Advertisement

American Journal of Cardiovascular Drugs

, Volume 19, Issue 2, pp 133–171 | Cite as

Potential Protective Role of Blood Pressure-Lowering Drugs on the Balance between Hemostasis and Fibrinolysis in Hypertensive Patients at Rest and During Exercise

  • Annabella BraschiEmail author
Review Article

Abstract

In patients with hypertension, the triad represented by endothelial dysfunction, platelet hyperactivity, and altered fibrinolytic function disturbs the equilibrium between hemostasis and fibrinolysis and translates into a hypercoagulable state, which underlies the risk of thrombotic complications. This article reviews the scientific evidence regarding some biological effects of antihypertensive drugs, which can protect patients from the adverse consequences of hypertensive disease, improving endothelial function, enhancing antioxidant activity, and restoring equilibrium between hemostatic and fibrinolytic factors. These protective effects appear not to be mediated through blood pressure reduction and are not shared by all molecules of the same pharmacological class.

Notes

Compliance with Ethical Standards

Funding

No sources of funding were used to assist with the preparation of this review.

Conflict of interest

Dr A. Braschi has no conflicts of interest that are relevant to the content of this review.

References

  1. 1.
    Gleerup G, Vind J, Winther K. Platelet function and fibrinolytic activity during rest and exercise in borderline hypertensive patients. Eur J Clin Invest. 1995;25(4):266–70.Google Scholar
  2. 2.
    Gavriilaki E, Gkaliagkousi E, Nikolaidou B, Triantafyllou G, Chatzopoulou F, Douma S. Increased thrombotic and impaired fibrinolytic response to acute exercise in patients with essential hypertension: the effect of treatment with an angiotensin II receptor blocker. J Hum Hypertens. 2014;28(10):606–9.Google Scholar
  3. 3.
    El-Sayed MS, El-Sayed Ali Z, Ahmadizad S. Exercise and training effects on blood haemostasis in health and disease: an update. Sports Med. 2004;34(3):181–200.Google Scholar
  4. 4.
    Ferguson EW, Bernier LL, Banta GR, Yu-Yahiro J, Schoomaker EB. Effects of exercise and conditioning on clotting and fibrinolytic activity in men. J Appl Physiol (1985). 1987;62(4):1416–21.Google Scholar
  5. 5.
    Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.Google Scholar
  6. 6.
    Blood Pressure Lowering Treatment Trialists’ Collaboration, Turnbull F, Neal B, Pfeffer M, et al. Blood pressure-dependent and independent effects of agents that inhibit the renin-angiotensin system. J Hypertens. 2007;25(5):951–8.Google Scholar
  7. 7.
    Fogari R, Zoppi A. Antihypertensive drugs and fibrinolytic function. Am J Hypertens. 2006;19(12):1293–9.Google Scholar
  8. 8.
    Skowasch D, Viktor A, Schneider-Schmitt M, Lüderitz B, Nickenig G, Bauriedel G. Differential antiplatelet effects of angiotensin converting enzyme inhibitors: comparison of ex vivo platelet aggregation in cardiovascular patients with ramipril, captopril and enalapril. Clin Res Cardiol. 2006;95(4):212–6.Google Scholar
  9. 9.
    Sáez GT, Tormos C, Giner V, et al. Factors related to the impact of antihypertensive treatment in antioxidant activities and oxidative stress by-products in human hypertension. Am J Hypertens. 2004;17(9):809–16.Google Scholar
  10. 10.
    Farkas K, Fábián E, Nagy L. Quinapril improves endothelial function in postmenopausal hypertensive patients. Kidney Blood Press Res. 2008;31(4):226–33.Google Scholar
  11. 11.
    Staessen JA, Thijs L, Li Y, et al. ‘Beyond blood pressure’ means multiple risk factor intervention, not pleiotropic antihypertensive drugs. Curr Opin Cardiol. 2007;22(4):335–43.Google Scholar
  12. 12.
    Punda A, Polić S, Rumboldt Z, Bagatin J, Marković V, Lukin A. Effects of atenolol and propranolol on platelet aggregation in moderate essential hypertension: randomized crossover trial. Croat Med J. 2005;46(2):219–24.Google Scholar
  13. 13.
    von zur Můhlen B, Millgård J, Lind L. Divergent effects of different beta-blocking agents on endothelium-dependent vasodilatation in the human forearm. Blood Press. 2000;9(5):287–92.Google Scholar
  14. 14.
    Jastrzebskal M, Widecka K, Naruszewicz M, et al. Effects of perindopril treatment on hemostatic function in patients with essential hypertension in relation to angiotensin converting enzyme (ACE) and plasminogen activator inhibitor-1 (PAI-1) gene polymorphisms. Nutr Metab Cardiovasc Dis. 2004;14(5):259–69.Google Scholar
  15. 15.
    Janczak-Bazan A.The hemostasis parameters and ACE gene polymorphism in patients with essential hypertension treated with perindopril. Ann Acad Med Stetin. 2006;52(1):51–61 (discussion 61–2).Google Scholar
  16. 16.
    Dell’Omo G, Penno G, Pucci L, et al. The vascular effects of doxazosin in hypertension complicated by metabolic syndrome. Coron Artery Dis. 2005;16(1):67–73.Google Scholar
  17. 17.
    Baez MA, Garg DC, Jallad NS, Weidler DJ. Antihypertensive effect of doxazosin in hypertensive patients: comparison with atenolol. Br J Clin Pharmacol. 1986;21(Suppl 1):63S–7S.Google Scholar
  18. 18.
    Hernandez Hernandez R, Carvajal AR, Guerrero Pajuelo J, et al. The effect of doxazosin on platelet aggregation in normotensive subjects and patients with hypertension: an in vitro study. Am Heart J. 1991;121(1 Pt 2):389–94.Google Scholar
  19. 19.
    Hernández Hernández R, Angeli-Greaves M, Carvajal AR, Guerrero Pajuelo J, Armas Padilla MC, Armas-Hernández MJ. Terazosin: ex vivo and in vitro platelet aggregation effects in patients with arterial hypertension. Am J Hypertens. 1996;9(5):437–44.Google Scholar
  20. 20.
    Hernandez Hernandez R, Guerrero Pajuelo JR, Carvajal AR, et al. Evidence of an antiplatelet aggregation action of doxazosin in patients with hypertension: an ex vivo study. Am Heart J. 1991;121(1 Pt 2):395–401.Google Scholar
  21. 21.
    Alarayyed NA, Cooper MB, Prichard BN, Betteridge DJ, Smith CC. In vitro adrenaline and collagen-induced mobilization of platelet calcium and its inhibition by naftopidil, doxazosin and nifedipine. Br J Clin Pharmacol. 1997;43(4):415–20.Google Scholar
  22. 22.
    Labiós M, Martínez M, Gabriel F, Guiral V, Ruiz-Aja S, Aznar J. Cytoplasmic free calcium mobilization in platelets, expression of P-selectin, phosphatidylserine, and microparticle formation, measured by whole blood flow cytometry, in hypertensive patients. Effect of doxazosin GITS. Thromb Res. 2006;117(4):403–9.Google Scholar
  23. 23.
    Ikeda T, Nonaka Y, Goto A, Ishii M. Effects of prazosin on platelet aggregation and plasma beta-thromboglobulin in essential hypertension. Clin Pharmacol Ther. 1985;37(6):601–5.Google Scholar
  24. 24.
    Okrucká A, Pechán J, Mikulecký M. Beta-thromboglobulin and platelet aggregation in essential hypertension and the influence of prazosin therapy. Cor Vasa. 1990;32(5):363–73.Google Scholar
  25. 25.
    Labiós M, Martínez M, Gabriel F, et al. Flow cytometric analysis of platelet activation in hypertensive patients. Effect of doxazosin. Thromb Res. 2003;110(4):203–8.Google Scholar
  26. 26.
    Andersen P, Seljeflot I, Herzog A, Arnesen H, Hjermann I, Holme I. Effects of doxazosin and atenolol on atherothrombogenic risk profile in hypertensive middle-aged men. J Cardiovasc Pharmacol. 1998;31(5):677–83.Google Scholar
  27. 27.
    Jansson JH, Johansson B, Boman K, Nilsson TK. Effects of doxazosin and atenolol on the fibrinolytic system in patients with hypertension and elevated serum cholesterol. Eur J Clin Pharmacol. 1991;40(4):321–6.Google Scholar
  28. 28.
    Daae LN, Kierulf P, Brusletto B, Westheim A, Holme I, Syvertsen JO. The effect of doxazosin on blood pressure, lipids, fibrinogen and plasminogen activator inhibitor. A comparative study among smokers and non-smokers with essential hypertension. Tidsskr Nor Laegeforen. 1991;111(9):1102–5.Google Scholar
  29. 29.
    Giorda C, Appendino M, Mason MG, Imperiale E, Pagano G. Alpha 1-blocker doxazosin improves peripheral insulin sensitivity in diabetic hypertensive patients. Metabolism. 1995;44(5):673–6.Google Scholar
  30. 30.
    Pollare T, Lithell H, Selinus I, Berne C. Application of prazosin is associated with an increase of insulin sensitivity in obese patients with hypertension. Diabetologia. 1988;31(7):415–20.Google Scholar
  31. 31.
    Vague P, Juhan-Vague I, Aillaud MF, et al. Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasma insulin level, and relative body weight in normal and obese subjects. Metabolism. 1986;35(3):250–3.Google Scholar
  32. 32.
    Zehetgruber M, Christ G, Gabriel H, et al. Effect of antihypertensive treatment with doxazosin on insulin sensitivity and fibrinolytic parameters. Thromb Haemost. 1998;79(2):378–82.Google Scholar
  33. 33.
    Prichard BN, Gillam PM. Treatment of hypertension with propranolol. Br Med J. 1969;1(5635):7–16.Google Scholar
  34. 34.
    Pasternack A, Pörsti P, Pöyhönen L. Effect of pindolol and propranolol on renal function of patients with hypertension. Br J Clin Pharmacol. 1982;13(Suppl 2):241S–4S.Google Scholar
  35. 35.
    Serg M, Kampus P, Kals J, et al. Nebivolol and metoprolol: long-term effects on inflammation and oxidative stress in essential hypertension. Scand J Clin Lab Invest. 2012;72(5):427–32.Google Scholar
  36. 36.
    Rizos E, Bairaktari E, Kostoula A, et al. The combination of nebivolol plus pravastatin is associated with a more beneficial metabolic profile compared to that of atenolol plus pravastatin in hypertensive patients with dyslipidemia: a pilot study. J Cardiovasc Pharmacol Ther. 2003;8(2):127–34.Google Scholar
  37. 37.
    Vyssoulis GP, Marinakis AG, Aznaouridis KA, et al. The impact of third-generation beta-blocker antihypertensive treatment on endothelial function and the prothrombotic state: effects of smoking. Am J Hypertens. 2004;17(7):582–9.Google Scholar
  38. 38.
    Kerry R, Scrutton MC, Wallis RB. Beta-adrenoceptor antagonists and human platelets: relationship of effects to lipid solubility. Biochem Pharmacol. 1984;33(16):2615–22.Google Scholar
  39. 39.
    Larsson PT, Wallén NH, Martinsson A, Egberg N, Hjemdahl P. Significance of platelet beta-adrenoceptors for platelet responses in vivo and in vitro. Thromb Haemost. 1992;68(6):687–93.Google Scholar
  40. 40.
    Weksler BB, Gillick M, Pink J. Effect of propranolol on platelet function. Blood. 1977;49(2):185–96.Google Scholar
  41. 41.
    Markel A, Brook JG, Levy Y, Aviram M, Youdim MB. Increased platelet adhesion and aggregation in hypertensive patients: effect of atenolol. Br J Clin Pharmacol. 1983;16(6):663–8.Google Scholar
  42. 42.
    Srivastava KC. Influence of some beta blockers (pindolol, atenolol, timolol and metoprolol) on aggregation and arachidonic acid metabolism in human platelets. Prostaglandins Leukot Med. 1987;29(1):79–84.Google Scholar
  43. 43.
    Lazebnik LB, Komissarenko IA, Guseĭnzade M, Shakurova MIu. Pharmacodynamic effects of lokren (betaxolol) in 3 month treatment of blood hypertension in elderly patients. Ter Arkh. 1998;70(6):44–7.Google Scholar
  44. 44.
    Small M, Douglas JT, Aherne GW, et al. Effects of the non-selective beta-adrenoceptor blocking agent, carteolol, on platelet function, blood coagulation and viscosity. Thromb Res. 1982;25(4):351–60.Google Scholar
  45. 45.
    Giugliano D, Marfella R, Acampora R, Giunta R, Coppola L, D’Onofrio F. Effects of perindopril and carvedilol on endothelium-dependent vascular functions in patients with diabetes and hypertension. Diabetes Care. 1998;21(4):631–6.Google Scholar
  46. 46.
    Gasser JA, Betterridge DJ. Comparison of the effects of carvedilol, propranolol, and verapamil on in vitro platelet function in healthy volunteers. J Cardiovasc Pharmacol. 1991;18(Suppl 4):S29–34.Google Scholar
  47. 47.
    Okrucká A, Pechán J, Balazovjech I. The effect of short-term celiprolol therapy on platelet function in essential hypertension. Cardiology. 1993;82(6):399–404.Google Scholar
  48. 48.
    Okrucká A, Pechán J, Kratochvílová H. Effect of long-term celiprolol therapy on haemostasis in essential hypertension. J Hum Hypertens. 1995;9(9):773–6.Google Scholar
  49. 49.
    Anfossi G, Trovati M, Lanzio M, Mularoni E, Massucco P, Emanuelli G. Effect of labetalol on human platelet function. Clin Exp Pharmacol Physiol. 1988;15(6):437–48.Google Scholar
  50. 50.
    Celik T, Yuksel UC, Iyisoy A, et al. Effects of nebivolol on platelet activation in hypertensive patients: a comparative study with metoprolol. Int J Cardiol. 2007;116(2):206–11.Google Scholar
  51. 51.
    Donaldson KM, Ayesu K, Francis JL, Challenor VF, Waller G. Effects of nifedipine and propranolol on whole blood platelet aggregation. Platelets. 1991;2(3):141–3.Google Scholar
  52. 52.
    Savoia C, Touyz RM, Amiri F, Schiffrin EL. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension. 2008;51(2):432–9.Google Scholar
  53. 53.
    Marfella R, Siniscalchi M, Nappo F, et al. Regression of carotid atherosclerosis by control of morning blood pressure peak in newly diagnosed hypertensive patients. Am J Hypertens. 2005;18(3):308–18.Google Scholar
  54. 54.
    Jekell A, Malmqvist K, Wallén NH, Mörtsell D, Kahan T. Markers of inflammation, endothelial activation, and arterial stiffness in hypertensive heart disease and the effects of treatment: results from the SILVHIA study. J Cardiovasc Pharmacol. 2013;62(6):559–66.Google Scholar
  55. 55.
