletion versus placebo as adjunctive treatment of heart failure patient quality of life and hormonal indices: a randomized, double-blind, placebo-controlled trial. BMC Cardiovasc Disord. 2017;17:274.CrossRefGoogle Scholar
  72. 72.
    Dalbeni A, Scaturro G, Degan M, et al. Effects of six months of vitamin D supplementation in patients with heart failure: a randomized double-blind controlled trial. Nutr Metab Cardiovasc Dis NMCD. 2014;24:861–8.CrossRefGoogle Scholar
  73. 73.
    Witte KK, Byrom R, Gierula J, et al. Effects of vitamin D on cardiac function in patients with chronic HF: the VINDICATE Study. J Am Coll Cardiol. 2016;67:2593–603.CrossRefGoogle Scholar
  74. 74.
    Zittermann A, Ernst JB, Prokop S, et al. Vitamin D supplementation of 4000 IU daily and cardiac function in patients with advanced heart failure: the EVITA trial. Int J Cardiol. 2019;280:117–23.CrossRefGoogle Scholar
  75. 75.
    Boxer RS, Hoit BD, Schmotzer BJ, et al. The effect of vitamin d on aldosterone and health status in patients with heart failure. J Cardiac Fail. 2014;20:334–42.CrossRefGoogle Scholar
  76. 76.
    Boxer RS, Kenny AM, Schmotzer BJ, et al. A randomized controlled trial of high dose vitamin D3 in patients with heart failure. JACC Heart Fail. 2013;1:84–90.CrossRefGoogle Scholar
  77. 77.
    Zittermann A, Ernst JB, Prokop S, et al. Effect of vitamin D on all-cause mortality in heart failure (EVITA): a 3-year randomized clinical trial with 4000 IU vitamin D daily. Eur Heart J. 2017;38:2279–86.CrossRefGoogle Scholar
  78. 78.
    Zittermann A, Ernst JB, Prokop S, et al. Effects of vitamin D supplementation on renin and aldosterone concentrations in patients with advanced heart failure: the EVITA trial. Int J Endocrinol. 2018;2018:5015417.CrossRefGoogle Scholar
  79. 79.
    Jiang WL, Gu HB, Zhang YF, et al. Vitamin D supplementation in the treatment of chronic heart failure: a meta-analysis of randomized controlled trials. Clin Cardiol. 2016;39:56–61.CrossRefGoogle Scholar
  80. 80.
    D’Amore C, Marsico F, Parente A, et al. Vitamin D deficiency and clinical outcome in patients with chronic heart failure: a review. Nutr Metab Cardiovasc Dis NMCD. 2017;27:837–49.CrossRefGoogle Scholar
  81. 81.
    Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5:986–1004.CrossRefGoogle Scholar
  82. 82.
    de Boer RA, Meems LMG, van Veldhuisen DJ. Vitamin D supplementation in heart failure: case closed? Eur Heart J. 2017;38:2287–9.CrossRefGoogle Scholar
  83. 83.
    Al Mheid I, Quyyumi AA. Vitamin D and cardiovascular disease: controversy unresolved. J Am Coll Cardiol. 2017;70:89–100.CrossRefGoogle Scholar
  84. 84.
    Manousaki D, Mokry LE, Ross S, et al. Mendelian randomization studies do not support a role for vitamin D in coronary artery disease. Circ Cardiovasc Genet. 2016;9:349–56.CrossRefGoogle Scholar
  85. 85.
    Brondum-Jacobsen P, Benn M, Afzal S, Nordestgaard BG. No evidence that genetically reduced 25-hydroxyvitamin D is associated with increased risk of ischaemic heart disease or myocardial infarction: a Mendelian randomization study. Int J Epidemiol. 2015;44:651–61.CrossRefGoogle Scholar
  86. 86.
    Golzarand M, Shab-Bidar S, Koochakpoor G, et al. Effect of vitamin D3 supplementation on blood pressure in adults: an updated meta-analysis. Nutr Metab Cardiovasc Dis NMCD. 2016;26:663–73.CrossRefGoogle Scholar
  87. 87.
    Amrein K, Schnedl C, Holl A, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312:1520–30.CrossRefGoogle Scholar
  88. 88.
    Apostolakis M, Armeni E, Bakas P, Lambrinoudaki I. Vitamin D and cardiovascular disease. Maturitas. 2018;115:1–22.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina

Personalised recommendations