Adenosine and the Cardiovascular System

  • Allison B. ReissEmail author
  • David Grossfeld
  • Lora J. Kasselman
  • Heather A. Renna
  • Nicholas A. Vernice
  • Wendy Drewes
  • Justin Konig
  • Steven E. Carsons
  • Joshua DeLeon
Review Article


Adenosine is an endogenous nucleoside with a short half-life that regulates many physiological functions involving the heart and cardiovascular system. Among the cardioprotective properties of adenosine are its ability to improve cholesterol homeostasis, impact platelet aggregation and inhibit the inflammatory response. Through modulation of forward and reverse cholesterol transport pathways, adenosine can improve cholesterol balance and thereby protect macrophages from lipid overload and foam cell transformation. The function of adenosine is controlled through four G-protein coupled receptors: A1, A2A, A2B and A3. Of these four, it is the A2A receptor that is in a large part responsible for the anti-inflammatory effects of adenosine as well as defense against excess cholesterol accumulation. A2A receptor agonists are the focus of efforts by the pharmaceutical industry to develop new cardiovascular therapies, and pharmacological actions of the atheroprotective and anti-inflammatory drug methotrexate are mediated via release of adenosine and activation of the A2A receptor. Also relevant are anti-platelet agents that decrease platelet activation and adhesion and reduce thrombotic occlusion of atherosclerotic arteries by antagonizing adenosine diphosphate-mediated effects on the P2Y12 receptor. The purpose of this review is to discuss the effects of adenosine on cell types found in the arterial wall that are involved in atherosclerosis, to describe use of adenosine and its receptor ligands to limit excess cholesterol accumulation and to explore clinically applied anti-platelet effects. Its impact on electrophysiology and use as a clinical treatment for myocardial preservation during infarct will also be covered. Results of cell culture studies, animal experiments and human clinical trials are presented. Finally, we highlight future directions of research in the application of adenosine as an approach to improving outcomes in persons with cardiovascular disease.



We are grateful to the Elizabeth Daniell Research Fund. We thank Janet and Robert Buescher.

Compliance with ethical standards


This work was supported by American Heart Association Grant 16GRNT26430041.

Conflict of interest

AB. Reiss, D. Grossfeld, L.J. Kasselman, H.A. Renna, N.A. Vernice, W. Drewes, J. Konig, S.E. Carsons, and J. DeLeon have no potential conflicts of interest that might be relevant to the contents of this article.


  1. 1.
    Sands WA, Palmer TM. Adenosine receptors and the control of endothelial cell function in inflammatory disease. Immunol Lett. 2005;101:1–11.CrossRefPubMedGoogle Scholar
  2. 2.
    O’Regan M. Adenosine and the regulation of cerebral blood flow. Neurol Res. 2005;27(2):175–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Tabrizchi R, Bedi S. Pharmacology of adenosine receptors in the vasculature. Pharmacol Ther. 2001;91:133–47.CrossRefPubMedGoogle Scholar
  4. 4.
    Hori M, Kitakaze M. Adenosine, the heart and coronary circulation. Hypertension. 1991;18:565–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Mubagwa K, Mullane K, Flameng W. Role of adenosine in the heart and circulation. Cardiovasc Res. 1996;32:797–813.CrossRefPubMedGoogle Scholar
  6. 6.
    Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50:413–92.PubMedGoogle Scholar
  7. 7.
    Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Muller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors–an update. Pharmacol Rev. 2011;63:1–34.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, et al. Nomenclature and classification of purinoceptors. Pharmacol Rev. 1994;46:143–56.PubMedPubMedCentralGoogle Scholar
  9. 9.
    El-Ani D, Jacobson KA, Shainberg A. Characterization of adenosine receptors in intact cultured heart cells. Biochem Pharmacol. 1994;48:727–35.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mangoni ME, Barrere-Lemaire S. Adenosine receptors, heart rate, and cardioprotection. Cardiovasc Res. 2004;62:447–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. Biochim Biophys Acta. 2011;1808:1413–28.CrossRefPubMedGoogle Scholar
  12. 12.
    Stone TW. Adenosine, neurodegeneration and neuroprotection. Neurol Res. 2005;27:161–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270.CrossRefPubMedGoogle Scholar
  14. 14.
    Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24:31–55.CrossRefPubMedGoogle Scholar
  15. 15.
    Van Linden A, Eltzschig HK. Role of pulmonary adenosine during hypoxia: extracellular generation, signaling and metabolism by surface adenosine deaminase/CD26. Expert Opin Biol Ther. 2007;7:1437–47.CrossRefPubMedGoogle Scholar
  16. 16.
    Colgan SP, Fennimore B, Ehrentraut SF. Adenosine and gastrointestinal inflammation. J Mol Med (Berl). 2013;91:157–64.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vallon V, Mühlbauer B, Osswald H. Adenosine and kidney function. Physiol Rev. 2006;86:901–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Truong LD, Trostel J, McMahan R, Chen JF, Garcia GE. Macrophage A2A adenosine receptors are essential to protect from progressive kidney injury. Am J Pathol. 2016;186:2601–13.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Roberts VS, Cowan PJ, Alexander SI, Robson SC, Dwyer KM. The role of adenosine receptors A2A and A2B signaling in renal fibrosis. Kidney Int. 2014;86:685–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Kurlak LO, Williams PJ, Bulmer JN, Broughton Pipkin F, Mistry HD. Placental expression of adenosine A(2A) receptor and hypoxia inducible factor-1 alpha in early pregnancy, term and pre-eclamptic pregnancies: interactions with placental renin-angiotensin system. Placenta. 2015;36:611–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Belleannée C, Da Silva N, Shum WW, Brown D, Breton S. Role of purinergic signaling pathways in V-ATPase recruitment to apical membrane of acidifying epididymal clear cells. Am J Physiol Cell Physiol. 2010;298:C817–30.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hofer M, Pospisil M, Weiterova L, Hoferova Z. The role of adenosine receptor agonists in regulation of hematopoiesis. Molecules. 2011;16:675–85.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Johansson SM, Lindgren E, Yang JN, Herling AW, Fredholm B. Adenosine A1 receptors regulate lipolysis and lipogenesis in mouse adipose tissue-interactions with insulin. Eur J Pharmacol. 2008;597:92–101.CrossRefPubMedGoogle Scholar
  24. 24.