    Celik T, Iyisoy A, Kursaklioglu H, et al. Comparative effects of nebivolol and metoprolol on oxidative stress, insulin resistance, plasma adiponectin and soluble P-selectin levels in hypertensive patients. J Hypertens. 2006;24(3):591–6.Google Scholar
  56. 56.
    Soardo G, Donnini D, Moretti M, Milocco C, Catena C, Sechi LA. Effects of antihypertensive drugs on alcohol-induced functional responses of cultured human endothelial cells. Hypertens Res. 2008;31(2):345–51.Google Scholar
  57. 57.
    Fahlbusch SA, Tsikas D, Mehls C, et al. Effects of carvedilol on oxidative stress in human endothelial cells and healthy volunteers. Eur J Clin Pharmacol. 2004;60(2):83–8.Google Scholar
  58. 58.
    Yue TL, Wang X, Gu JL, Ruffolo RR Jr, Feuerstein GZ. Carvedilol prevents low-density lipoprotein (LDL)-enhanced monocyte adhesion to endothelial cells by inhibition of LDL oxidation. Eur J Pharmacol. 1995;294(2–3):585–91.Google Scholar
  59. 59.
    Haas MJ, Jurado-Flores M, Hammoud R, et al. The effects of known cardioprotective drugs on proinflammatory cytokine secretion from human coronary artery endothelial cells. Am J Ther. 2017.  https://doi.org/10.1097/mjt.0000000000000648 (Epub ahead of print).
  60. 60.
    Garbin U, Fratta Pasini A, Stranieri C, et al. Effects of nebivolol on endothelial gene expression during oxidative stress in human umbilical vein endothelial cells. Mediators Inflamm. 2008;2008:367590.Google Scholar
  61. 61.
    González Maqueda I. Adrenoreceptors, endothelial function, and lipid profile: effects of atenolol, doxazosin, and carvedilol. Coron Artery Dis. 1994;5(11):909–18.Google Scholar
  62. 62.
    Xiaozhen H, Yun Z, Mei Z, Yu S. Effect of carvedilol on coronary flow reserve in patients with hypertensive left-ventricular hypertrophy. Blood Press. 2010;19(1):40–7.Google Scholar
  63. 63.
    Kandavar R, Fernandez C, Sander GE, et al. Digital plethysmography and arginine metabolism in prehypertension: effect of nebivolol therapy. J Clin Hypertens (Greenwich). 2015;17(1):14–9.Google Scholar
  64. 64.
    Neuman RB, Hayek SS, Poole JC, et al. Nitric oxide contributes to vasomotor tone in hypertensive African Americans treated with nebivolol and metoprolol. J Clin Hypertens (Greenwich). 2016;18(3):223–31.Google Scholar
  65. 65.
    Mason RP, Kalinowski L, Jacob RF, Jacoby AM, Malinski T. Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation. 2005;112(24):3795–801.Google Scholar
  66. 66.
    Falciani M, Rinaldi B, D’Agostino B, et al. Effects of nebivolol on human platelet aggregation. J Cardiovasc Pharmacol. 2001;38(6):922–9.Google Scholar
  67. 67.
    Saijonmaa O, Metsärinne K, Fyhrquist F. Carvedilol and its metabolites suppress endothelin-1 production in human endothelial cell culture. Blood Press. 1997;6(1):24–8.Google Scholar
  68. 68.
    Ohlstein EH, Arleth AJ, Storer B, Romanic AM. Carvedilol inhibits endothelin-1 biosynthesis in cultured human coronary artery endothelial cells. J Mol Cell Cardiol. 1998;30(1):167–73.Google Scholar
  69. 69.
    Seljeflot I, Arnesen H, Andersen P, Aspelin T, Kierulf P. Effects of doxazosin and atenolol on circulating endothelin-1 and von Willebrand factor in hypertensive middle-aged men. J Cardiovasc Pharmacol. 1999;34(4):584–8.Google Scholar
  70. 70.
    Pasini AF, Garbin U, Stranieri C, et al. Nebivolol treatment reduces serum levels of asymmetric dimethylarginine and improves endothelial dysfunction in essential hypertensive patients. Am J Hypertens. 2008;21(11):1251–7.Google Scholar
  71. 71.
    Simova II, Todorova-Konstantinova RR, Denchev SV. Effects of nebivolol versus bisoprolol on endothelial function in hypertensive patients. Exp Clin Cardiol. 2009;14(4):45–9.Google Scholar
  72. 72.
    Zepeda RJ, Castillo R, Rodrigo R, et al. Effect of carvedilol and nebivolol on oxidative stress-related parameters and endothelial function in patients with essential hypertension. Basic Clin Pharmacol Toxicol. 2012;111(5):309–16.Google Scholar
  73. 73.
    Arosio E, De Marchi S, Prior M, Zannoni M, Lechi A. Effects of nebivolol and atenolol on small arteries and microcirculatory endothelium-dependent dilation in hypertensive patients undergoing isometric stress. J Hypertens. 2002;20(9):1793–7.Google Scholar
  74. 74.
    Merchant N, Rahman ST, Ferdinand KC, Haque T, Umpierrez GE, Khan BV. Effects of nebivolol in obese African Americans with hypertension (NOAAH): markers of inflammation and obesity in response to exercise-induced stress. J Hum Hypertens. 2011;25(3):196–202.Google Scholar
  75. 75.
    Tarighi B, Kurum T, Demir M, Azcan SN. The effects of nebivolol on fibrinolytic parameters in mild and moderate hypertensive patients. Can J Cardiol. 2007;23(8):651–5.Google Scholar
  76. 76.
    Stauffer BL, Dow CA, Diehl KJ, Bammert TD, Greiner JJ, DeSouza CA. Nebivolol, but not metoprolol, treatment improves endothelial fibrinolytic capacity in adults with elevated blood pressure. J Am Heart Assoc. 2017;6(11):e007437.Google Scholar
  77. 77.
    Levenson J, Le Quan Sang KH, Devynck MA, Gitel R, Simon A. The role of antihypertensive drugs in counteracting adverse influence on large arteries. Am Heart J. 1987;114(4 Pt 2):992–7.Google Scholar
  78. 78.
    Davi’ G, Novo S, Pinto A, et al. Platelet activation after adrenergic stimulation in hypertensive patients: effects of acebutolol. Eur Heart J. 1983;4(5):295–9.Google Scholar
  79. 79.
    Gomi T, Ikeda T, Shibuya Y, Nagao R. Effects of antihypertensive treatment on platelet function in essential hypertension. Hypertens Res. 2000;23(6):567–72.Google Scholar
  80. 80.
    Knight CJ, Panesar M, Wilson DJ, et al. Different effects of calcium antagonists, nitrates, and beta-blockers on platelet function. Possible importance for the treatment of unstable angina. Circulation. 1997;95(1):125–32.Google Scholar
  81. 81.
    Boman K, Boman JH, Andersson J, Olofsson M, Dahlöf B. Effects of atenolol or losartan on fibrinolysis and von Willebrand factor in hypertensive patients with left ventricular hypertrophy. Clin Appl Thromb Hemost. 2010;16(2):146–52.Google Scholar
  82. 82.
    Greer IA, Walker JJ, McLaren M, Calder AA, Forbes CD. A comparative study of the effects of adrenoceptor antagonists on platelet aggregation and thromboxane generation. Thromb Haemost. 1985;54(2):480–4.Google Scholar
  83. 83.
    Gleerup G, Mehlsen J, Winther K. Does calcium channel blockade and β-adrenergic blockade affect platelet function and fibrinolysis to a varying degree? J Cardiovasc Pharmacol. 1995;25:87–9.Google Scholar
  84. 84.
    Mugellini A, Rinaldi A, Zoppi A, et al. Effect of manidipine as compared to atenolol on platelet aggregation in elderly patients with isolated systolic hypertension and type II diabetes mellitus. J Cardiovasc Pharmacol. 2005;45(4):310–3.Google Scholar
  85. 85.
    Taddei S, Virdis A, Ghiadoni L, et al. Effect of calcium antagonist or beta blockade treatment on nitric oxide-dependent vasodilation and oxidative stress in essential hypertensive patients. J Hypertens. 2001;19(8):1379–86.Google Scholar
  86. 86.
    Makris TK, Stavroulakis GA, Krespi PG, et al. Fibrinolytic/hemostatic variables in arterial hypertension: response to treatment with irbesartan or atenolol. Am J Hypertens. 2000;13(7):783–8.Google Scholar
  87. 87.
    von zur Mühlen B, Kahan T, Hägg A, Millgård J, Lind L. Treatment with irbesartan or atenolol improves endothelial function in essential hypertension. J Hypertens. 2001;19(10):1813–8.Google Scholar
  88. 88.
    Schiffrin EL, Park JB, Pu Q. Effect of crossing over hypertensive patients from a beta-blocker to an angiotensin receptor antagonist on resistance artery structure and on endothelial function. J Hypertens. 2002;20(1):71–8.Google Scholar
  89. 89.
    Liu J, Sun NL, Yang J, Huang JH. Effects of losartan on fibrinolytic parameters and von Willebrand factor in Chinese subjects with hypertension: a comparative study versus atenolol. J Int Med Res. 2009;37(3):595–600.Google Scholar
  90. 90.
    Spencer CG, Felmeden DC, Blann AD, Lip GY. Effects of “newer” and “older” antihypertensive drugs on hemorrheological, platelet, and endothelial factors. A substudy of the Anglo-Scandinavian Cardiac Outcomes Trial. Am J Hypertens. 2007; 20(6):699–704.Google Scholar
  91. 91.
    Tambaki AP, Rizos E, Tsimihodimos V, Tselepis AD, Elisaf M. Effects of antihypertensive and hypolipidemic drugs on plasma and high-density lipoprotein-associated platelet activating factor-acetylhydrolase activity. J Cardiovasc Pharmacol Ther. 2004;9(2):91–5.Google Scholar
  92. 92.
    Nielsen FS, Rossing P, Gall MA, et al. Lisinopril improves endothelial dysfunction in hypertensive NIDDM subjects with diabetic nephropathy. Scand J Clin Lab Invest. 1997;57(5):427–34.Google Scholar
  93. 93.
    Feher MD, Henderson AD, Wadsworth J, et al. Alpha-blocker therapy; a possible advance in the treatment of diabetic hypertension–results of a cross-over study of doxazosin and atenolol monotherapy in hypertensive non-insulin dependent diabetic subjects. J Hum Hypertens. 1990;4(5):571–7.Google Scholar
  94. 94.
    Fogari R, Zoppi A, Malamani GD, Marasi G, Vanasia A, Villa G. Effects of different antihypertensive drugs on plasma fibrinogen in hypertensive patients. Br J Clin Pharmacol. 1995;39(5):471–6.Google Scholar
  95. 95.
    Tzemos N, Lim PO, MacDonald TM. Nebivolol reverses endothelial dysfunction in essential hypertension: a randomized, double-blind, crossover study. Circulation. 2001;104(5):511–4.Google Scholar
  96. 96.
    Ghiadoni L, Magagna A, Kardasz I, Taddei S, Salvetti A. Fixed dose combination of perindopril and indapamide improves peripheral vascular function in essential hypertensive patients. Am J Hypertens. 2009;22(5):506–12.Google Scholar
  97. 97.
    Koh KK, Quon MJ, Han SH, et al. Distinct vascular and metabolic effects of different classes of anti-hypertensive drugs. Int J Cardiol. 2010;140(1):73–81.Google Scholar
  98. 98.
    Schiffrin EL, Pu Q, Park JB. Effect of amlodipine compared to atenolol on small arteries of previously untreated essential hypertensive patients. Am J Hypertens. 2002;15(2 Pt 1):105–10.Google Scholar
  99. 99.
    Konrady AO, Kasherininov YR, Shavarov AA, et al. How can we block sympathetic overactivity? Effects of rilmenidine and atenolol in overweight hypertensive patients. J Hum Hypertens. 2006;20(6):398–406.Google Scholar
  100. 100.
    Ghiadoni L, Magagna A, Versari D, et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension. 2003;41(6):1281–6.Google Scholar
  101. 101.
    Savoia C, Touyz RM, Endemann DH, et al. Angiotensin receptor blocker added to previous antihypertensive agents on arteries of diabetic hypertensive patients. Hypertension. 2006;48(2):271–7.Google Scholar
  102. 102.
    Gomi T, Ikeda T, Ikegami F. Beneficial effect of alpha-blocker on hemorheology in patients with essential hypertension. Am J Hypertens. 1997;10(8):886–92.Google Scholar
  103. 103.
    Pasini AF, Garbin U, Nava MC, et al. Effect of sulfhydryl and non-sulfhydryl angiotensin-converting enzyme inhibitors on endothelial function in essential hypertensive patients. Am J Hypertens. 2007;20(4):443–50.Google Scholar
  104. 104.
    Brandt R, Seppälä E, Nowak J, Vapaatalo H. Effect of propranolol, practolol and atenolol on human platelet thromboxane formation and plasma levels of prostaglandins 6-keto-F1 alpha and E2. Prostaglandins Leukot Med. 1984;16(2):191–203.Google Scholar
  105. 105.
    Małyszko J, Tymcio J. Thrombin activatable fibrinolysis inhibitor and other hemostatic parameters in patients with essential arterial hypertension. Pol Arch Med Wewn. 2008;118(1–2):36–41.Google Scholar
  106. 106.
    Kirsten R, Neff J, Heintz B, Nemeth N, Rahlfs VW, Nelson K. Influence of different bisoprolol doses on hemodynamics, plasma catecholamines, platelet aggregation, and alpha 2- and beta-receptors in hypertensive patients. J Cardiovasc Pharmacol. 1986;8(Suppl 11):S113–21.Google Scholar
  107. 107.
    Sayer JW, Gutteridge C, Syndercombe-Court D, Wilkinson P, Timmis AD. Circadian activity of the endogenous fibrinolytic system in stable coronary artery disease: effects of beta-adrenoreceptor blockers and angiotensin-converting enzyme inhibitors. J Am Coll Cardiol. 1998;32(7):1962–8.Google Scholar
  108. 108.
    Rajzer M, Wojciechowska W, Kawecka-Jaszcz K, Undas A. Plasma fibrin clot properties in arterial hypertension and their modification by antihypertensive medication. Thromb Res. 2012;130(1):99–103.Google Scholar
  109. 109.
    Ito A, Egashira K, Narishige T, Muramatsu K, Takeshita A. Renin-angiotensin system is involved in the mechanism of increased serum asymmetric dimethylarginine in essential hypertension. Jpn Circ J. 2001;65(9):775–8.Google Scholar
  110. 110.
    Lin ZP, Dong M, Liu J. Bisoprolol improved endothelial function and myocardium survival of hypertension with stable angina: a randomized double-blinded trial. Eur Rev Med Pharmacol Sci. 2013;17(6):794–801.Google Scholar
  111. 111.
    Nagakawa Y, Akedo Y, Kaku S, Orimo H. Effects of carvedilol on common carotid arterial flow, peripheral hemodynamics, and hemorheologic variables in hypertension. Eur J Clin Pharmacol. 1990;38(Suppl 2):S115–9.Google Scholar
  112. 112.