    Gharibi B, Abraham AA, Ham J, Evans BA. Contrasting effects of A1 and A2b adenosine receptors on adipogenesis. Int J Obes (Lond). 2012;36(3):397–406.CrossRefGoogle Scholar
  25. 25.
    Antonioli L, Blandizzi C, Pacher P, Hasko G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer. 2013;13:842–57.CrossRefPubMedGoogle Scholar
  26. 26.
    Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol. 2016;16:177–92.CrossRefPubMedGoogle Scholar
  27. 27.
    Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov. 2010;9:154–69.CrossRefPubMedGoogle Scholar
  28. 28.
    Jackson SP. Arterial thrombosis–insidious, unpredictable and deadly. Nat Med. 2011;17:1423–36.CrossRefPubMedGoogle Scholar
  29. 29.
    Puri R, Nissen SE, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, Erbel R, Libby P, Raichlen JS, Uno K, Kataoka Y, Nicholls SJ. Coronary atheroma volume and cardiovascular events during maximally intensive statin therapy. Eur Heart J. 2013;34:3182–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Brownell N, Rohatgi A. Modulating cholesterol efflux capacity to improve cardiovascular disease. Curr Opin Lipidol. 2016;27(4):398–407.CrossRefPubMedGoogle Scholar
  31. 31.
    Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med. 2012;367:2322–33.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hasko G, Csoka B, Nemeth ZH, Vizi ES, Pacher P. A2B adenosine receptors in immunity and inflammation. Trend Immunol. 2009;30:263–70.CrossRefGoogle Scholar
  33. 33.
    Berne RM, Knabb RM, Ely SW, Rubio R. Adenosine in the local regulation of blood flow: a brief overview. Fed Proc. 1983;42:3136–42.PubMedGoogle Scholar
  34. 34.
    Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:299–309.CrossRefPubMedGoogle Scholar
  35. 35.
    Eltzschig HK, Faigle M, Knapp S, Karhausen J, Ibla J, Rosenberger P, et al. Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26. Blood. 2006;108(5):1602–10.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ontyd J, Schrader J. Measurement of adenosine, inosine, and hypoxanthine in human plasma. J Chromatogr. 1984;307(2):404–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Möser GH, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol. 1989;256:C799–806.CrossRefPubMedGoogle Scholar
  38. 38.
    Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters-a review. Nucleosides Nucleotides Nucleic Acids. 2016;36(1):7–30.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li RW, Yang C, Sit AS, Lin SY, Ho EY, Leung GP. Physiological and pharmacological roles of vascular nucleoside transporters. J Cardiovasc Pharmacol. 2012;59(1):10–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Schrader J. Formation and metabolism of adenosine and adenine nucleotides in cardiac tissue. In: Phillis JW, editor. Adenosine and adenine nucleotides as regulators of cellular function. Boca Raton: CRC Press; 1991. p. 55–69.Google Scholar
  41. 41.
    Pastor-Anglada M, Pérez-Torras S. Who is who in adenosine transport. Front Pharmacol. 2018;9:627.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cohen MV, Yang X, Downey JM. A2b adenosine receptors can change their spots. Br J Pharmacol. 2010;159(8):1595–7.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Monahan TS, Sawmiller DR, Fenton RA, Dobson JG. Adenosine A2A-receptor activation increases contractility in isolated perfused hearts. Am J Physiol. 2000;279:H1472–81.CrossRefGoogle Scholar
  44. 44.
    Dhalla AK, Shryock JC, Shreeniwas R, Belardinelli L. Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr Top Med Chem. 2003;3:369–85.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang D, Shryock JC, Belardinelli L. Cellular basis for the negative dromotropic effect of adenosine on rabbit single atrioventricular nodal cells. Circ Res. 1996;78:697–706.CrossRefPubMedGoogle Scholar
  46. 46.
    Belardinelli L, Linden J, Berne RM. The cardiac effects of adenosine. Prog Cardiovasc Dis. 1989;32:73–97.CrossRefPubMedGoogle Scholar
  47. 47.
    Biaggioni I, Olafsson B, Robertson RM, Hollister AS, Robertson D. Cardiovascular and respiratory effects of adenosine in conscious man. Evidence for chemoreceptor activation. Circ Res. 1987;61:779–86.CrossRefPubMedGoogle Scholar
  48. 48.
    Lerman BB, Belardinelli L. Cardiac electrophysiology of adenosine: basic and clinical concepts. Circulation. 1991;83:1499–509.CrossRefPubMedGoogle Scholar
  49. 49.
    Janeira LF. Differentiating wide complex tachycardias. Am Fam Physician. 1996;54:1573–84.PubMedGoogle Scholar
  50. 50.
    Marill KA, Wolfram S, Desouza IS, Nishijima DK, Kay D, Setnik GS, et al. Adenosine for wide-complex tachycardia: efficacy and safety. Crit Care Med. 2009;37:2512–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Glatter KA, Cheng J, Dorostkar P, Modin G, Talwar S, Al-Nimri M, et al. Electrophysiologic effects of adenosine in patients with supraventricular tachycardia. Circulation. 1999;99:1034–40.CrossRefPubMedGoogle Scholar
  52. 52.
    Flyer JN, Zuckerman WA, Richmond ME, Anderson BR, Mendelsberg TG, McAllister JM, et al. prospective study of adenosine on atrioventricular nodal conduction in pediatric and young adult patients after heart transplantation. Circulation. 2017;135:2485–93.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gupta AK, Shah CP, Maheshwari A, Thakur RK, Hayes OW, Lokhandwala YY. Adenosine induced ventricular fibrillation in Wolff-Parkinson-White syndrome. Pacing Clin Electrophysiol. 2002;25:477–80.CrossRefPubMedGoogle Scholar
  54. 54.
    Cerqueira MD, Verani MS, Schwaiger M, Heo J, Iskandrian AS. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan Multicenter Trial Registry. J Am Coll Cardiol. 1994;23:384–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Martin TW, Seaworth JF, Johns JP, Pupa LE, Condos WR. Comparison of adenosine, dipyridamole, and dobutamine in stress echocardiography. Ann Intern Med. 1992;116:190–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Sabouni MH, Ramagopal MV, Mustafa SJ. Relaxation by adenosine and its analogs of potassium-contracted human coronary arteries. Naunyn Schmiedebergs Arch Pharmacol. 1990;341:388–90.CrossRefPubMedGoogle Scholar
  57. 57.
    Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev. 2013;66:102–92.CrossRefPubMedGoogle Scholar
  58. 58.
    Talukder MA, Morrison RR, Ledent C, Mustafa SJ. Endogenous adenosine increases coronary flow by activation of both A2A and A2B receptors in mice. J Cardiovasc Pharmacol. 2003;41:562–70.CrossRefPubMedGoogle Scholar
  59. 59.
    Hein TW, Wang W, Zoghi B, Muthuchamy M, Kuo L. Functional and molecular characterization of receptor subtypes mediating coronary microvascular dilation to adenosine. J Mol Cell Cardiol. 2001;33:271–82.CrossRefPubMedGoogle Scholar
  60. 60.
    Arsyad A, Dobson GP. Adenosine relaxation in isolated rat aortic rings and possible roles of smooth muscle Kv channels, KATP channels and A2a receptors. BMC Pharmacol Toxicol. 2016;17:23.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Labazi H, Teng B, Zhou Z, Mustafa SJ. Enhanced A2A adenosine receptor-mediated increase in coronary flow in type I diabetic mice. J Mol Cell Cardiol. 2016;90:30–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Sato A, Terata K, Miura H, Toyama K, Loberiza FR Jr, Hatoum OA, et al. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol. 2005;288(4):H1633–40.CrossRefPubMedGoogle Scholar
  63. 63.
    Hein TW, Kuo L. cAMP-independent dilation of coronary arterioles to adenosine: role of nitric oxide, G proteins, and K(ATP) channels. Circ Res. 1999;85(7):634–42.CrossRefPubMedGoogle Scholar
  64. 64.
    Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging. 2015;42:1929–40.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    McGeoch RJ, Oldroyd KG. Pharmacological options for inducing maximal hyperaemia during studies of coronary physiology. Catheter Cardiovasc Interv. 2008;71:198–204.CrossRefPubMedGoogle Scholar
  66. 66.
    Cushing DJ, Brown GL, Sabouni MH, Mustafa SJ. Adenosine receptor-mediated coronary artery relaxation and cyclic nucleotide production. Am J Physiol. 1991;261:H343–8.PubMedGoogle Scholar
  67. 67.
    Mahmarian JJ, Peterson LE, Xu J, Cerqueira MD, Iskandrian AE, Bateman TM, et al. Regadenoson provides perfusion results comparable to adenosine in heterogeneous patient populations: a quantitative analysis from the ADVANCE MPI trials. J Nucl Cardiol. 2015;22:248–61.CrossRefPubMedGoogle Scholar
  68. 68.
    Godo S, Shimokawa H. Endothelial functions. Arterioscler Thromb Vasc Biol. 2017;37(9):e108–14.CrossRefPubMedGoogle Scholar
  69. 69.
    Li JM, Fenton RA, Wheeler HB, Powell CC, Peyton BD, Cutler BS, et al. Adenosine A2a receptors increase arterial endothelial cell nitric oxide. J Surg Res. 1998;80(2):357–64.CrossRefPubMedGoogle Scholar
  70. 70.
    Ray CJ, Marshall JM. The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium. J Physiol. 2006;570:85–96.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lincoln TM, Komalavilas P, Cornwell TL. Pleiotropic regulation of vascular smooth muscle tone by cyclic GMP-dependent protein kinase. Hypertension. 1994;23(6 Pt 2):1141–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Ponnoth DS, Sanjani MS, Ledent C, Roush K, Krahn T, Mustafa SJ. Absence of adenosine-mediated aortic relaxation in A(2A) adenosine receptor knockout mice. Am J Physiol Heart Circ Physiol. 2009;297:H1655–60.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ponnoth DS, Nayeem MA, Tilley SL, Ledent C, Jamal Mustafa S. CYP-epoxygenases contribute to A2A receptor-mediated aortic relaxation via sarcolemmal KATP channels. Am J Physiol Regul Integr Comp Physiol. 2012;303(10):R1003–10.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Pradhan I, Zeldin DC, Ledent C, Mustafa JS, Falck JR, Nayeem MA. High salt diet exacerbates vascular contraction in the absence of adenosine A2A receptor. J Cardiovasc Pharmacol. 2014;63:385–94.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Pradhan I, Ledent C, Mustafa SJ, Morisseau C, Nayeem MA. High salt diet modulates vascular response in A2AAR (+/+) and A 2AAR (−/−) mice: role of sEH, PPARγ, and K ATP channels. Mol Cell Biochem. 2015;404(1–2):87–96.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Beukers MW, den Dulk H, van Tilburg EW, Brouwer J, Ijzerman AP. Why are A2B receptors low-affinity adenosine receptors? Mutation of Asn273 to Tyr increases affinity of human A2B receptor for 2-(1-Hexynyl)adenosine. Mol Pharmacol. 2000;58(6):1349–56.CrossRefPubMedGoogle Scholar
  77. 77.
    Kong T, Westerman KA, Faigle M, Eltzschig HK, Colgan SP. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 2006;20:2242–50.CrossRefPubMedGoogle Scholar
  78. 78.
    Eckle T, Köhler D, Lehmann R, El Kasmi K, Eltzschig HK. Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation. 2008;118(2):166–75.CrossRefPubMedGoogle Scholar
  79. 79.
    Poth JM, Brodsky K, Ehrentraut H, Grenz A, Eltzschig HK. Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease. J Mol Med (Berl). 2013;91(2):183–93.CrossRefPubMedGoogle Scholar
  80. 80.
    Eckle T, Hartmann K, Bonney S, Reithel S, Mittelbronn M, Walker LA, et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med. 2012;18(5):774–82.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, et al. Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation. 2007;115:1581–90.CrossRefPubMedGoogle Scholar
  82. 82.