    Mehta JL, Lopez LM, Chen L, Cox OE. Alterations in nitric oxide synthase activity, superoxide anion generation, and platelet aggregation in systemic hypertension, and effects of celiprolol. Am J Cardiol. 1994;74(9):901–5.Google Scholar
  113. 113.
    Garlichs CD, Zhang H, Mügge A, Daniel WG. Beta-blockers reduce the release and synthesis of endothelin-1 in human endothelial cells. Eur J Clin Invest. 1999;29(1):12–6.Google Scholar
  114. 114.
    Portaluppi F, Manfredini R, Varani K, Gessi S, Caiazza A, Borea PA. Platelet alpha2-adrenoceptor alterations in patients with essential hypertension are normalized after treatment with doxazosin but not propranolol. J Hypertens. 2000;18(2):217–21.Google Scholar
  115. 115.
    Labiós M, Martínez M, Gabriel F, Guiral V, Aznar J. Effect of doxazosin gastrointestinal therapeutic system on platelet degranulation and platelet-leukocyte microaggregate formation induced by physiologic shear stress in hypertension. Thromb Res. 2006;118(4):447–53.Google Scholar
  116. 116.
    Courtney CH, McCance DR, Atkinson AB, et al. Effect of the alpha-adrenergic blocker, doxazosin, on endothelial function and insulin action. Metabolism. 2003;52(9):1147–52.Google Scholar
  117. 117.
    Demirtunc R, Duman D, Basar M. Effects of doxazosin and amlodipine on mean platelet volume and serum serotonin level in patients with metabolic syndrome: a randomised, controlled study. Clin Drug Investig. 2007;27(6):435–41.Google Scholar
  118. 118.
    Jeng JR, Sheu WH, Jeng CY, Huang SH, Shieh SM. Effect of doxazosin on fibrinolysis in hypertensive patients with and without insulin resistance. Am Heart J. 1996;132(4):783–9.Google Scholar
  119. 119.
    Toth K, Nemes J, Czopf L, Kapronczay P, Kesmarky G, Juricskay I. Effects of doxazosin on hemorheological, hemodynamic and lipid parameters in patients with essential hypertension. Clin Hemorheol Microcirc. 1999;20(1):57–61.Google Scholar
  120. 120.
    Veglio F, Schiavone D, Rossi A, Chiandussi L. Acute effects of alpha-1 adrenoceptor antagonist, doxazosin on circulating vasoactive hormones. Riv Eur Sci Med Farmacol. 1994;16(3–4):85–90.Google Scholar
  121. 121.
    Komai N, Ohishi M, Moriguchi A, et al. Low-dose doxazosin improved aortic stiffness and endothelial dysfunction as measured by noninvasive evaluation. Hypertens Res. 2002;25(1):5–10.Google Scholar
  122. 122.
    Jekell A, Kalani M, Kahan T. The effects of alpha 1-adrenoceptor blockade and angiotensin converting enzyme inhibition on central and brachial blood pressure and vascular reactivity: the doxazosin-ramipril study. Heart Vessels. 2017;32(6):674–84.Google Scholar
  123. 123.
    Ekholm M, Jekell A, Wallén NH, Gigante B, Kahan T. Effects of angiotensin-converting enzyme inhibition and alpha 1-adrenergic receptor blockade on inflammation and hemostasis in human hypertension. J Cardiovasc Pharmacol. 2018;71(4):240–7.Google Scholar
  124. 124.
    Lin MS, Huang CS. Lack of effect of labetalol on platelet aggregation in hypertensive patients. Int J Clin Pharmacol Ther Toxicol. 1991;29(10):391–3.Google Scholar
  125. 125.
    Roy L, Mehta J, Mehta P. Increased plasma concentrations of prostacyclin metabolite 6-keto-PGF1 alpha in essential hypertension. Influence of therapy with labetalol. Am J Cardiol. 1983;51(3):464–7.Google Scholar
  126. 126.
    Larsson PT, Wiman B, Olsson G, Angelin B, Hjemdahl P. Influence of metoprolol treatment on sympatho-adrenal activation of fibrinolysis. Thromb Haemost. 1990;63(3):482–7.Google Scholar
  127. 127.
    Winther K, Knudsen JB, Gormsen J, Jensen J. Effect of metoprolol and propranolol on platelet aggregation and cAMP level in hypertensive patients. Eur J Clin Pharmacol. 1986;29(5):561–4.Google Scholar
  128. 128.
    Winther K. The effect of beta-blockade on platelet function and fibrinolytic activity. J Cardiovasc Pharmacol. 1987;10(Suppl 2):S94–8 (discussion S99).Google Scholar
  129. 129.
    Teger-Nilsson AC, Dahlöf C, Haglund E, Hedman C, Olsson G, Ablad B. Influence of metoprolol CR/ZOK on plasminogen activator inhibitor (PAI-1) in man: a pilot study. J Clin Pharmacol. 1990;30(2 Suppl):S132–7.Google Scholar
  130. 130.
    Winther K, Trap-Jensen J. Effects of three beta-blockers with different pharmacodynamic properties on platelet aggregation and platelet and plasma cyclic AMP. Eur J Clin Pharmacol. 1988;35(1):17–20.Google Scholar
  131. 131.
    Linde T, Sandhagen B, Hägg A, Mörlin C, Danielson BG. Decreased blood viscosity and serum levels of erythropoietin after anti-hypertensive treatment with amlodipine or metoprolol: results of a cross-over study. J Hum Hypertens. 1996;10(3):199–205.Google Scholar
  132. 132.
    Ayers K, Byrne LM, DeMatteo A, Brown NJ. Differential effects of nebivolol and metoprolol on insulin sensitivity and plasminogen activator inhibitor in the metabolic syndrome. Hypertension. 2012;59(4):893–8.Google Scholar
  133. 133.
    Kandavar R, Higashi Y, Chen W, Blackstock C, Vaughn C, Sukhanov S, Sander GE, Roffidal LE, Delafontaine P, Giles TD. The effect of nebivolol versus metoprolol succinate extended release on asymmetric dimethylarginine in hypertension. J Am Soc Hypertens. 2011;5(3):161–5.Google Scholar
  134. 134.
    Kobusiak-Prokopowicz M, Jołda-Mydłowska B, Zubkiewicz A, Szymczak M, Mysiak A, Skalik R. Impact of nebivolol on levels of serum nitric oxide, plasma von Willebrand factor and exercise stress testing parameters in hypertensive and ischemic heart disease patients. Cardiol J. 2008;15(2):162–8.Google Scholar
  135. 135.
    Korkmaz H, Karaca I, Koç M, Onalan O, Yilmaz M, Bilen MN. Early effects of treatment with nebivolol and quinapril on endothelial function in patients with hypertension. Endothelium. 2008;15(3):149–55.Google Scholar
  136. 136.
    Vitale C, Marazzi G, Iellamo F, et al. Effects of nebivolol or irbesartan in combination with hydrochlorothiazide on vascular functions in newly-diagnosed hypertensive patients: the NINFE (Nebivololo, Irbesartan Nella Funzione Endoteliale) study. Int J Cardiol. 2012;155(2):279–84.Google Scholar
  137. 137.
    Vlaicu R, Uza G, Mărcuş C, Voinescu I. The effect of some beta-blocking drugs on plasma renin activity, platelet adhesiveness and dilute blood clot lysis time in patients with essential arterial hypertension. Med Interne. 1980;18(3):247–51.Google Scholar
  138. 138.
    Gerc V, Koblar V, Brkić D, Kamhi J. Hemorheologic changes in patients with essential hypertension treated with prazosin. Med Pregl. 1992;45(7–8):285–7.Google Scholar
  139. 139.
    Bhatia J, Mahajan P, Sikka M, Kalra OP. Effect of various antihypertensive drugs on plasma fibrinogen levels in patients with essential hypertension. Indian J Med Sci. 2001;55(9):491–4.Google Scholar
  140. 140.
    Winther K, Gleerup G, Hedner T. Platelet function and fibrinolytic activity in hypertension: differential effects of calcium antagonists and beta-adrenergic receptor blockers. J Cardiovasc Pharmacol. 1991;18(Suppl 9):S41–4.Google Scholar
  141. 141.
    Vlachakis ND, Aledort L. Hypertension and propranolol therapy: effect on blood pressure, plasma catecholamines and platelet aggregation. Am J Cardiol. 1980;45(2):321–5.Google Scholar
  142. 142.
    el-Sayed MS, Davies B. Effect of two formulations of a beta blocker on fibrinolytic response to maximum exercise. Med Sci Sports Exerc. 1989;21(4):369–73.Google Scholar
  143. 143.
    Campbell WB, Johnson AR, Callahan KS, Graham RM. Anti-platelet activity of beta-adrenergic antagonists: inhibition of thromboxane synthesis and platelet aggregation in patients receiving long-term propranolol treatment. Lancet. 1981;2(8260–61):1382–4.Google Scholar
  144. 144.
    Gleerup G, Hedner T, Hjørting Hansen E, Winther K. Does antihypertensive therapy affect the natural protection against thrombosis? J Cardiovasc Pharmacol. 1991;18(Suppl 3):S34–6.Google Scholar
  145. 145.
    Novo S, Alaimo G, Abrignani MG, et al. Effects of ketanserin on blood pressure, peripheral circulation and haemocoagulative parameters in essential hypertensives with or without arteriosclerosis obliterans of the lower limbs. Int J Clin Pharmacol Res. 1986;6(3):199–211.Google Scholar
  146. 146.
    Millgård J, Lind L. Divergent effects of different antihypertensive drugs on endothelium-dependent vasodilation in the human forearm. J Cardiovasc Pharmacol. 1998;32(3):406–12.Google Scholar
  147. 147.
    Zhang WR, Sun M, Luo JK. Serum nitric oxide and D-dimer before and after administering antihypertensive drugs in essential hypertension. Hunan Yi Ke Da Xue Xue Bao. 2003;28(4):382–4.Google Scholar
  148. 148.
    Gleerup G, Winther K. Differential effects of non-specific beta-blockade and calcium antagonism on blood-clotting mechanisms. Am J Med. 1989;86(4A):127–9.Google Scholar
  149. 149.
    Fernhall B, Szymanski LM, Gorman PA, Kamimori GH, Kessler CM. Both atenolol and propranolol blunt the fibrinolytic response to exercise but not resting fibrinolytic potential. Am J Cardiol. 2000;86(12):1398–400 (A6).Google Scholar
  150. 150.
    Jimenez AH, Tofler GH, Chen X, Stubbs ME, Solomon HS, Muller JE. Effects of nadolol on hemodynamic and hemostatic responses to potential mental and physical triggers of myocardial infarction in subjects with mild systemic hypertension. Am J Cardiol. 1993;72(1):47–52.Google Scholar
  151. 151.
    Pechán J, Mikulecký M, Srbecký M. Acute haemodynamic effect of metoprolol in essential hypertension. Cor Vasa. 1988;30(1):51–9.Google Scholar
  152. 152.
    Velasco A, Solow E, Price A, et al. Differential effects of nebivolol vs. metoprolol on microvascular function in hypertensive humans. Am J Physiol Heart Circ Physiol. 2016;311(1):H118–24.Google Scholar
  153. 153.
    Muir AL, Wathen CG, Hannan WJ. Effects of felodipine on resistance and capacitance vessels in patients with essential hypertension. Drugs. 1985;29(Suppl 2):59–65.Google Scholar
  154. 154.
    Gill J, Fonseca V, Dandona P, Jeremy JY. Lisinopril and nifedipine administration inhibits the ex vivo uptake of [45Ca2+] by platelets from hypertensive diabetic patients. Br J Clin Pharmacol. 1992;33(2):161–5.Google Scholar
  155. 155.
    Ueno H, Takata M, Oh-hashi S, Tomoda F, Yasumoto K, Inoue H. Time course of regression of vascular structural changes and its relation to cytosolic free calcium in hypertensives after nilvadipine treatment. J Hum Hypertens. 1995;9(9):735–9.Google Scholar
  156. 156.
    Taddei S, Virdis A, Ghiadoni L, et al. Restoration of nitric oxide availability after calcium antagonist treatment in essential hypertension. Hypertension. 2001;37(3):943–8.Google Scholar
  157. 157.
    Ośmiałowska Z, Nartowicz-Słoniewska M, Słomiński JM, Krupa-Wojciechowska B. Effect of nifedipine monotherapy on platelet aggregation in patients with untreated essential hypertension. Eur J Clin Pharmacol. 1990;39(4):403–4.Google Scholar
  158. 158.
    Költringer P, Langsteger W, Lind P, Pierer G, Reisecker F, Eber O. Gallopamil and changes of adenosine diphosphate- and collagen-induced thrombocyte aggregation. Arzneimittelforschung. 1991;41(8):786–8.Google Scholar
  159. 159.
    Fitscha P, Virgolini I, Rauscha F, Sinzinger H. Effects of isradipine on platelet function in hypertension at rest and during exercise. Am J Hypertens. 1991;4(2 Pt 2):178S–80S.Google Scholar
  160. 160.
    Gleerup G, Winther K. Decreased fibrinolytic activity and increased platelet function in hypertension. Possible influence of calcium antagonism. Am J Hypertens. 1991;4(2 Pt 2):168S–171S.Google Scholar
  161. 161.
    Hernández-Hernández R, Armas-Padilla MC, Velasco M, et al. Effects of amlodipine and enalapril on platelet function in patients with mild to moderate hypertension. Int J Clin Pharmacol Ther. 1999;37(7):323–31.Google Scholar
  162. 162.
    Hernández R, Carvajal AR, Armas-de Hernande MJ, et al. Amlodipine in hypertension: its effects on platelet aggregation and dynamic exercise. J Cardiovasc Pharmacol. 1991;17(Suppl 1):S25–7.Google Scholar
  163. 163.
    Rasheed H, Saeed SA. Involvement of thromboxane A2 and tyrosine kinase in the synergistic interaction of platelet activating factor and calcium ionophore A23187 in human platelet aggregation. Exp Mol Med. 2004;36(3):220–5.Google Scholar
  164. 164.
    Butt IF, Saeed SA, Waqar SN, Aslam M. Synergistic interaction of epinephrine and calcium ionophore in platelet aggregation. J Ayub Med Coll Abbottabad. 2005;17(2):1–5.Google Scholar
  165. 165.
    Pannocchia A, Praloran N, Arduino C, et al. Absence of (-) [3H]desmethoxyverapamil binding sites on human platelets and lack of evidence for voltage-dependent calcium channels. Eur J Pharmacol. 1987;142(1):83–91.Google Scholar
  166. 166.
    Valone FH. Inhibition of platelet-activating factor binding to human platelets by calcium channel blockers. Thromb Res. 1987;45(5):427–35.Google Scholar
  167. 167.
    Pechán J, Okrucká A. Diltiazem inhibits the spontaneous platelet aggregation in essential hypertension. Cardiology. 1991;79(2):116–9.Google Scholar
  168. 168.
    Ono H, Kimura M. Effect of Ca2+-antagonistic vasodilators, diltiazem, nifedipine, perhexiline and verapamil, on platelet aggregation in vitro. Arzneimittelforschung. 1981;31(7):1131–4.Google Scholar
  169. 169.