    Koeppen M, Harter PN, Bonney S, Bonney M, Reithel S, Zachskorn C, et al. Adora2b signaling on bone marrow derived cells dampens myocardial ischemia-reperfusion injury. Anesthesiology. 2012;116(6):1245–57.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kemp BK, Cocks TM. Adenosine mediates relaxation of human small resistance-like coronary arteries via A2B receptors. Br J Pharmacol. 1999;126:1796–800.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Berwick Z, Payne G, Lynch B, Dick G, Sturek M, Tune JD. Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: role of K(V) and K(ATP) channels. Microcirculation. 2010;17(8):600–7.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Bender SB, Tune JD, Borbouse L, Long X, Sturek M, Laughlin MH. Altered mechanism of adenosine-induced coronary arteriolar dilation in early-stage metabolic syndrome. Exp Biol Med (Maywood). 2009;234:683–92.CrossRefGoogle Scholar
  86. 86.
    Hori M, Kitakaze M. Adenosine, the heart and coronary circulation. Hypertension. 1991;18:565–74.CrossRefPubMedGoogle Scholar
  87. 87.
    Haselton FR, Alexander JS, Mueller SN. Adenosine decreases permeability of in vitro endothelial monolayers. J Appl Physiol. 1993;74:1581–90.CrossRefPubMedGoogle Scholar
  88. 88.
    Richard LF, Dahms TE, Webster RO. Adenosine prevents permeability increase in oxidant-injured endothelial monolayers. Am J Physiol Heart Circ Physiol. 1998;274:H35–42.CrossRefGoogle Scholar
  89. 89.
    Lu Q, Harrington EO, Newton J, Casserly B, Radin G, Warburton R, et al. Adenosine protected against pulmonary edema through transporter- and receptor A2-mediated endothelial barrier enhancement. Am J Physiol Lung Cell Mol Physiol. 2010;298(6):L755–67.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Harrington EO, Newton J, Morin N, Rounds S. Barrier dysfunction and RhoA activation are blunted by homocysteine and adenosine in pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol. 2004;287(6):L1091–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Umapathy NS, Fan Z, Zemskov EA, Alieva IB, Black SM, Verin AD. Molecular mechanisms involved in adenosine-induced endothelial cell barrier enhancement. Vascul Pharmacol. 2010;52(5–6):199–206.CrossRefPubMedGoogle Scholar
  92. 92.
    Ethier MF, Chander V, Dobson JG Jr. Adenosine stimulates proliferation of human endothelial cells in culture. Am J Physiol. 1993;265(1 Pt 2):H131–8.PubMedGoogle Scholar
  93. 93.
    Dubey RK, Gillespie DG, Jackson EK. A2B adenosine receptors stimulate growth of porcine and rat arterial endothelial cells. Hypertension. 2002;39(2 part 2):530–5.CrossRefPubMedGoogle Scholar
  94. 94.
    Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L, Voyno-Yasenetskaya T, Biaggioni I. Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ Res. 2002;90:531–8.CrossRefPubMedGoogle Scholar
  95. 95.
    Valladares D, Quezada C, Montecinos P, Concha II, Yañez AJ, Sobrevia L, et al. Adenosine A(2B) receptor mediates an increase on VEGF-A production in rat kidney glomeruli. Biochem Biophys Res Commun. 2008;366:180–5.CrossRefPubMedGoogle Scholar
  96. 96.
    Dubey RK, Fingerle J, Gillespie DG, Mi Z, Rosselli M, Imthurn B, Jackson EK. Adenosine attenuates human coronary artery smooth muscle cell proliferation by inhibiting multiple signaling pathways that converge on cyclin D. Hypertension. 2015;66(6):1207–19.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Bot I, de Vries H, Korporaal SJ, Foks AC, Bot M, van Veldhoven J, Ter Borg MN, van Santbrink PJ, van Berkel TJ, Kuiper J, Ijzerman AP. Adenosine A2B receptor agonism inhibits neointimal lesion development after arterial injury in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2012;32(9):2197–205.CrossRefPubMedGoogle Scholar
  98. 98.
    Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G. Signal transduction of ischemic preconditioning. Cardiovasc Res. 2001;52:181–98.CrossRefPubMedGoogle Scholar
  99. 99.
    Schulz R, Rose J, Post H, Heusch G. Involvement of endogenous adenosine in ischemic preconditioning in swine. Pflügers Arch. 1995;430:273–82.CrossRefPubMedGoogle Scholar
  100. 100.
    Singh L, Virdi JK, Maslov LN, Singh N, Jaggi AS. Investigating the possible mechanisms involved in adenosine preconditioning induced cardioprotection in rats. Cardiovasc Ther. 2018;36(3):e12328.CrossRefPubMedGoogle Scholar
  101. 101.
    Mahaffey KW, Puma JA, Barbagelata NA, DiCarli MF, Leesar MA, Browne KF, et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy ADenosine (AMISTAD) trial. J Am Coll Cardiol. 1999;34:1711–20.CrossRefPubMedGoogle Scholar
  102. 102.
    Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW, AMISTAD-II Investigators. A randomized, double-blinded, placebo-controlled multi-center trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol. 2005;45:1775–80.CrossRefPubMedGoogle Scholar
  103. 103.
    Kloner RA, Forman MB, Gibbons RJ, Ross AM, Alexander RW, Stone GW. Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur Heart J. 2006;27(20):2400–5.CrossRefPubMedGoogle Scholar
  104. 104.
    Marzilli M, Orsini E, Marraccini P, Testa R. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation. 2000;101(18):2154–9.CrossRefPubMedGoogle Scholar
  105. 105.
    Quintana M, Hjemdahl P, Sollevi A, Kahan T, Edner M, Rehnqvist N, Swahn E, Kjerr AC, Näsman P, ATTACC investigators. Left ventricular function and cardiovascular events following adjuvant therapy with adenosine in acute myocardial infarction treated with thrombolysis, results of the ATTenuation by Adenosine of Cardiac Complications (ATTACC) study. Eur J Clin Pharmacol. 2003;59(1):1–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Garcia-Dorado D, Garcia-Del-Blanco B, Otaegui I, Rodríguez-Palomares J, Pineda V, Gimeno F, Ruiz-Salmerón R, et al. Intracoronary injection of adenosine before reperfusion in patients with ST-segment elevation myocardial infarction: a randomized controlled clinical trial. Int J Cardiol. 2014;177:935–41.CrossRefPubMedGoogle Scholar
  107. 107.