    Chou TZ, Lee KW, Ding YA. Effect of felodipine-ER on blood pressure, platelet function, and rheological properties in hypertension. Can J Cardiol. 1993;9(5):423–7.Google Scholar
  170. 170.
    Avdonin PV, Men’shikov MYu, Svitina-Ulitina IV, Tkachuk VA. Blocking of the receptor-stimulated calcium entry into human platelets by verapamil and nicardipine. Thromb Res. 1988;52(6):587–97.Google Scholar
  171. 171.
    Roberts DE, McNicol A, Bose R. Mechanism of collagen activation in human platelets. J Biol Chem. 2004;279(19):19421–30.Google Scholar
  172. 172.
    Daniel JL, Dangelmaier CA, Smith JB. Calcium modulates the generation of inositol 1, 3, 4-trisphosphate in human platelets by the activation of inositol 1, 4, 5-trisphosphate 3-kinase. Biochem J. 1988;253(3):789–94.Google Scholar
  173. 173.
    White JG, Rao GH, Gerrard JM. Effects of the lonophore A23187 on blood platelets I. Influence on aggregation and secretion. Am J Pathol. 1974;77(2):135–49.Google Scholar
  174. 174.
    Pickett WC, Jesse RL, Cohen P. Initiation of phospholipase A2 activity in human platelets by the calcium ion ionophore A23187. Biochim Biophys Acta. 1976;486(1):209–13.Google Scholar
  175. 175.
    Jin J, Daniel JL, Kunapuli SP. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem. 1998;273(4):2030–4.Google Scholar
  176. 176.
    Fitzgerald LA, Phillips DR. Calcium regulation of the platelet membrane glycoprotein IIb-IIIa complex. J Biol Chem. 1985;260(20):11366–74.Google Scholar
  177. 177.
    Shih CY, Lin IH, Ding JC, Chen FC, Chou TC. Antiplatelet activity of nifedipine is mediated by inhibition of NF-κB activation caused by enhancement of PPAR-β/-γ activity. Br J Pharmacol. 2014;171(6):1490–500.Google Scholar
  178. 178.
    Jones CR, Pasanisi F, Elliott HL, Reid JL. Effects of verapamil and nisoldipine on human platelets: in vivo and in vitro studies. Br J Clin Pharmacol. 1985;20(3):191–6.Google Scholar
  179. 179.
    Han P, Boatwright C, Ardlie NG. Effect of the calcium-entry blocking agent nifedipine on activation of human platelets and comparison with verapamil. Thromb Haemost. 1983;50(2):513–7.Google Scholar
  180. 180.
    Barnathan ES, Addonizio VP, Shattil SJ. Interaction of verapamil with human platelet alpha-adrenergic receptors. Am J Physiol. 1982;242(1):H19–23.Google Scholar
  181. 181.
    Addonizio VP Jr, Fisher CA, Strauss JF 3rd, Wachtfogel YT, Colman RW, Josephson ME. Effects of verapamil and diltiazem on human platelet function. Am J Physiol. 1986;250(3 Pt 2):H366–71.Google Scholar
  182. 182.
    Tschoepe D, Homberg M, Roesen P, Gries FA. Reduced platelet thromboxane formation after long-term administration of a dihydropyridine calcium channel blocker: a prospective, double-blind, placebo-controlled study with nitrendipine in borderline hypertensive patients with IDDM-type diabetes mellitus. Diabetes Res. 1992;19(3):125–31.Google Scholar
  183. 183.
    Winther K, Jespersen CM, Rydberg B, Thamsborg G, Hedner T. Dose-dependent effects of verapamil and nifedipine on in vivo platelet function in normal volunteers. Eur J Clin Pharmacol. 1990;39(3):291–3.Google Scholar
  184. 184.
    Sanada H, Midorikawa S, Yatabe J, et al. Elevation of serum soluble E- and P-selectin in patients with hypertension is reversed by benidipine, a long-acting calcium channel blocker. Hypertens Res. 2005;28(11):871–8.Google Scholar
  185. 185.
    Nadar S, Blann AD, Lip GY. Platelet morphology and plasma indices of platelet activation in essential hypertension: effects of amlodipine-based antihypertensive therapy. Ann Med. 2004;36(7):552–7.Google Scholar
  186. 186.
    Sengeløv H, Winther K. Effect of felodipine, a new calcium channel antagonist, on platelet function and fibrinolytic activity at rest and after exercise. Eur J Clin Pharmacol. 1989;37(5):453–7.Google Scholar
  187. 187.
    Ranieri G, Filitti V, Andriani A, et al. Effects of isradipine sustained release on platelet function and fibrinolysis in essential hypertensives with or without other risk factors. Cardiovasc Drugs Ther. 1996;10:119–23.Google Scholar
  188. 188.
    Smith A, McPherson J, Taylor M, Mason A, Carney S, Gillies A. Pro-haemorrhagic effects of calcium antagonists: a comparison of isradipine and atenolol on ex vivo platelet function in hypertensive subjects. J Hum Hypertens. 1997;11(12):783–8.Google Scholar
  189. 189.
    Birkebaek NH, Vejby-Christensen H, Jakobsen P, Winther K. The effect of nifedipine and captopril on platelet activation and prostanoid production in essential hypertension. J Hypertens Suppl. 1988;6(4):S378–80.Google Scholar
  190. 190.
    Islim IF, Bareford D, Beevers DG. A single (investigator)-blind randomised control trial comparing the effects of quinapril and nifedipine on platelet function in patients with mild to moderate hypertension. Platelets. 2001;12(5):274–8.Google Scholar
  191. 191.
    Rostagno C, Prisco D, Paniccia R, et al. Effects of calcium channel blockers on platelet aggregation and thromboxane A2 formation: an in vivo double blind randomized study. Thromb Res. 1990;59(3):531–9.Google Scholar
  192. 192.
    Oshima T, Ozono R, Yano Y, et al. Beneficial effect of T-type calcium channel blockers on endothelial function in patients with essential hypertension. Hypertens Res. 2005;28(11):889–94.Google Scholar
  193. 193.
    Takiguchi S, Ayaori M, Uto-Kondo H, et al. Olmesartan improves endothelial function in hypertensive patients: link with extracellular superoxide dismutase. Hypertens Res. 2011;34(6):686–92.Google Scholar
  194. 194.
    Koh KK, Han SH, Ahn JY, Chung WJ, Lee Y, Shin EK. Amlodipine improves endothelial function and metabolic parameters in patients with hypertension. Int J Cardiol. 2009;133(1):23–31.Google Scholar
  195. 195.
    On YK, Kim CH, Oh BH, Lee MM, Park YB. Effects of angiotensin converting enzyme inhibitor and calcium antagonist on endothelial function in patients with essential hypertension. Hypertens Res. 2002;25(3):365–71.Google Scholar
  196. 196.
    On YK, Kim CH, Sohn DW, et al. Improvement of endothelial function by amlodipine and vitamin C in essential hypertension. Korean J Intern Med. 2002;17(2):131–7.Google Scholar
  197. 197.
    Tomiyama H, Yambe M, Yamada J, et al. Discrepancy between improvement of insulin sensitivity and that of arterial endothelial function in patients receiving antihypertensive medication. J Hypertens. 2007;25(4):883–9.Google Scholar
  198. 198.
    Makino H, Aoki M, Hashiya N, et al. A calcium-channel blocker, benidipine, improves forearm reactive hyperemia in patients with essential hypertension. Blood Press Suppl. 2005;1:39–44.Google Scholar
  199. 199.
    Zhou T, Huang X, Cai X, Xie L. Combined treatment of irbesartan and diltiazem ameliorates endothelium dependent vasodilatation in hypertensives. Clin Exp Hypertens. 2017;39(7):612–8.Google Scholar
  200. 200.
    Koh KK, Quon MJ, Lee SJ, et al. Efonidipine simultaneously improves blood pressure, endothelial function, and metabolic parameters in nondiabetic patients with hypertension. Diabetes Care. 2007;30(6):1605–7.Google Scholar
  201. 201.
    Sudano I, Virdis A, Taddei S, et al. Chronic treatment with long-acting nifedipine reduces vasoconstriction to endothelin-1 in essential hypertension. Hypertension. 2007;49(2):285–90.Google Scholar
  202. 202.
    Millgård J, Hägg A, Sarabi M, Lind L. Captopril, but not nifedipine, improves endothelium-dependent vasodilation in hypertensive patients. J Hum Hypertens. 1998;12(8):511–6.Google Scholar
  203. 203.
    Shinomiya K, Mizushige K, Fukunaga M, et al. Antioxidant effect of a new calcium antagonist, azelnidipine, in cultured human arterial endothelial cells. J Int Med Res. 2004;32(2):170–5.Google Scholar
  204. 204.
    De Ciuceis C, Salvetti M, Rossini C, et al. Effect of antihypertensive treatment on microvascular structure, central blood pressure and oxidative stress in patients with mild essential hypertension. J Hypertens. 2014;32(3):565–74.Google Scholar
  205. 205.
    Escames G, Khaldy H, León J, González L, Acuña-Castroviejo D. Changes in iNOS activity, oxidative stress and melatonin levels in hypertensive patients treated with lacidipine. J Hypertens. 2004;22(3):629–35.Google Scholar
  206. 206.
    Fogari R, Zoppi A. Is the effect of antihypertensive drugs on platelet aggregability and fibrinolysis clinically relevant? Am J Cardiovasc Drugs. 2005;5(4):211–23.Google Scholar
  207. 207.
    Winther K, Gleerup G, Hedner T. Enhanced risk of thromboembolic disease in hypertension from platelet hyperfunction and decreased fibrinolytic activity: has antihypertensive therapy any influence? J Cardiovasc Pharmacol. 1992;19(Suppl 3):S21–4.Google Scholar
  208. 208.
    Fukao K, Shimada K, Hiki M, et al. Effects of calcium channel blockers on glucose tolerance, inflammatory state, and circulating progenitor cells in non-diabetic patients with essential hypertension: a comparative study between azelnidipine and amlodipine on glucose tolerance and endothelial function–a crossover trial (AGENT). Cardiovasc Diabetol. 2011;10:79.Google Scholar
  209. 209.
    Derosa G, Mugellini A, Pesce RM, D’Angelo A, Maffioli P. Barnidipine compared to lercanidipine in addition to losartan on endothelial damage and oxidative stress parameters in patients with hypertension and type 2 diabetes mellitus. BMC Cardiovasc Disord. 2016;16:66.Google Scholar
  210. 210.
    Wei D, He WY, Lv QZ. Effect of nisoldipine and olmesartan on endothelium-dependent vasodilation in essential hypertensive patients. CNS Neurosci Ther. 2012;18(5):400–5.Google Scholar
  211. 211.
    Farah R, Shurtz-Swirski R, Khamisy-Farah R. Lercanidipine effect on polymorphonuclear leukocyte-related inflammation and insulin resistance in essential hypertension patients. Cardiol Ther. 2012;1(1):4.Google Scholar
  212. 212.
    Nemati F, Rahbar-Roshandel N, Hosseini F, Mahmoudian M, Shafiei M. Anti-inflammatory effects of anti-hypertensive agents: influence on interleukin-1β secretion by peripheral blood polymorphonuclear leukocytes from patients with essential hypertension. Clin Exp Hypertens. 2011;33(2):66–76.Google Scholar
  213. 213.
    Ogawa S, Mori T, Nako K, Ito S. Combination therapy with renin-angiotensin system inhibitors and the calcium channel blocker azelnidipine decreases plasma inflammatory markers and urinary oxidative stress markers in patients with diabetic nephropathy. Hypertens Res. 2008;31(6):1147–55.Google Scholar
  214. 214.
    Komoda H, Inoue T, Node K. Anti-inflammatory properties of azelnidipine, a dihydropyridine-based calcium channel blocker. Clin Exp Hypertens. 2010;32(2):121–8.Google Scholar
  215. 215.
    Huang Z, Chen C, Li S, Kong F, Shan P, Huang W. Combined treatment with amlodipine and atorvastatin calcium reduces circulating levels of intercellular adhesion molecule-1 and tumor necrosis factor-α in hypertensive patients with prediabetes. Front Aging Neurosci. 2016;8:206.Google Scholar
  216. 216.
    Digiesi V, Fiorillo C, Cosmi L, et al. Reactive oxygen species and antioxidant status in essential arterial hypertension during therapy with dihydropyridine calcium channel antagonists. Clin Ter. 2000;151(1):15–8.Google Scholar
  217. 217.
    Sasaki H, Saiki A, Endo K, et al. Protective effects of efonidipine, a T- and L-type calcium channel blocker, on renal function and arterial stiffness in type 2 diabetic patients with hypertension and nephropathy. J Atheroscler Thromb. 2009;16(5):568–75.Google Scholar
  218. 218.
    Yilmaz MI, Carrero JJ, Martín-Ventura JL, et al. Combined therapy with renin-angiotensin system and calcium channel blockers in type 2 diabetic hypertensive patients with proteinuria: effects on soluble TWEAK, PTX3, and flow-mediated dilation. Clin J Am Soc Nephrol. 2010;5(7):1174–81.Google Scholar
  219. 219.
    Derosa G, Mugellini A, Pesce RM, D’Angelo A, Maffioli P. Olmesartan Combined With Amlodipine on Oxidative Stress Parameters in Type 2 Diabetics, Compared With Single Therapies: a Randomized, Controlled, Clinical Trial. Medicine (Baltimore). 2016;95(13):e3084.Google Scholar
  220. 220.
    Matsui T, Yamagishi S, Nakamura K, Inoue H. Azelnidipine, a new long-acting calcium-channel blocker, inhibits tumour necrosis factor-alpha-induced monocyte chemoattractant protein-1 expression in endothelial cells. J Int Med Res. 2006;34(6):671–5.Google Scholar
  221. 221.
    Costa S, Zimetti F, Pedrelli M, Cremonesi G, Bernini F. Manidipine reduces pro-inflammatory cytokines secretion in human endothelial cells and macrophages. Pharmacol Res. 2010;62(3):265–70.Google Scholar
  222. 222.
    Matsubara M, Hasegawa K. Effects of benidipine, a dihydropyridine-Ca2+ channel blocker, on expression of cytokine-induced adhesion molecules and chemoattractants in human aortic endothelial cells. Eur J Pharmacol. 2004;498(1–3):303–14.Google Scholar
  223. 223.
    Naito Y, Shimozawa M, Manabe H, et al. Azelnidipine, a new calcium channel blocker, inhibits endothelial inflammatory response by reducing intracellular levels of reactive oxygen species. Eur J Pharmacol. 2006;546(1–3):11–8.Google Scholar
  224. 224.
    Cominacini L, Pasini AF, Pastorino AM, et al. Comparative effects of different dihydropyridines on the expression of adhesion molecules induced by TNF-alpha on endothelial cells. J Hypertens. 1999;17(12 Pt 2):1837–41.Google Scholar
  225. 225.