    Voors AA, Shah SJ, Bax JJ, Butler J, Gheorghiade M, Hernandez AF, et al. Rationale and design of the phase 2b clinical trials to study the effects of the partial adenosine A1-receptor agonist neladenoson bialanate in patients with chronic heart failure with reduced (PANTHEON) and preserved (PANACHE) ejection fraction. Eur J Heart Fail. 2018. (epub ahead of print).CrossRefPubMedGoogle Scholar
  108. 108.
    Greene SJ, Sabbah HN, Butler J, Voors AA, Albrecht-Küpper BE, Düngen HD, Dinh W, Gheorghiade M. Partial adenosine A1 receptor agonism: a potential new therapeutic strategy for heart failure. Heart Fail Rev. 2016;21:95–102.CrossRefPubMedGoogle Scholar
  109. 109.
    Olie RH, van der Meijden PEJ, Ten Cate H. The coagulation system in atherothrombosis: implications for new therapeutic strategies. Res Pract Thromb Haemost. 2018;2(2):188–98.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Steinhubl SR, Moliterno DJ. The role of the platelet in the pathogenesis of atherothrombosis. Am J Cardiovasc. Drugs. 2005;5:399–408.CrossRefPubMedGoogle Scholar
  111. 111.
    Valgimigli M, Bueno H, Byrne RA, Collet JP, Costa F, Jeppsson A, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2018;39(3):213–60.CrossRefPubMedGoogle Scholar
  112. 112.
    Iqbal J, Widmer R, Gersh BJ. State of the art: optimal medical therapy—competing with or complementary to revascularisation in patients with coronary artery disease? EuroIntervention. 2017;13(6):751–9.CrossRefPubMedGoogle Scholar
  113. 113.
    Ostergaard L, Fosbol EL, Roe MT. The role of antiplatelet therapy in primary prevention. A review. Curr Pharm Des. 2017;23(9):1294–306.CrossRefPubMedGoogle Scholar
  114. 114.
    Zhao Z, Makaritsis K, Francis CE, Gavras H, Ravid K. A role for the A3 adenosine receptor in determining tissue levels of cAMP and blood pressure: studies in knock-out mice. Biochim Biophys Acta. 2000;1500(3):280–90.CrossRefPubMedGoogle Scholar
  115. 115.
    Amisten S, Braun OO, Bengtsson A, Erlinge D. Gene expression profiling for the identification of G-protein coupled receptors in human platelets. Thromb Res. 2008;122:47–57.CrossRefPubMedGoogle Scholar
  116. 116.
    Fuentes E, Pereira J, Mezzano D, Alarcón M, Caballero J, Palomo I. Inhibition of platelet activation and thrombus formation by adenosine and inosine: studies on their relative contribution and molecular modeling. PLoS One. 2014;9:e112741.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Cassada DC, Tribble CG, Long SM, Laubach VE, Kaza AK, Linden J, et al. J Vasc Surg. 2002;35(5):994–8.CrossRefPubMedGoogle Scholar
  118. 118.
    Linden MD, Barnard MR, Frelinger AL, Michelson AD, Przyklenk K. Effect of adenosine A2 receptor stimulation on platelet activation-aggregation: differences between canine and human models. Thromb Res. 2007;121(5):689–98.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Rieger JM, Brown ML, Sullivan GW, Linden J, Macdonald TL. Design, synthesis, and evaluation of novel adenosine A2A receptor agonists. J Med Chem. 2001;44:531–9.CrossRefPubMedGoogle Scholar
  120. 120.
    Varani K, Borea PA, Guerra L, Dionisotti S, Zocchi C, Ongini E. Binding characteristics of the adenosine A2 receptor ligand [3H]CGS 21680 to human platelet membranes. Biochem Pharmacol. 1994;48(8):1658–61.CrossRefPubMedGoogle Scholar
  121. 121.
    Yang D, Chen H, Koupenova M, Carroll SH, Eliades A, Freedman JE, Toselli P, Ravid K. A new role for the A2b adenosine receptor in regulating platelet function. J Thromb Haemost. 2010;8(4):817–27.CrossRefPubMedGoogle Scholar
  122. 122.
    Savi P, Beauverger P, Labouret C, Delfaud M, Salel V, Kaghad M, Herbert JM. Role of P2Y1 purinoceptor in ADP-induced platelet activation. FEBS Lett. 1998;422(3):291–5.CrossRefPubMedGoogle Scholar
  123. 123.
    Damman P, Woudstra P, Wichert JK, deWinter RJ, James SK. P2Y12 platelet inhibition in clinical practice. J Thromb Thrombolysis. 2012;33(2):143–53.CrossRefPubMedGoogle Scholar
  124. 124.
    Erb L, Weisman G. Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip Rev Membr Transp Signal. 2012;1:789–803.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Hechler B, Gachet C. Purinergic receptors in thrombosis and inflammation. Arterioscler Thromb Vasc Biol. 2015;35:2307–15.CrossRefPubMedGoogle Scholar
  126. 126.
    Squizzato A, Bellesini M, Takeda A, Middeldorp S, Donadini MP. Clopidogrel plus aspirin versus aspirin alone for preventing cardiovascular events. Cochrane Database Syst Rev. 2017;14;12:CD005158.Google Scholar
  127. 127.
    Ben-Dor I, Kleinman NS, Lev E. Assessment, mechanisms, and clinical implication of variability in platelet response to aspirin and clopidogrel therapy. Am J Cardiol. 2009;104(2):227–33.CrossRefPubMedGoogle Scholar
  128. 128.
    Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, et al. Variability in individual responsiveness to clopidogrel. J Am Coll Cardiol. 2007;49:1505–16.CrossRefPubMedGoogle Scholar
  129. 129.
    Bates ER, Lau WC, Angiolillo DJ. Clopidogrel–drug interactions. J Am Coll Cardiol. 2011;57(11):1251–63.CrossRefPubMedGoogle Scholar
  130. 130.
    Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM. Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost. 2000;84:891–6.CrossRefPubMedGoogle Scholar
  131. 131.