    Cominacini L, Garbin U, Fratta Pasini A, et al. Lacidipine inhibits the activation of the transcription factor NF-kappaB and the expression of adhesion molecules induced by pro-oxidant signals on endothelial cells. J Hypertens. 1997;15(12 Pt 2):1633–40.Google Scholar
  226. 226.
    Yamagishi S, Takeuchi M. Nifedipine inhibits tumor necrosis factor-alpha-induced leukocyte adhesion to endothelial cells by suppressing vascular cell adhesion molecule-1 (VCAM-1) expression. Drugs Exp Clin Res. 2004;30(4):163–8.Google Scholar
  227. 227.
    de Ciuceis C, Pilu A, Rizzoni D, et al. Effect of antihypertensive treatment on circulating endothelial progenitor cells in patients with mild essential hypertension. Blood Press. 2011;20(2):77–83.Google Scholar
  228. 228.
    De Ciuceis C, Rossini C, Tincani A, et al. Effect of antihypertensive treatment with lercanidipine on endothelial progenitor cells and inflammation in patients with mild to moderate essential hypertension. Blood Press. 2016;25(6):337–43.Google Scholar
  229. 229.
    Karaman M, Balta S, Seyit Ahmet AY, et al. The comparative effects of valsartan and amlodipine on vWf levels and N/L ratio in patients with newly diagnosed hypertension. Clin Exp Hypertens. 2013;35(7):516–22.Google Scholar
  230. 230.
    Song H, Bao W, Wang H, et al. Effects of extended-release felodipine on endothelial vasoactive substances in patients with essential hypertension. Clin Chem Lab Med. 2008;46(3):393–5.Google Scholar
  231. 231.
    Iwase M, Doi Y, Goto D, et al. Effect of nicardipine versus enalapril on plasma endothelin-1 in hypertensive patients with type 2 diabetes mellitus. Clin Exp Hypertens. 2000;22(7–8):695–703.Google Scholar
  232. 232.
    Mihalj M, Tadzic R, Vcev A, Rucevic S, Drenjancevic I. Blood pressure reduction is associated with the changes in oxidative stress and endothelial activation in hypertension, regardless of antihypertensive therapy. Kidney Blood Press Res. 2016;41(6):721–35.Google Scholar
  233. 233.
    Yamagishi S, Inagaki Y, Nakamura K, Imaizumi T. Azelnidipine, a newly developed long-acting calcium antagonist, inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in endothelial cells through its anti-oxidative properties. J Cardiovasc Pharmacol. 2004;43(5):724–30.Google Scholar
  234. 234.
    DuPont JJ, Ramick MG, Farquhar WB, Townsend RR, Edwards DG. NADPH oxidase-derived reactive oxygen species contribute to impaired cutaneous microvascular function in chronic kidney disease. Am J Physiol Renal Physiol. 2014;306(12):F1499–506.Google Scholar
  235. 235.
    Virdis A, Duranti E, Colucci R, et al. Ghrelin restores nitric oxide availability in resistance circulation of essential hypertensive patients: role of NAD(P)H oxidase. Eur Heart J. 2015;36(43):3023–30.Google Scholar
  236. 236.
    Zanchetti A, Bond MG, Hennig M, et al; European Lacidipine Study on Atherosclerosis investigators. Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial. Circulation. 2002;106(19):2422–7.Google Scholar
  237. 237.
    Fogari R, Preti P, Lazzari P, et al. Effect of benazepril amlodipine combination on fibrinolysis in hypertensive diabetic patients. Eur J Clin Pharmacol. 2003;59(4):271–5.Google Scholar
  238. 238.
    Chi DS, Jin FX, Su YW, et al. Coagulative and fibrinolytic changes in patients with essential hypertension and the effect of sustained-release nifedipine. Di Yi Jun Yi Da Xue Xue Bao. 2002;22:168–70.Google Scholar
  239. 239.
    Tan HW, Li L, Zhang W, et al. Effects of cilnidipine on fibrinolysis in chinese hypertensive patients. Clin Drug Investig. 2005;25(12):777–83.Google Scholar
  240. 240.
    Ahaneku JE, Sakata K, Urano T, Takada Y, Takada A. Lipids, lipoproteins and fibrinolytic parameters during amlodipine treatment of hypertension. J Health Sci. 2000;46(6):455–8.Google Scholar
  241. 241.
    De Luca N, Izzo R, Fontana D, et al. Haemodynamic and metabolic effects of rilmenidine in hypertensive patients with metabolic syndrome X. A double-blind parallel study versus amlodipine. J Hypertens 2000;18:1515–1522.Google Scholar
  242. 242.
    Spirou A, Rizos E, Liberopoulos EN, et al. Effect of barnidipine on blood pressure and serum metabolic parameters in patients with essential hypertension: a pilot study. J Cardiovasc Pharmacol Ther. 2006;11(4):256–61.Google Scholar
  243. 243.
    Lin TH, Voon WC, Yen HW, et al. Lercanidipine and losartan effects on blood pressure and fibrinolytic parameters. Kaohsiung J Med Sci. 2006;22(4):177–83.Google Scholar
  244. 244.
    Hernández R, Carvajal AR, Armas-de Hernandez MJ, et al. Effects of amlodipine on platelet aggregation and blood pressure in patients with essential hypertension. Clin Ther. 1993;15(2):304–13.Google Scholar
  245. 245.
    Ozkan G, Ulusoy S, Sönmez M, et al. Thrombin activatable fibrinolysis inhibitor (TAFI) levels in hypertensive patients and a comparison of the effects of amlodipine and ramipril on TAFI levels. Clin Exp Hypertens. 2013;35(2):134–40.Google Scholar
  246. 246.
    Tiryaki O, Usalan C, Buyukhatipoglu H, Sayiner ZA, Kilisli H. Effects of lisinopril, irbesartan, and amlodipine on the thrombogenic variables in the early and late stages of the treatment in hypertensive patients. Clin Exp Hypertens. 2012;34(2):145–52.Google Scholar
  247. 247.
    Tawaramoto K, Kaneto H, Hashiramoto M, et al. Azelnidipine, but not amlodipine, reduces urinary albumin excretion and carotid atherosclerosis in subjects with type 2 diabetes: blood pressure control with olmesartan and azelnidipine in Type 2 diabetes (BOAT2 study). Diabetol Metab Syndr. 2015;7:80.Google Scholar
  248. 248.
    Glusa E, Bevan J, Heptinstall S. Verapamil is a potent inhibitor of 5-HT-induced platelet aggregation. Thromb Res. 1989;55(2):239–45.Google Scholar
  249. 249.
    Pahor M, Franse LV, Deitcher SR, et al. Fosinopril versus amlodipine comparative treatments study: a randomized trial to assess effects on plasminogen activator inhibitor-1. Circulation. 2002;105(4):457–61.Google Scholar
  250. 250.
    Hirooka Y, Kimura Y, Sagara Y, Ito K, Sunagawa K. Effects of valsartan or amlodipine on endothelial function and oxidative stress after one year follow-up in patients with essential hypertension. Clin Exp Hypertens. 2008;30(3):267–76.Google Scholar
  251. 251.
    Ohtsuka S, Yamazaki A, Oyake Y, Yamaguchi I. Amlodipine improves vascular function in patients with moderate to severe hypertension. J Cardiovasc Pharmacol. 2003;42(2):296–303.Google Scholar
  252. 252.
    Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Kajiyama G, Oshima T. Effect of the angiotensin-converting enzyme inhibitor imidapril on reactive hyperemia in patients with essential hypertension: relationship between treatment periods and resistance artery endothelial function. J Am Coll Cardiol. 2001;37(3):863–70.Google Scholar
  253. 253.
    Nadar SK, Blann AD, Lip GY. Plasma and platelet-derived vascular endothelial growth factor and angiopoietin-1 in hypertension: effects of antihypertensive therapy. J Intern Med. 2004;256(4):331–7.Google Scholar
  254. 254.
    Martinez-Martin FJ, Macias-Batista A, Comi-Diaz C, Rodriguez-Rosas H, Soriano-Perera P, Pedrianes-Martin P. Effects of manidipine and its combination with an ACE inhibitor on insulin sensitivity and metabolic, inflammatory and prothrombotic markers in hypertensive patients with metabolic syndrome: the MARCADOR study. Clin Drug Investig. 2011;31(3):201–12.Google Scholar
  255. 255.
    Martinez-Martin FJ, Rodriguez-Rosas H, Peiro-Martinez I, Soriano-Perera P, Pedrianes-Martin P, Comi-Diaz C. Olmesartan/amlodipine vs olmesartan/hydro-chlorothiazide in hypertensive patients with metabolic syndrome: the OLAS study. J Hum Hypertens. 2011;25(6):346–53.Google Scholar
  256. 256.
    Iwatsubo H, Nagano M, Sakai T, et al. Converting enzyme inhibitor improves forearm reactive hyperemia in essential hypertension. Hypertension. 1997;29(1 Pt 2):286–90.Google Scholar
  257. 257.
    Unlu M, Karaman M, Ay SA, et al. The comparative effects of valsartan and amlodipine on vascular microinflammation in newly diagnosed hypertensive patients. Clin Exp Hypertens. 2013;35(6):418–23.Google Scholar
  258. 258.
    Morimoto S, Yano Y, Maki K, Sawada K. Renal and vascular protective effects of telmisartan in patients with essential hypertension. Hypertens Res. 2006;29(8):567–72.Google Scholar
  259. 259.
    Statsenko ME, Derevianchenko MV. Correction of endothelial dysfunction in hypertensive patients with type 2 diabetes mellitus during combined antihypertensive therapy. Ter Arkh. 2014;86(8):90–3.Google Scholar
  260. 260.
    Tadzic R, Mihalj M, Vcev A, Ennen J, Tadzic A, Drenjancevic I. The effects of arterial blood pressure reduction on endocan and soluble endothelial cell adhesion molecules (CAMs) and CAMs ligands expression in hypertensive patients on Ca-channel blocker therapy. Kidney Blood Press Res. 2013;37(2–3):103–15.Google Scholar
  261. 261.
    Statsenko ME, Derevianchenko MV, Ostrovskiĭ OV, Titarenko MN, Shvets MK, Bondarev AM. Endothelial dysfunction is a target for combination antihypertensive therapy in hypertensive patients with type 2 diabetes mellitus. Ter Arkh. 2013;85(9):63–8.Google Scholar
  262. 262.
    Merchant N, Rahman ST, Ahmad M, et al. Changes in biomarkers and 24 hours blood pressure in hypertensive African Americans with the metabolic syndrome: comparison of amlodipine/olmesartan versus hydrochlorothiazide/losartan. J Am Soc Hypertens. 2013;7(5):386–94.Google Scholar
  263. 263.
    Muiesan ML, Salvetti M, Belotti E, et al. Effects of barnidipine in comparison with hydrochlorothiazide on endothelial function, as assessed by flow mediated vasodilatation in hypertensive patients. Blood Press. 2011;20(4):244–51.Google Scholar
  264. 264.
    Takase H, Sugiyama M, Nakazawa A, Sato K, Ueda R, Dohi Y. Long-term effect of antihypertensive therapy with calcium antagonist or angiotensin converting enzyme inhibitor on serum nitrite/nitrate levels in human essential hypertension. Arzneimittelforschung. 2000;50(6):530–4.Google Scholar
  265. 265.
    Ahaneku JE, Sakata K, Uranol T, Takada Y, Takada A. Effects of cilnidipine on lipids, lipoproteins and fibrinolytic system in hypertensive patients. Drugs Exp Clin Res. 2000;26(4):119–23.Google Scholar
  266. 266.
    Saeed SA, Rasheed H. Calcium-dependent synergistic interaction of platelet activating factor and epinephrine in human platelet aggregation. Acta Pharmacol Sin. 2003;24(1):31–6.Google Scholar
  267. 267.
    Colica G, Salnitro D, Scopelliti F, et al. Diltiazem and modulation of platelet aggregation. Minerva Cardioangiol. 1990;38(1–2):51–4.Google Scholar
  268. 268.
    Anfossi G, Trovati M, Mularoni E, et al. Studies on inhibition of human platelet response by diltiazem. Gen Pharmacol. 1990;21(6):949–54.Google Scholar
  269. 269.
    Andrén L, Höglund P, Dotevall A, et al. Diltiazem in hypertensive patients with type II diabetes mellitus. Am J Cardiol. 1988;62(11):114G–20G.Google Scholar
  270. 270.
    Ring ME, Corrigan JJ Jr, Fenster PE. Effects of oral diltiazem on platelet function: alone and in combination with “low dose” aspirin. Thromb Res. 1986;44(3):391–400.Google Scholar
  271. 271.
    Mehta J, Mehta P, Ostrowski N. Calcium blocker diltiazem inhibits platelet activation and stimulates vascular prostacyclin synthesis. Am J Med Sci. 1986;291(1):20–4.Google Scholar
  272. 272.
    Cremer KF, Pieper JA, Joyal M, Mehta J. Effects of diltiazem, dipyridamole, and their combination on hemostasis. Clin Pharmacol Ther. 1984;36(5):641–4.Google Scholar
  273. 273.
    Walley TJ, Woods KL, Barnett DB. Effects of calcium channel blockers on in vitro platelet function in whole blood using single platelet counting. Thromb Haemost. 1989;61(1):137–9.Google Scholar
  274. 274.
    Anfossi G, Trovati M, Mularoni E, et al. Effects of diltiazem on thromboxane B2 production from platelet-rich plasma and whole blood. Prostaglandins Leukot Essent Fatty Acids. 1991;44(3):149–54.Google Scholar
  275. 275.
    Ridderstråle W, Ulfhammer E, Jern S, Hrafnkelsdóttir T. Impaired capacity for stimulated fibrinolysis in primary hypertension is restored by antihypertensive therapy. Hypertension. 2006;47(4):686–91.Google Scholar
  276. 276.
    Wilson J, Orchard MA, Prentice CR, et al. Treatment of hypertension induces a fall in platelet basal cytoplasmic calcium concentration without influencing platelet aggregation. Thromb Haemost. 1992;68(6):683–6.Google Scholar
  277. 277.
    Koenig W, Sund M, Ernst E, et al. Effects of felodipine ER and hydrochlorothiazide on blood rheology in essential hypertension–a randomized, double-blind, crossover study. J Intern Med. 1991;229(6):533–8.Google Scholar
  278. 278.
    Davì G, Novo S, Mattina A, Catalano I, Strano A. In vitro effects of gallopamil on platelet aggregation and thromboxane generation. Arzneimittelforschung. 1988;38(5):698–9.Google Scholar
  279. 279.
    Yin KH, Koh SC, Malcus P, et al. Preeclampsia: haemostatic status and the short-term effects of methyldopa and isradipine therapy. J Obstet Gynaecol Res. 1998;24(3):231–8.Google Scholar
  280. 280.
    Wysocki M, Persson B, Bagge U, Andersson OK. Flow resistance and its components in hypertensive men treated with the calcium antagonist isradipine. Eur J Clin Pharmacol. 1992;43(5):463–8.Google Scholar
  281. 281.