    Dansette PM, Rosi J, Bertho G, Mansuy D. Cytochromes P450 catalyze both steps of the major pathway of clopidogrel bioactivation, whereas paraoxonase catalyzes the formation of a minor thiol metabolite isomer. Chem Res Toxicol. 2012;25:348–56.CrossRefPubMedGoogle Scholar
  132. 132.
    Ford NF. The metabolism of clopidogrel: CYP2C19 is a minor pathway. J Clin Pharmacol. 2016;56:1474–83.CrossRefPubMedGoogle Scholar
  133. 133.
    Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010;38:92–9.CrossRefPubMedGoogle Scholar
  134. 134.
    Mega JL, Simon T, Collet JP, Anderson JL, Antman EM, Bliden K, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304:1821–30.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Li X, Wang Q, Xue Y, Chen J, Lv Q. Ticagrelor compared with clopidogrel increased adenosine and cyclic adenosine monophosphate plasma concentration in acute coronary syndrome patients. Basic Clin Pharmacol Toxicol. 2017;120(6):610–4.CrossRefPubMedGoogle Scholar
  136. 136.
    Kim K, Lee TA, Ardati AK, DiDomenico RJ, Touchette DR, Walton SM. Comparative effectiveness of oral antiplatelet agents in patients with acute coronary syndrome. Pharmacotherapy. 2017;37(8):877–87.CrossRefPubMedGoogle Scholar
  137. 137.
    Armstrong D, Summers C, Ewart L, Nylander S, Sidaway JE, van Giezen JJ. Characterization of the adenosine pharmacology of ticagrelor reveals therapeutically relevant inhibition of equilibrative nucleoside transporter 1. J Cardiovasc Pharmacol Ther. 2014;19(2):209–19.CrossRefPubMedGoogle Scholar
  138. 138.
    Cattaneo M, Schulz R, Nylander S. Adenosine-mediated effects of ticagrelor: evidence and potential clinical relevance. J Am Coll Cardiol. 2014;63(23):2503–9.CrossRefPubMedGoogle Scholar
  139. 139.
    Nylander S, Femia EA, Scavone M, Berntsson P, Asztély AK, Nelander K, Löfgren L, Nilsson RG, Cattaneo M. Ticagrelor inhibits human platelet aggregation via adenosine in addition to P2Y12 antagonism. J Thromb Haemost. 2013;11(10):1867–76.PubMedGoogle Scholar
  140. 140.
    van den Berg TN, El Messaoudi S, Rongen GA, van den Broek PH, Bilos A, Donders AR, Gomes ME, Riksen NP. Ticagrelor does not inhibit adenosine transport at relevant concentrations: a randomized cross-over study in healthy subjects in vivo. PLoS One. 2015;10(10):e0137560.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    van Giezen JJ, Sidaway J, Glaves P, Kirk I, Björkman JA. Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J Cardiovasc Pharmacol Ther. 2012;17(2):164–72.CrossRefPubMedGoogle Scholar
  142. 142.
    Bonello L, Laine M, Kipson N, et al. Ticagrelor increases adenosine plasma concentration in patients with an acute coronary syndrome. J Am Coll Cardiol. 2014;63(9):872–7.CrossRefPubMedGoogle Scholar
  143. 143.
    Nawarskas JJ, Clark SM. Ticagrelor: a novel reversible oral antiplatelet agent. Cardiol Rev. 2011;19(2):95–100.CrossRefPubMedGoogle Scholar
  144. 144.
    Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–15.CrossRefPubMedGoogle Scholar
  145. 145.
    Khan MS, Memon MM, Usman MS, Alnaimat S, Khan SU, Khan AR, Yamani N, Fugar S, Mookadam F, Krasuski RA, Doukky R. Prasugrel vs. ticagrelor for acute coronary syndrome patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. Am J Cardiovasc Drugs. 2019. Scholar
  146. 146.
    Parker WAE, Eriksson N, Becker RC, Voora D, Åkerblom A, Himmelmann A, et al. Equilibrative nucleoside transporter 1 gene polymorphisms and clinical outcomes following acute coronary syndromes: findings from the PLATelet inhibition and patient Outcomes (PLATO) study. Platelets. 2018;31:1–10 (epub ahead of print).CrossRefGoogle Scholar
  147. 147.
    Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045–57.CrossRefGoogle Scholar
  148. 148.
    Storey RF, Becker RC, Harrington R, et al. Characterization of dyspnoea in PLATO study patients treated with ticagrelor or clopidogrel and its association with clinical outcomes. Eur Heart J. 2011;32(23):2945–53.CrossRefPubMedGoogle Scholar
  149. 149.
    Siasos G, Mourouzis K, Tousoulis D. Pleiotropic effects of antiplatelet treatment in patients with coronary artery disease. Hellenic J Cardiol. 2018. Scholar
  150. 150.
    Aït Mokhtar O, Gaubert M, Laine M, Bonello L, Guieu R, Cautela J, et al. Pleiotropic effects of ticagrelor: myth or reality? Arch Cardiovasc Dis. 2016;109(8–9):445–8.CrossRefPubMedGoogle Scholar
  151. 151.
    Ortega-Paz L, Brugaletta S, Ariotti S, Akkerhuis KM, Karagiannis A, Windecker S, et al. Adenosine and ticagrelor plasma levels in patients with and without ticagrelor-related dyspnea. Circulation. 2018;138(6):646–8.CrossRefPubMedGoogle Scholar
  152. 152.
    Boncler M, Wzorek J, Wolska N, Polak D, Watala C, Rozalski M. Adenosine receptor agonists deepen the inhibition of platelet aggregation by P2Y12 antagonists. Vascul Pharmacol. 2018;113:47–56.CrossRefPubMedGoogle Scholar
  153. 153.
    Singh JA, Saag KG, Bridges SL Jr, Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016;68(1):1–26.CrossRefPubMedGoogle Scholar
  154. 154.
    Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57:163–72.CrossRefPubMedGoogle Scholar
  155. 155.