    Muravyov AV, Zaitsev LG, Muravyov AA, Yakusevich VV, Sirotkina AM. Effects of Ramipril and Isradipin on hemorheological profiles in patients with arterial hypertension. Clin Hemorheol Microcirc. 1998;18(2–3):185–90.Google Scholar
  282. 282.
    Perticone F, Ceravolo R, Maio R, et al. Calcium antagonist isradipine improves abnormal endothelium-dependent vasodilation in never treated hypertensive patients. Cardiovasc Res. 1999;41(1):299–306.Google Scholar
  283. 283.
    Kim DH, Oh IY, Lee HY, et al. Effect of lacidipine on blood pressure and endothelial function in mild-to-moderate essential hypertension patients with diabetes in Korea. Korean Circ J. 2010;40(12):632–8.Google Scholar
  284. 284.
    Taddei S, Virdis A, Ghiadoni L, Uleri S, Magagna A, Salvetti A. Lacidipine restores endothelium-dependent vasodilation in essential hypertensive patients. Hypertension. 1997;30(6):1606–12.Google Scholar
  285. 285.
    Armas-Padilla MC, Armas-Hernández MJ, Hernández-Hernández R, et al. Effect of lacidipine and nifedipine GITS on platelet function in patients with essential hypertension. J Hum Hypertens. 2000;14(Suppl 1):S91–5.Google Scholar
  286. 286.
    Fogari R, Mugellini A, Circelli M, Cremonesi G. Combination delapril/manidipine as antihypertensive therapy in high-risk patients. Clin Drug Investig. 2011;31(7):439–53.Google Scholar
  287. 287.
    Mugellini A, Preti P, Zoppi A, et al. Effect of delapril-manidipine combination vs irbesartan-hydrochlorothiazide combination on fibrinolytic function in hypertensive patients with type II diabetes mellitus. J Hum Hypertens. 2004;18(10):687–91.Google Scholar
  288. 288.
    Fogari R, Derosa G, Zoppi A, et al. Effect of delapril/manidipine vs olmesartan/hydrochlorothiazide combination on insulin sensitivity and fibrinogen in obese hypertensive patients. Intern Med. 2008;47(5):361–6.Google Scholar
  289. 289.
    Peiro-Martinez I, Martinez-Martin F, Rodriguez-Rosas H, et al. MARCADOR-2. Antiinflammatory and antiatherothrombotic effects of a combination of manidipine + lisonopril in hypertensive non-diabetic patients with metabolic syndrome. Atherosclerosis 2008; 9:210–211.Google Scholar
  290. 290.
    Zannad F, Voisin P, Sadoul N, et al. Effects of intravenous nicardipine on blood pressure, hemorheology platelet function in arterial hypertension. Dose-effect relations. Arch Mal Coeur Vaiss. 1987;80(6):844–50.Google Scholar
  291. 291.
    Greer IA, Walker JJ, McLaren M, Calder AA, Forbes CD. Inhibition of whole blood platelet aggregation by nicardipine, and synergism with prostacyclin in-vitro. Thromb Res. 1986;41(4):509–18.Google Scholar
  292. 292.
    Akopov SE, Gabrielian ES. Effects of aspirin, dipyridamole, nifedipine and cavinton which act on platelet aggregation induced by different aggregating agents alone and in combination. Eur J Clin Pharmacol. 1992;42(3):257–9.Google Scholar
  293. 293.
    Vinge E, Andersson TL, Larsson B. Effects of some calcium antagonists on aggregation by adrenalin and serotonin and on alpha-adrenoceptor radioligand binding in human platelets. Acta Physiol Scand. 1988;133(3):407–16.Google Scholar
  294. 294.
    Tiryaki O, Buyukhatipoglu H, Usalan C. Plasma plasminogen activator inhibitor 1 (PAI-1) and P-selectin levels in urgent hypertension: effect of single dose captopril and nifedipine on fibrinolytic activity. Clin Exp Hypertens. 2010;32(6):347–51.Google Scholar
  295. 295.
    Muiesan ML, Salvetti M, Monteduro C, et al. Effect of treatment on flow-dependent vasodilation of the brachial artery in essential hypertension. Hypertension. 1999;33(1 Pt 2):575–80.Google Scholar
  296. 296.
    Johnson GJ, Leis LA, Francis GS. Disparate effects of the calcium-channel blockers, nifedipine and verapamil, on alpha 2-adrenergic receptors and thromboxane A2-induced aggregation of human platelets. Circulation. 1986;73(4):847–54.Google Scholar
  297. 297.
    Moiseeva OM, Villeval’de SV, Emel’ianov IV, Shliakhto EV. Non-hemodynamic effects of calcium channel blocker nifedipine: effects on functional activity of blood cells and endothelium. Ter Arkh. 2005;77(8):29–34.Google Scholar
  298. 298.
    Hirooka Y, Imaizumi T, Masaki H, et al. Captopril improves impaired endothelium-dependent vasodilation in hypertensive patients. Hypertension. 1992;20(2):175–80.Google Scholar
  299. 299.
    Chen TH, Shih CY, Hsu WL, Chou TC. Mechanisms of Nifedipine-Downregulated CD40L/sCD40L Signaling in Collagen Stimulated Human Platelets. PLoS One. 2015;10(5):e0127054.Google Scholar
  300. 300.
    Ghiadoni L, Huang Y, Magagna A, Buralli S, Taddei S, Salvetti A. Effect of acute blood pressure reduction on endothelial function in the brachial artery of patients with essential hypertension. J Hypertens. 2001;19(3 Pt 2):547–51.Google Scholar
  301. 301.
    Fujimura N, Noma K, Hata T, et al.; ROCK Study Group. Mineralocorticoid receptor blocker eplerenone improves endothelial function and inhibits Rho-associated kinase activity in patients with hypertension. Clin Pharmacol Ther. 2012;91(2):289–97.Google Scholar
  302. 302.
    Tsuda Y, Satoh K, Kitadai M, Izumi Y, Takahashi T. Chronic hemorheological effects of the calcium antagonist nilvadipine in essential hypertension. Arzneimittelforschung. 1997;47(8):900–4.Google Scholar
  303. 303.
    Feinberg WM, Bruck DC. Effect of oral nimodipine on platelet function. Stroke. 1993;24(1):10–3.Google Scholar
  304. 304.
    Benndorf RA, Appel D, Maas R, Schwedhelm E, Wenzel UO, Böger RH. Telmisartan improves endothelial function in patients with essential hypertension. J Cardiovasc Pharmacol. 2007;50(4):367–71.Google Scholar
  305. 305.
    Hendra TJ, Oughton J, Jeremy JY, et al. Ex vivo platelet studies following oral nisoldipine in normotensive insulin-dependent diabetics and non-diabetic controls. Diabetes Res. 1988;8(3):117–22.Google Scholar
  306. 306.
    Sakata K, Shirotani M, Yoshida H, Urano T, Takada Y, Takada A. Differential effects of enalapril and nitrendipine on the fibrinolytic system in essential hypertension. Am Heart J. 1999;137:1094–9.Google Scholar
  307. 307.
    Pan R, Sun M, Zhou H, Jia Z. Effects of lotensin and nitrendipine on plasma fibrinogen and platelet aggregation in hypertensive patients. Hunan Yi Ke Da Xue Xue Bao. 1998;23(1):87–9.Google Scholar
  308. 308.
    Willoughby SR, Chirkova LP, Horowitz JD, Chirkov YY. Multiple agonist induction of aggregation: an approach to examine anti-aggregating effects in vitro. Platelets. 1996;7(5–6):329–33.Google Scholar
  309. 309.
    Gebara OC, Jimenez AH, McKenna C, et al. Stress-induced hemodynamic and hemostatic changes in patients with systemic hypertension: effect of verapamil. Clin Cardiol. 1996;19(3):205–11.Google Scholar
  310. 310.
    Smith IL, Smith EA. Inhibition of PAF-induced activation of human platelets by verapamil. Blood Coagul Fibrinolysis. 1992;3(6):759–63.Google Scholar
  311. 311.
    Ikeda Y, Kikuchi M, Toyama K, Watanabe K, Ando Y. Inhibition of human platelet functions by verapamil. Thromb Haemost. 1981;45(2):158–61.Google Scholar
  312. 312.
    Brocchieri A, Pacchiarini L, Saporiti A, Grignani G. In vitro effect of verapamil on platelet activation induced by ADP, collagen or thrombin. Platelets. 1995;6(4):195–9.Google Scholar
  313. 313.
    Versari D, Virdis A, Ghiadoni L, et al. Effect of verapamil, trandolapril and their combination on vascular function and structure in essential hypertensive patients. Atherosclerosis. 2009;205(1):214–20.Google Scholar
  314. 314.
    Yamauchi K, Furui H, Taniguchi N, Sotobata I. Effects of diltiazem hydrochloride on cardiovascular response, platelet aggregation and coagulating activity during exercise testing in systemic hypertension. Am J Cardiol. 1986;57(8):609–12.Google Scholar
  315. 315.
    Sanguigni V, Gallù M, Sciarra L, et al. Effect of amlodipine on exercise-induced platelet activation in patients affected by chronic stable angina. Clin Cardiol. 1999;22(9):575–80.Google Scholar
  316. 316.
    Wallén NH, Held C, Rehnqvist N, Hjemdahl P. Platelet aggregability in vivo is attenuated by verapamil but not by metoprolol in patients with stable angina pectoris. Am J Cardiol. 1995;75(1):1–6.Google Scholar
  317. 317.
    Musumeci V, Cardillo C, Baroni S, et al. Effects of calcium channel blockers on the endothelial release of von Willebrand factor after exercise in healthy subjects. J Lab Clin Med. 1989;113(4):525–31.Google Scholar
  318. 318.
    Kato M, Matsumoto A, Nakajima T, et al. Amlodipine increases nitric oxide production in exhaled air during exercise in patients with essential hypertension. Am J Hypertens. 2004;17(9):729–33.Google Scholar
  319. 319.
    Fliser D, Buchholz K, Haller H; EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators. Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation. 2004;110(9):1103–7.Google Scholar
  320. 320.
    Tsutsumi Y, Matsubara H, Ohkubo N, et al. Angiotensin II type 2 receptor is upregulated in human heart with interstitial fibrosis, and cardiac fibroblasts are the major cell type for its expression. Circ Res. 1998;83(10):1035–46.Google Scholar
  321. 321.
    Almendral JL, Shick V, Rosendorff C, Atlas SA. Association between transforming growth factor-beta(1) and left ventricular mass and diameter in hypertensive patients. J Am Soc Hypertens. 2010;4(3):135–41.Google Scholar
  322. 322.
    Dahlöf B, Pennert K, Hansson L. Reversal of left ventricular hypertrophy in hypertensive patients. A metaanalysis of 109 treatment studies. Am J Hypertens. 1992;5(2):95–110.Google Scholar
  323. 323.
    Mancia G, Laurent S, Agabiti-Rosei E, et al; European Society of Hypertension. Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. J Hypertens. 2009; 27(11):2121–58.Google Scholar
  324. 324.
    Carlsson AC, Ruge T, Sundström J, et al. Association between circulating endostatin, hypertension duration, and hypertensive target-organ damage. Hypertension. 2013;62(6):1146–51.Google Scholar
  325. 325.
    Mehta JL, Li DY, Yang H, Raizada MK. Angiotensin II and IV stimulate expression and release of plasminogen activator inhibitor-1 in cultured human coronary artery endothelial cells. J Cardiovasc Pharmacol. 2002;39(6):789–94.Google Scholar
  326. 326.
    Skurk T, Lee YM, Hauner H. Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipocytes in primary culture. Hypertension. 2001;37(5):1336–40.Google Scholar
  327. 327.
    Larsson PT, Schwieler JH, Wallén NH, Hjemdahl P. Acute effects of angiotensin II on fibrinolysis in healthy volunteers. Blood Coagul Fibrinolysis. 1999;10(1):19–24.Google Scholar
  328. 328.
    Lottermoser K, Hertfelder HJ, Gohlke P, Vetter H, Düsing R. Short-term effects of exogenous angiotensin II on plasma fibrinolytic balance in normal subjects. Clin Exp Hypertens. 2004;26(1):13–26.Google Scholar
  329. 329.
    Ekholm M, Kahan T, Jörneskog G, Brinck J, Wallén NH. Haemostatic and inflammatory alterations in familial hypercholesterolaemia, and the impact of angiotensin II infusion. J Renin Angiotensin Aldosterone Syst. 2015;16(2):328–38.Google Scholar
  330. 330.
    Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH, Vaughan DE. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function. Circulation. 1993;87(6):1969–73.Google Scholar
  331. 331.
    Hlubocká Z, Umnerová V, Heller S, et al. Circulating intercellular cell adhesion molecule-1, endothelin-1 and von Willebrand factor-markers of endothelial dysfunction in uncomplicated essential hypertension: the effect of treatment with ACE inhibitors. J Hum Hypertens. 2002;16(8):557–62.Google Scholar
  332. 332.
    Sechi LA, Novello M, Colussi G, et al. Relationship of plasma renin with a prothrombotic state in hypertension: relevance for organ damage. Am J Hypertens. 2008;21(12):1347–53.Google Scholar
  333. 333.
    Urano T, Kojima Y, Takahashi M, et al. Impaired fibrinolysis in hypertension and obesity due to high plasminogen activator inhibitor-1 level in plasma. Jpn J Physiol. 1993;43(2):221–8.Google Scholar
  334. 334.
    Tomiyama H, Kimura Y, Mitsuhashi H, et al. Relationship between endothelial function and fibrinolysis in early hypertension. Hypertension. 1998;31(1 Pt 2):321–7.Google Scholar
  335. 335.
    Gismondi RA, Bedirian R, Pozzobon CR, Ladeira MC, Oigman W, Neves MF. Renin-Angiotensin System Blockade Associated with Statin Improves Endothelial Function in Diabetics. Arq Bras Cardiol. 2015;105(6):597–605.Google Scholar
  336. 336.
    Mohler ER 3rd, Herrington D, Ouyang P, et al, EXPLORE Investigators. A randomized, double-blind trial comparing the effects of amlodipine besylate/benazepril HCl vs amlodipine on endothelial function and blood pressure. J Clin Hypertens (Greenwich). 2006;8(10):692–8.Google Scholar
  337. 337.
    Nagy L, Tarján J, Sámóczi M, Kovács I, Takács J. Effect of benazepril on endothelial function in previously untreated hypertensive patients. The Working Group of Cardiology of the Academic Committee of Veszprém, Hungary. Am J Ther. 1998;5(4):233–6.Google Scholar
  338. 338.
    Gismondi RA, Oigman W, Bedirian R, Pozzobon CR, Ladeira MC, Neves MF. Comparison of benazepril and losartan on endothelial function and vascular stiffness in patients with Type 2 diabetes mellitus and hypertension: a randomized controlled trial. J Renin Angiotensin Aldosterone Syst. 2015;16(4):967–74.Google Scholar
  339. 339.
    Patrassi GM, Fallo F, Martinelli S, Mantero F, Boeri G, Girolami A. The contact phase of blood coagulation and renin activation in essential hypertension before and after captopril. Eur Heart J. 1984;5(7):561–7.Google Scholar
  340. 340.
    James IM, Dickenson EJ, Burgoyne W, et al. Treatment of hypertension with captopril: preservation of regional blood flow and reduced platelet aggregation. J Hum Hypertens. 1988;2(1):21–5.Google Scholar
  341. 341.
    Guerra-Cuesta JI, Montón M, Rodríguez-Feo JA, et al. Effect of losartan on human platelet activation. J Hypertens. 1999;17(3):447–52.Google Scholar
  342. 342.
    Someya N, Morotomi Y, Kodama K, et al. Suppressive effect of captopril on platelet aggregation in essential hypertension. J Cardiovasc Pharmacol. 1984;6(5):840–3.Google Scholar
  343. 343.
    Wagner B, Eichler HG, Schneider B, et al. Studies on the effect of two angiotensin-converting enzyme inhibitors, captopril and cilazapril, on platelet and vascular prostaglandin metabolism in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1992;346(4):453–6.Google Scholar
  344. 344.
    Kozlovskiĭ VI, Barkun SP, Koshelapov VI, Chupakhina OP. Effects of captopril on microcirculation and tissue oxygen balance in patients with hypertension. Kardiologiia. 1992;32(6):28–9.Google Scholar
  345. 345.
    Aznaouridis KA, Stamatelopoulos KS, Karatzis EN, Protogerou AD, Papamichael CM, Lekakis JP. Acute effects of renin-angiotensin system blockade on arterial function in hypertensive patients. J Hum Hypertens. 2007;21(8):654–63.Google Scholar
  346. 346.
    Creager MA, Roddy MA. Effect of captopril and enalapril on endothelial function in hypertensive patients. Hypertension. 1994;24(4):499–505.Google Scholar
  347. 347.
    Trifiletti A, Barbera N, Scamardi R, et al. Effects of medium-term antihypertensive therapy on haemostatic parameters in patients with essential hypertension. Haemostasis. 1997;27(1):35–8.Google Scholar
  348. 348.
    Tsagadopoulos D, Antonakoudis H, Makris T, et al. Effect of antihypertensive treatment on lipids and fibrinogen: Greek multicentre study of cilazapril. Cardiology. 1996;87(6):524–8.Google Scholar
  349. 349.
    Rhee SY, Woo JT, Baik SH, et al. Randomized, open label, multicenter clinical trial about the effect of cilazapril on vascular endothelial function in patients with type 2 diabetes combined with hypertension. J Korean Diabetes Assoc. 2006;30(6):450–8.Google Scholar
  350. 350.
    Ding YA, Law HW, Chou TC. Comparison of cilazapril and nifedipine retard on ambulatory blood pressure, metabolic, rheological and platelet function in hypertensive patients. J Hum Hypertens. 1994;8(2):137–43.Google Scholar
  351. 351.
    Hosgor I, Ahmad S. Impact of cilazapril on fibrinolytic system in hypertensive patients. Blood Coagul Fibrinolysis. 2008;19(1):101–5.Google Scholar
  352. 352.
    Kiowski W, Linder L, Nuesch R, Martina B. Effects of cilazapril on vascular structure and function in essential hypertension. Hypertension. 1996;27(3 Pt 1):371–6.Google Scholar
  353. 353.
    Schiffrin EL. Correction of remodeling and function of small arteries in human hypertension by cilazapril, an angiotensin I-converting enzyme inhibitor. J Cardiovasc Pharmacol. 1996;27(Suppl 2):S13–8.Google Scholar
  354. 354.
    Zahler S, Kupatt C, Möbert J, Becker BF, Gerlach E. Effects of ACE-inhibition on redox status and expression of P-selectin of endothelial cells subjected to oxidative stress. J Mol Cell Cardiol. 1997;29(11):2953–60.Google Scholar
  355. 355.
    Paterna S, Di Garbo V, Avellone G, et al. Effects of losartan and delapril on the fibrinolytic system in patients with mild to moderate hypertension. Clin Drug Investig. 2003;23(11):717–24.Google Scholar
  356. 356.
    Fogari R, Mugellini A, Zoppi A, et al. Effect of delapril and irbesartan on plasma PAI-1 and fibrinogen in hypertensive type 2 diabetic patients. Am J Hypertens. 2001;14:17A.Google Scholar
  357. 357.
    Schwieler JH, Kahan T, Wallén NH, Nussberger J, Hjemdahl P. Inhibition of the renin-angiotensin system does not reduce platelet activity at rest or during stress in hypertension. J Hypertens. 2013;31(8):1676–82.Google Scholar
  358. 358.
    Cacciatore F, Bruzzese G, Vitale DF, et al. Effects of ACE inhibition on circulating endothelial progenitor cells, vascular damage, and oxidative stress in hypertensive patients. Eur J Clin Pharmacol. 2011;67(9):877–83.Google Scholar
  359. 359.
    Jilma B, Li-Saw-Hee FL, Wagner OF, Beevers DG, Lip GY. Effects of enalapril and losartan on circulating adhesion molecules and monocyte chemotactic protein-1. Clin Sci (Lond). 2002;103(2):131–6.Google Scholar
  360. 360.
    Ferri C, Desideri G, Baldoncini R, et al. Early activation of vascular endothelium in nonobese, nondiabetic essential hypertensive patients with multiple metabolic abnormalities. Diabetes. 1998;47(4):660–7.Google Scholar
  361. 361.
    Rosei EA, Rizzoni D, Muiesan ML, et al, CENTRO (CandEsartaN on aTherosclerotic Risk factors) study investigators. Effects of candesartan cilexetil and enalapril on inflammatory markers of atherosclerosis in hypertensive patients with non-insulin-dependent diabetes mellitus. J Hypertens. 2005;23(2):435–44.Google Scholar
  362. 362.
    Lemne C, Vesterqvist O, Egberg N, Green K, Jogestrand T, de Faire U. Platelet activation and prostacyclin release in essential hypertension. Prostaglandins. 1992;44(3):219–35.Google Scholar
  363. 363.
    Leu HB, Charng MJ, Ding PY. A double blind randomized trial to compare the effects of eprosartan and enalapril on blood pressure, platelets, and endothelium function in patients with essential hypertension. Jpn Heart J. 2004;45(4):623–35.Google Scholar
  364. 364.
    Li-Saw-Hee FL, Beevers DG, Lip GY. Effect of antihypertensive therapy using enalapril or losartan on haemostatic markers in essential hypertension: a pilot prospective randomised double-blind parallel group trial. Int J Cardiol. 2001;78(3):241–6.Google Scholar
  365. 365.
    Iakovlev VM, Semenkin AA, Iudin SM, et al. Effect of enalapril maleate on vascular endothelial function and platelet-endothelial interactions in patients with essential hypertension. Ter Arkh. 2000;72(1):40–4.Google Scholar
  366. 366.
    Usalan C, Buyukhatipoglu H. A dynamic comparative study concerning the effects of angiotensin-converting enzyme inhibitors and aldosterone receptor blockers on the fibrinolytic system. Clin Appl Thromb Hemost. 2008;14(2):203–9.Google Scholar
  367. 367.
    Zhang WR, Chen BM, Xiong Y, Tao LJ. Changes of serum asymmetric dimethylarginine in essential hypertension before and after the treatment. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2005;30(1):57–9.Google Scholar
  368. 368.
    Polivoda SN, Cherepok AA, Pisanko IuN. Endothelial-protective effects of enalapril in hypertensive patients. Lik Sprava. 2001;(2):136–7.Google Scholar
  369. 369.
    Statsenko ME, Derevianchenko MV. Possibilities of correction of endothelial dysfunction at the background of combined antihypertensive therapy in patients with arterial hypertension and type 2 diabetes. Kardiologiia. 2015;55(3):17–20.Google Scholar
  370. 370.
    Rizzoni D, Porteri E, De Ciuceis C, et al. Effect of treatment with candesartan or enalapril on subcutaneous small artery structure in hypertensive patients with noninsulin-dependent diabetes mellitus. Hypertension. 2005;45(4):659–65.Google Scholar
  371. 371.
    Cominacini L, Pasini A, Garbin U, et al. Zofenopril inhibits the expression of adhesion molecules on endothelial cells by reducing reactive oxygen species. Am J Hypertens. 2002;15(10 Pt 1):891–5.Google Scholar
  372. 372.
    Yavuz D, Koç M, Toprak A, et al. Effects of ACE inhibition and AT1-receptor antagonism on endothelial function and insulin sensitivity in essential hypertensive patients. J Renin Angiotensin Aldosterone Syst. 2003;4(3):197–203.Google Scholar
  373. 373.
    Delles C, Schneider MP, John S, Gekle M, Schmieder RE. Angiotensin converting enzyme inhibition and angiotensin II AT1-receptor blockade reduce the levels of asymmetrical N(G), N(G)-dimethylarginine in human essential hypertension. Am J Hypertens. 2002;15(7 Pt 1):590–3.Google Scholar
  374. 374.
    Kearney-Schwartz A, Virion JM, Stoltz JF, Drouin P, Zannad F. Haemorheological disturbances in hypertensive type 2 diabetic patients–influence of antihypertensive therapy. Fundam Clin Pharmacol. 2007;21(4):387–96.Google Scholar
  375. 375.
    Cesari M, Kritchevsky SB, Atkinson HH, et al. Angiotensin-converting enzyme inhibition and novel cardiovascular risk biomarkers: results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors (TRAIN) study. Am Heart J. 2009;157(2):334.e1–8.Google Scholar
  376. 376.
    Tiryaki O, Usalan C, Buyukhatipoglu H. Effect of combined angiotensin-converting enzyme and aldosterone inhibition on plasma plasminogen activator inhibitor type 1 levels in chronic hypertensive patients. Nephrology (Carlton). 2010;15(2):211–5.Google Scholar
  377. 377.
    Sozen AB, Kayacan MS, Tansel T, et al. Drugs with blocking effects on the renin-angiotensin-aldosterone system do not improve endothelial dysfunction long-term in hypertensive patients. J Int Med Res. 2009;37(4):996–1002.Google Scholar
  378. 378.
    Gil’mutdinova LT, Syrtlanova ER, Sharapova SP. Effect of fosinopril on some parameters of endothelial function in patients with metabolic syndrome. Kardiologiia. 2005;45(1):45–50.Google Scholar
  379. 379.
    Gasic S, Wagner OF, Fasching P, et al. Fosinopril decreases levels of soluble vascular cell adhesion molecule-1 in borderline hypertensive type II diabetic patients with microalbuminuria. Am J Hypertens. 1999;12(2 Pt 1):217–22.Google Scholar
  380. 380.
    Guan S, Wang B. Effects of fosinopril and valsartan on expressions of ICAM-1 and NO in human umbilical vein endothelial cells. Chin Med J (Engl). 2003;116(6):923–7.Google Scholar
  381. 381.
    Fogari R, Zoppi A, Mugellini A, Maffioli P, Lazzari P, Derosa G. Role of angiotensin II in plasma PAI-1 changes induced by imidapril or candesartan in hypertensive patients with metabolic syndrome. Hypertens Res. 2011;34(12):1321–6.Google Scholar
  382. 382.
    Fogari R, Zoppi A, Salvadeo SA, et al. Fibrinolysis and insulin sensitivity in imidapril and candesartan (FISIC study) recipients with hypertension. Hypertens Res. 2011;34(4):509–15.Google Scholar
  383. 383.
    Higashi Y, Sasaki S, Nakagawa K, et al. Severity of hypertension affects improved resistance artery endothelial function by angiotensin-converting enzyme inhibition. J Cardiovasc Pharmacol. 2002;39(5):668–76.Google Scholar
  384. 384.
    Yajima K, Shimada A, Hirose H, Oikawa Y, Yamada S, Meguro S, Irie J, Irie S. Effect on the atherogenic marker plasminogen activator inhibitor type-1 of addition of the ACE inhibitor imidapril to angiotensin II type 1 receptor antagonist therapy in hypertensive patients with abnormal glucose metabolism: a prospective cohort study in primary care. Clin Drug Investig. 2009;29(12):811–9.Google Scholar
  385. 385.
    Matsumoto T, Minai K, Horie H, et al. Angiotensin-converting enzyme inhibition but not angiotensin II type 1 receptor antagonism augments coronary release of tissue plasminogen activator in hypertensive patients. J Am Coll Cardiol. 2003;41(8):1373–9.Google Scholar
  386. 386.
    Hirschl MM, Bur A, Woisetschlaeger C, Derhaschnig U, Laggner AN. Effects of candesartan and lisinopril on the fibrinolytic system in hypertensive patients. J Clin Hypertens (Greenwich). 2007;9(6):430–5.Google Scholar
  387. 387.
    Zehetgruber M, Beckmann R, Gabriel H, Christ G, Binder BR, Huber K. The ACE-inhibitor lisinopril affects plasma insulin levels but not fibrinolytic parameters. Thromb Res. 1996;83(2):143–52.Google Scholar
  388. 388.
    Markova LI, Kuznetsova IV, Radzevich AE. Lisinopril effects on cerebral blood flow and blood rheology in hypertensive patients. Ter Arkh. 2004;76(11):41–3.Google Scholar
  389. 389.
    Horký K, Jindra A, Peleska J, et al. Plasma concentrations of some cardiovascular humoral factors in essential hypertension and their changes during the treatment with converting enzyme inhibitor lisinopril. Sb Lek. 1993;94(2):155–61.Google Scholar
  390. 390.
    Kelly AS, Gonzalez-Campoy JM, Rudser KD, et al. Carvedilol-lisinopril combination therapy and endothelial function in obese individuals with hypertension. J Clin Hypertens (Greenwich). 2012;14(2):85–91.Google Scholar
  391. 391.
    Rizzoni D, Muiesan ML, Porteri E, et al. Effects of long-term antihypertensive treatment with lisinopril on resistance arteries in hypertensive patients with left ventricular hypertrophy. J Hypertens. 1997;15(2):197–204.Google Scholar
  392. 392.
    Taddei S, Virdis A, Ghiadoni L, Mattei P, Salvetti A. Effects of angiotensin converting enzyme inhibition on endothelium-dependent vasodilatation in essential hypertensive patients. J Hypertens. 1998;16(4):447–56.Google Scholar
  393. 393.
    Zannad F, Bray-Desboscs L, el Ghawi R, Donner M, Thibout E, Stoltz JF. Effects of lisinopril and hydrochlorothiazide on platelet function and blood rheology in essential hypertension: a randomly allocated double-blind study. J Hypertens. 1993;11(5):559–64.Google Scholar
  394. 394.
    Koch B, Oparil S, Stimpel M. Co-administration of an ACE-inhibitor (moexipril) and hormonal replacement therapy in postmenopausal women. J Hum Hypertens. 1999;13(5):337–42.Google Scholar
  395. 395.
    Leonova MV, Demidova MA, Tarasov AV, Belousov IuB. Hypotensive, organoprotective, and metabolic effects of Angiotensin converting enzyme inhibitor moexipril in women with postmenopausal syndrome. Kardiologiia. 2006;46(5):40–3.Google Scholar
  396. 396.