    Micha R, Imamura F, von Ballmoos MW, Solomon DH, Hernán MA, Ridker PM, Mozaffarian D. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol. 2011;108(9):1362–70.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Roubille C, Richer V, Starnino T, McCourt C, McFarlane A, Fleming P, et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(3):480–9.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Wasko MC, Dasgupta A, Hubert H, Fries JF, Ward MM. Propensity-adjusted association of methotrexate with overall survival in rheumatoid arthritis. Arthritis Rheum. 2013;65:334–42.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Mangoni AA, Zinellu A, Sotgia S, Carru C, Piga M, Erre GL. Protective effects of methotrexate against proatherosclerotic cytokines: a review of the evidence. Mediators Inflamm. 2017;2017:9632846.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Cronstein BN, Naime D, Ostad E. The anti-inflammatory effects of methotrexate are mediated by adenosine. Adv Exp Med Biol. 1994;370:411–6.CrossRefPubMedGoogle Scholar
  160. 160.
    Cronstein BN, Eberle MA, Gruber HE, Levin RI. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA. 1991;88:2441–5.CrossRefPubMedGoogle Scholar
  161. 161.
    Cronstein BN, Naime D, Ostad E. The antiinflammatory mechanism of methotrexate: increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest. 1993;92:2675–82.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Smith CK, Vivekanandan-Giri A, Tang C, Knight JS, Mathew A, Padilla RL, et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 2014;66(9):2532–44.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Pertiwi KR, van der Wal AC, Pabittei DR, Mackaaij C, van Leeuwen MB, Li X, et al. Neutrophil extracellular traps participate in all different types of thrombotic and haemorrhagic complications of coronary atherosclerosis. Thromb Haemost. 2018;118(6):1078–87.CrossRefPubMedGoogle Scholar
  164. 164.
    Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132(12):1243–52.CrossRefPubMedGoogle Scholar
  165. 165.
    Zhang R, Chen S, Zhang H, Liu Q, Xing J, Zhao Q, et al. Effects of methotrexate in a rabbit model of in-stent neoatherosclerosis: an optical coherence tomography study. Sci Rep. 2016;6:33657.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    De Caterina R, D’Ugo E, Libby P. Inflammation and thrombosis—testing the hypothesis with anti-inflammatory drug trials. Thromb Haemost. 2016;116(6):1012–21.PubMedGoogle Scholar
  167. 167.
    Csóka B, Németh ZH, Duerr CU, Fritz JH, Pacher P, Haskó G. Adenosine receptors differentially regulate type 2 cytokine production by IL-33-activated bone marrow cells, ILC2 s, and macrophages. FASEB J. 2018;32(2):829–37.CrossRefPubMedGoogle Scholar
  168. 168.
    Cheng RKY, Segala E, Robertson N, Deflorian F, Doré AS, Errey JC, Fiez-Vandal C, Marshall FH, Cooke RM. Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure. 2017;25(8):1275–85.CrossRefPubMedGoogle Scholar
  169. 169.
    Karmouty-Quintana H, Xia Y, Blackburn MR. Adenosine signaling during acute and chronic disease states. J Mol Med. 2013;91:173–81.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Zhong H, Belardinelli L, Maa T, Zeng D. Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. Am J Respir Cell Mol Biol. 2005;32:2–8.CrossRefPubMedGoogle Scholar
  171. 171.
    Härter M, Kalthof B, Delbeck M, Lustig K, Gerisch M, Schulz S, Kast R, Meibom D, Lindner N. Novel non-xanthine antagonist of the A2B adenosine receptor: from HTS hit to lead structure. Eur J Med Chem. 2019;163:763–78.CrossRefPubMedGoogle Scholar
  172. 172.
    Linden J, Auchampach JA, Jin X, Figler RA. The structure and function of A1 and A2B adenosine receptors. Life Sci. 1998;62:1519–24.CrossRefPubMedGoogle Scholar
  173. 173.
    Abbracchio MP, Ceruti S. P1 receptors and cytokine secretion. Purinergic Signal. 2007;3(1–2):13–25.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Haskó G, Cronstein BN. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 2004;25(1):33–9.CrossRefPubMedGoogle Scholar
  175. 175.
    Barletta KE, Ley K, Mehrad B. Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol. 2012;32(4):856–64.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Wang X, Chen D. Purinergic regulation of neutrophil function. Front Immunol. 2018;9:399.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Haskó G, Pacher P. Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol. 2012;32(4):865–9.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Hasko G, Pacher P, Deitch EA, Vizi ES. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther. 2007;113:264–75.CrossRefPubMedGoogle Scholar
  179. 179.
    Hasko G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mabley JG, Marton A, Szabo C. Adenosine inhibits IL-12 and TNF-α production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J. 2000;14:2065–74.CrossRefPubMedGoogle Scholar
  180. 180.
    Coomes E, Chan ES, Reiss AB. Methotrexate in atherogenesis and cholesterol metabolism. Cholesterol. 2011;2011:503028.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Langman T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G, et al. Molecular cloning of the human ATP-binding cassette transporter (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun. 1999;257(1):29–33.CrossRefGoogle Scholar
  182. 182.
    Voloshyna I, Reiss AB. The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 2011;50(3):213–24.CrossRefPubMedGoogle Scholar
  183. 183.
    Rust S, Rosier M, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22:352–5.CrossRefPubMedGoogle Scholar
  184. 184.
    Puntoni M, Sbrana F, Bigazzi F, Sampietro T. Tangier disease: epidemiology, pathophysiology, and management. Am J Cardiovasc Drug. 2012;12:303–11.CrossRefGoogle Scholar
  185. 185.
    Wang N, Lan D, Chen W, Matsuura F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA. 2004;101(26):9774–9.CrossRefPubMedGoogle Scholar
  186. 186.
    Tarling EJ, Edwards PA. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci USA. 2011;108(49):19719–24.CrossRefPubMedGoogle Scholar
  187. 187.
    Voloshyna I, Carsons S, Littlefield MJ, Rieger JM, Figler R, Reiss AB. Adenosine A(2A) receptor activation supports an atheroprotective cholesterol balance in human macrophages and endothelial cells. Biochim Biophys Acta. 2013;1831(2):407–16.CrossRefPubMedGoogle Scholar
  188. 188.
    Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L, Jessup W. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol. 2006;26(3):534–40.CrossRefPubMedGoogle Scholar
  189. 189.
    Bingham TC, Fisher EA, Parathath S, Reiss AB, Chan ES, Cronstein BN. A2A adenosine receptor stimulation decreases foam cell formation by enhancing ABCA1-dependent cholesterol efflux. J Leukoc Biol. 2010;87(4):683–90.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Reiss AB, Awadallah NW, Cronstein BN. Cytochrome P450 cholesterol 27-hydroxylase: an anti-atherogenic enzyme. Recent Res Devel in Lipids Res. 2000;4(1):39–50.Google Scholar
  191. 191.
    Bingham TC, Parathath S, Tian H, Reiss A, Chan E, Fisher EA, Cronstein BN. Cholesterol 27-hydroxylase but not apolipoprotein apoE contributes to A2A adenosine receptor stimulated reverse cholesterol transport. Inflammation. 2012;35(1):49–57.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Lund E, Andersson O, Zhang J, Babiker A, Ahlborg G, Diczfalusy U, et al. Importance of a novel oxidative mechanism for elimination of intracellular cholesterol in humans. Arterioscler Thromb Vasc Biol. 1996;16:208–12.CrossRefPubMedGoogle Scholar
  193. 193.
    Kim WS, Chan SL, Hill AF, Guillemin GJ, Garner B. Impact of 27-hydroxycholesterol on amyloid-beta peptide production and ATP-binding cassette transporter expression in primary human neurons. J Alzheimers Dis. 2009;16(1):121–31.CrossRefPubMedGoogle Scholar
  194. 194.
    Zhao C, Dahlman-Wright K. Liver X receptor in cholesterol metabolism. J Endocrinol. 2010;204(3):233–40.CrossRefPubMedGoogle Scholar
  195. 195.
    Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem. 2000;275(36):28240–5.PubMedGoogle Scholar
  196. 196.
    Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, Sparrow CP, Lund EG. 27-Hydroxycholesterol is an endogenous ligand for LXR in cholesterol-loaded cells. J Biol Chem. 2001;276(42):38378–87.CrossRefPubMedGoogle Scholar
  197. 197.
    Ma Z, Deng C, Hu W, Zhou J, Fan C, Di S, et al. Liver X receptors and their agonists: targeting for cholesterol homeostasis and cardiovascular diseases. Curr Issues Mol Biol. 2017;22:41–64.CrossRefPubMedGoogle Scholar
  198. 198.
    Reiss AB, Patel CA, Rahman MM, Chan ES, Hasneen K, Montesinos MC, et al. Interferon-gamma impedes reverse cholesterol transport and promotes foam cell transformation in THP-1 human monocytes/macrophages. Med Sci Monit. 2004;10(11):BR420–4255.PubMedGoogle Scholar
  199. 199.
    Reiss AB, Rahman MM, Chan ES, Montesinos MC, Awadallah NW, Cronstein BN. Adenosine A2A receptor occupancy stimulates expression of proteins involved in reverse cholesterol transport and inhibits foam cell formation in macrophages. J Leukoc Biol. 2004;76:727–34.CrossRefPubMedGoogle Scholar
  200. 200.
    Reiss AB, Cronstein BN. Regulation of foam cells by adenosine. Arterioscler Thromb Vasc Biol. 2012;32(4):879–86.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Koupenova M, Johnston-Cox H, Ravid K. Regulation of atherosclerosis and associated risk factors by adenosine and adenosine receptors. Curr Atheroscler Rep. 2012;14(5):460–8.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Reiss AB, Moosa S, Siegart NM, Kasselman LJ, Rob S, Carsons SE, DeLeon J, Voloshyna I. The adenosine A2A receptor agonist UK-432,097 stimulates expression of anti-atherogenic reverse cholesterol transport proteins. JCvD. 2016;64:431–9.Google Scholar
  203. 203.
    Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG. Structure of the adenosine A(2A) receptor bound to an engineered G protein. Nature. 2016;536:104–7.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Doukky R, Demori RM, Jain S, Kiriakos R, Mwansa V, Calvin JE. Attenuation of the side effect profile of regadenoson: a randomized double-blinded placebo-controlled study with aminophylline in patients undergoing myocardial perfusion imaging. “The ASSUAGE trial”. J Nucl Cardiol. 2012;19:448–57.CrossRefPubMedGoogle Scholar
  205. 205.
    Yago T, Tsukamoto H, Liu Z, Wang Y, Thompson LF, McEver RP. Multi-inhibitory effects of A2A adenosine receptor signaling on neutrophil adhesion under flow. J Immunol. 2015;195(8):3880–9.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Dai W, Hale SL, Nayak R, Kloner RA. ATL 313, a selective A(2A) adenosine receptor agonist, reduces myocardial infarct size in a rat ischemia/reperfusion model. Open Cardiovasc Med J. 2009;3:166–72.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Xu FX, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, et al. Structure of an agonist-bound human A2A adenosine receptor. Science. 2011;332:322–7.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Hothersall JD, Guo D, Sarda S, Sheppard RJ, Chen H, Keur W, et al. Structure-activity relationships of the sustained effects of adenosine A2A receptor agonists driven by slow dissociation kinetics. Mol Pharmacol. 2017;91(1):25–38.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Carpenter B, Lebon G. Human adenosine A2A receptor: molecular mechanism of ligand binding and activation. Front Pharmacol. 2017;8:898.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Betti M, Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, et al. The aminopyridine-3,5-dicarbonitrile core for the design of new non-nucleoside-like agonists of the human adenosine A2B receptor. Eur J Med Chem. 2018;150:127–39.CrossRefPubMedGoogle Scholar
  211. 211.
    Yu J, Li W, Yu D. Atrial natriuretic peptide modified oleate adenosine prodrug lipid nanocarriers for the treatment of myocardial infarction: in vitro and in vivo evaluation. Drug Des Devel Ther. 2018;12:1697–706.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Vecchio EA, White PJ, May LT. The adenosine A2B G protein-coupled receptor: recent advances and therapeutic implications. Pharmacol Ther. 2019. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Allison B. Reiss
    • 1
    Email author
  • David Grossfeld
    • 1
  • Lora J. Kasselman
    • 1
  • Heather A. Renna
    • 1
  • Nicholas A. Vernice
    • 1
  • Wendy Drewes
    • 1
  • Justin Konig
    • 1
  • Steven E. Carsons
    • 1
  • Joshua DeLeon
    • 1
  1. 1.Department of Medicine and Winthrop Research InstituteNYU Winthrop HospitalMineolaUSA

Personalised recommendations