    Leonova MV, Demidova MA, Tarasov AV, Belousov IuB. Comparative efficacy and safety of contemporary Angiotensin converting enzyme inhibitors moexipril and spirapril in women with postmenopausal metabolic syndrome. Kardiologiia. 2006;46(1):43–9.Google Scholar
  397. 397.
    Belousov IuB, Glezer MG, Tkhostova EB, Demidova MA. Moexipril influence on quality of life in postmenopausal women with arterial hypertension. Ter Arkh. 2005;77(10):75–8.Google Scholar
  398. 398.
    Okrucká A, Pechán J, Kratochvílová H. Effects of the angiotensin-converting enzyme (ACE) inhibitor perindopril on endothelial and platelet functions in essential hypertension. Platelets. 1998;9(1):63–7.Google Scholar
  399. 399.
    Remková A, Remko M. Markers of endothelial function in the early stages of essential hypertension and the effect of antihypertensive therapy. Vnitr Lek. 2010;56(12):1210–6.Google Scholar
  400. 400.
    Erdem Y, Usalan C, Haznedaroğlu IC, et al. Effects of angiotensin converting enzyme and angiotensin II receptor inhibition on impaired fibrinolysis in systemic hypertension. Am J Hypertens. 1999;12(11 Pt 1):1071–6.Google Scholar
  401. 401.
    Vaccari CS, Rahman ST, Khan QA, Cheema FA, Khan BV. Effects of angiotensin-converting enzyme inhibitor therapy on levels of inflammatory markers in response to exercise-induced stress: studies in the metabolic syndrome. J Cardiometab Syndr. 2008;3(1):12–7.Google Scholar
  402. 402.
    Remková A, Kratochvíl’ová H, Durina J. Impact of the therapy by renin-angiotensin system targeting antihypertensive agents perindopril versus telmisartan on prothrombotic state in essential hypertension. J Hum Hypertens. 2008;22(5):338–45.Google Scholar
  403. 403.
    Remková A, Kratochvílová H. Effect of the angiotensin-converting enzyme inhibitor perindopril on haemostasis in essential hypertension. Blood Coagul Fibrinolysis. 2000;11(7):641–4.Google Scholar
  404. 404.
    Sihm I, Schroeder AP, Aalkjaer C, et al. Regression of media-to-lumen ratio of human subcutaneous arteries and left ventricular hypertrophy during treatment with an angiotensin-converting enzyme inhibitor-based regimen in hypertensive patients. Am J Cardiol. 1995;76(15):38E–40E.Google Scholar
  405. 405.
    Ahmed N, Mansoor A, Sehmi J, Gomez K, Sethi A. The effects of angiotensin II signaling blockade on platelet activity in subjects with hypertension. Curr Hypertens Rev. 2015;11(2):116–22.Google Scholar
  406. 406.
    Semenkin AA, Novikov AI, Nechaeva GI, et al. Endothelial and metabolic effects of perindopril in patients with essential hypertension. Kardiologiia. 2014;54(7):31–5.Google Scholar
  407. 407.
    Zvereva TN, Cherniavskaia EIu, Barbarash OL. Effect of perindopril on the processes of subclinical inflammation in patients with arterial hypertension and type 2 diabetes mellitus. Kardiologiia. 2013;53(4):19–24.Google Scholar
  408. 408.
    Fogari R, Zoppi A, Lazzari P, et al. ACE inhibition but not angiotensin II antagonism reduces plasma fibrinogen and insulin resistance in overweight hypertensive patients. J Cardiovasc Pharmacol. 1998;32(4):616–20.Google Scholar
  409. 409.
    Fogari R, Mugellini A, Zoppi A, et al. Losartan and perindopril effects on plasma plasminogen activator inhibitor-1 and fibrinogen in hypertensive type 2 diabetic patients. Am J Hypertens. 2002;15(4 Pt 1):316–20.Google Scholar
  410. 410.
    Zheleznyh EA, Danilogorskaya YA, Privalova EV, et al. Effect of combined antihypertensive therapy with perindopril and indapamide on morpho-functional parameters of the heart, blood vessels of small and medium caliber in patients with essential hypertension]. Kardiologiia. 2016;56(3):19–24.Google Scholar
  411. 411.
    Protasov KV, Sinkevich DA, Reshina IV, Zhizhko NV, Logovikova SI, Golubeva LV. Vascular effects of perindopril arginine and indapamide fixed combination in patients with arterial hypertension. Kardiologiia. 2012;52(9):8–14.Google Scholar
  412. 412.
    Debbabi H, Bonnin P, Levy BI. Effects of blood pressure control with perindopril/indapamide on the microcirculation in hypertensive patients. Am J Hypertens. 2010;23(10):1136–43.Google Scholar
  413. 413.
    Joannides R, Bellien J, Thurlure C, Iacob M, Abeel M, Thuillez C. Fixed combination of perindopril and indapamide at low dose improves endothelial function in essential hypertensive patients after acute administration. Am J Hypertens. 2008;21(6):679–84.Google Scholar
  414. 414.
    Sekuri C, Bayturan O, Gocer H, Tavli T, Tezcan UK. Effects of low-dose combination therapy with an angiotensin-converting enzyme inhibitor and a diuretic on flow-mediated vasodilation in hypertensive patients: a 6-month, single-center study. Curr Ther Res Clin Exp. 2003;64(9):715–24.Google Scholar
  415. 415.
    Kishi Y, Ohta S, Kasuya N, Sakita SY, Ashikaga T, Isobe M. Perindopril augments ecto-ATP diphosphohydrolase activity and enhances endothelial anti-platelet function in human umbilical vein endothelial cells. J Hypertens. 2003;21(7):1347–53.Google Scholar
  416. 416.
    Osuch E, Du Plooy WJ, Du Plooy SH, Böhmer LH. Effect of perindopril on pulse-wave velocity and endothelin-1 in black hypertensive patients. Cardiovasc J Afr. 2012;23(7):396–9.Google Scholar
  417. 417.
    Derosa G, Cicero AF, Ciccarelli L, Fogari R. A randomized, double-blind, controlled, parallel-group comparison of perindopril and candesartan in hypertensive patients with type 2 diabetes mellitus. Clin Ther. 2003;25(7):2006–21.Google Scholar
  418. 418.
    Riondino S, Pignatelli P, Pulcinelli FM, et al. Platelet hyperactivity in hypertensive older patients is controlled by lowering blood pressure. J Am Geriatr Soc. 1999;47(8):943–7.Google Scholar
  419. 419.
    Sakata K, Pawlak R, Urano T, Takada A. Effects of a long-term pharmacological interruption of the renin-angiotensin system on the fibrinolytic system in essential hypertension. Pathophysiol Haemost Thromb. 2002;32(2):67–75.Google Scholar
  420. 420.
    Brown NJ, Agirbasli M, Vaughan DE. Comparative effect of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor antagonism on plasma fibrinolytic balance in humans. Hypertension. 1999;34(2):285–90.Google Scholar
  421. 421.
    Gupta RK, Kjeldsen SE, Motley E, Weder AB, Zweifler AJ, Julius S. Platelet function during antihypertensive treatment with quinapril, a novel angiotensin converting enzyme inhibitor. J Cardiovasc Pharmacol. 1991;17(1):13–9.Google Scholar
  422. 422.
    Hlubocká Z, Umnerová V, Heller S, et al. Is mild essential hypertension without obvious organ complications and risk factors associated with increased levels of circulating markers of endothelial dysfunction? Effect of ACE inhibitor therapy. Vnitr Lek. 2002;48(8):718–23.Google Scholar
  423. 423.
    Souza-Barbosa LA, Ferreira-Melo SE, Ubaid-Girioli S, Arantes Nogueira E, Yugar-Toledo JC, Moreno H Jr. Endothelial vascular function in hypertensive patients after renin-angiotensin system blockade. J Clin Hypertens (Greenwich). 2006;8(11):803–9 (quiz 810–1).Google Scholar
  424. 424.
    Nesterov IuI, Bondareva IN, Tepliakov AT, Poltavtseva OV. Combined antihypertensive treatment of patients with hypertension and type 2 diabetes mellitus. Ter Arkh. 2009;81(2):75–9.Google Scholar
  425. 425.
    Baráth A, Túri S, Németh I, et al. Different pathomechanisms of essential and obesity-associated hypertension in adolescents. Pediatr Nephrol. 2006;21(10):1419–25.Google Scholar
  426. 426.
    Sverdlov AL, Chan WP, Procter NE, Chirkov YY, Ngo DT, Horowitz JD. Reciprocal regulation of NO signaling and TXNIP expression in humans: impact of aging and ramipril therapy. Int J Cardiol. 2013;168(5):4624–30.Google Scholar
  427. 427.
    Bojović L, Micić D. Effects of ramipril therapy on some components of insulin resistance syndrome in patients with essential hypertension. Med Pregl. 2002;55(7–8):286–92.Google Scholar
  428. 428.
    Willoughby SR, Rajendran S, Chan WP, et al. Ramipril sensitizes platelets to nitric oxide: implications for therapy in high-risk patients. J Am Coll Cardiol. 2012;60(10):887–94.Google Scholar
  429. 429.
    Brown NJ, Kumar S, Painter CA, Vaughan DE. ACE inhibition versus angiotensin type 1 receptor antagonism: differential effects on PAI-1 over time. Hypertension. 2002;40(6):859–65.Google Scholar
  430. 430.
    AlBacha Jd, Khoury M, Mouawad C, et al. High incidence of ACE/PAI-1 in association to a spectrum of other polymorphic cardiovascular genes involving PBMCs proinflammatory cytokines in hypertensive hypercholesterolemic patients: reversibility with a combination of ACE inhibitor and statin. PLoS One. 2015;10(5):e0127266.Google Scholar
  431. 431.
    Rosenson RS, Hafner JM. Rheological changes in hypertensive patients treated with ramipril. Clin Hemorheol Microcirc. 1997;17(1):41–6.Google Scholar
  432. 432.
    Koh KK, Quon MJ, Lee Y, et al. Additive beneficial cardiovascular and metabolic effects of combination therapy with ramipril and candesartan in hypertensive patients. Eur Heart J. 2007;28(12):1440–7.Google Scholar
  433. 433.
    Ekholm M, Wallén NH, Johnsson H, Eliasson K, Kahan T. Long-term angiotensin-converting enzyme inhibition with ramipril reduces thrombin generation in human hypertension. Clin Sci (Lond). 2002;103(2):151–5.Google Scholar
  434. 434.
    Ki YJ, Seo JB, Kim HL, et al. Comparison of endothelial function improvement estimated with reactive hyperemia index between ramipril and telmisartan in hypertensive patients. Clin Hypertens. 2017;23:4.Google Scholar
  435. 435.
    Gleerup G, Petersen JR, Mehlsen J, Winther K. Effect of spirapril and hydrochlorothiazide on platelet function and euglobulin clot lysis time in patients with mild hypertension. Angiology. 1996;47(10):951–5.Google Scholar
  436. 436.
    Katel’nitskaia LI, Ivanchenko DN, Khansheva LA, Kholoshina LV, Glova SE, Pleskachev SA. Advantages of long-term controlled stepwise therapy of arterial hypertension with the use of angiotensin converting enzyme inhibitor spirapril. Kardiologiia. 2006;46(3):35–8.Google Scholar
  437. 437.
    Lerch M, Weidmann P, Ho MP, et al. Metabolic effects of temocapril in hypertensive patients with diabetes mellitus type 2. J Cardiovasc Pharmacol. 1999;33(4):527–33.Google Scholar
  438. 438.
    Okuro M, Morimoto S, Takahashi T, et al. Angiotensin I-converting enzyme inhibitor improves reactive hyperemia in elderly hypertensives with arteriosclerosis obliterans. Hypertens Res. 2006;29(9):655–63.Google Scholar
  439. 439.
    Rubio-Guerra AF, Vargas-Robles H, Vargas-Ayala G, Rodriguez-Lopez L, Escalante-Acosta BA. The effect of trandolapril and its fixed-dose combination with verapamil on circulating adhesion molecules levels in hypertensive patients with type 2 diabetes. Clin Exp Hypertens. 2008;30(7):682–8.Google Scholar
  440. 440.
    Fogari R, Zoppi A, Preti P, Fogari E, Malamani G, Mugellini A. Differential effects of ACE-inhibition and angiotensin II antagonism on fibrinolysis and insulin sensitivity in hypertensive postmenopausal women. Am J Hypertens. 2001;14(9 Pt 1):921–6.Google Scholar
  441. 441.
    Simonenko VB, Medvedev IN, Gamolina OV. Primary hemostasis activity in patients with arterial hypertension and impaired glucose tolerance treated with trandolapril. Klin Med (Mosk). 2011;89(2):29–31.Google Scholar
  442. 442.
    Bryl W, Miczke A, Bogdański P, et al. Assessment of blood pressure and endothelin-1 plasma concentration in young, hypertensive patients after treatment with angiotensin converting enzyme inhibitor. Pol Merkur Lekarski. 2005;18(107):524–6.Google Scholar
  443. 443.
    Bryl W, Pupek-Musialik D. The influence of ACE-inhibitor on endothelin concentration and some metabolic parameters in young hypertensives. Pol Merkur Lekarski. 2006;21(122):174–6.Google Scholar
  444. 444.
    Del Fiorentino A, Cianchetti S, Celi A, Pedrinelli R. Aliskiren, a renin inhibitor, downregulates TNF-α-induced tissue factor expression in HUVECS. J Renin Angiotensin Aldosterone Syst. 2010;11(4):243–7.Google Scholar
  445. 445.
    Desideri G, Grassi D, Croce G, et al. Different effects of angiotensin converting enzyme inhibitors on endothelin-1 and nitric oxide balance in human vascular endothelial cells: evidence of an oxidant-sensitive pathway. Mediat Inflamm. 2008;2008:305087.Google Scholar
  446. 446.
    Napoli C, Sica V, de Nigris F, et al. Sulfhydryl angiotensin-converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension. Am Heart J. 2004;148(1):e5.Google Scholar
  447. 447.
    Gamboa JL, Pretorius M, Todd-Tzanetos DR, Luther JM, Yu C, Ikizler TA, Brown NJ. Comparative effects of angiotensin-converting enzyme inhibition and angiotensin-receptor blockade on inflammation during hemodialysis. J Am Soc Nephrol. 2012;23(2):334–42.Google Scholar
  448. 448.
    Verma S, Lonn EM, Nanji A, et al. Effect of angiotensin-converting enzyme inhibition on C-reactive protein levels: the ramipril C-reactive pRotein randomized evaluation (4R) trial results. Can J Cardiol. 2009;25(7):e236–40.Google Scholar
  449. 449.
    Shimozawa M, Naito Y, Manabe H, et al. The inhibitory effect of alacepril, an angiotensin-converting enzyme inhibitor, on endothelial inflammatory response induced by oxysterol and TNF-alpha. Redox Rep. 2004;9(6):354–9.Google Scholar
  450. 450.
    Ceconi C, Fox KM, Remme WJ, et al; EUROPA Investigators; PERTINENT Investigators and the Statistical Committee. ACE inhibition with perindopril and endothelial function. Results of a substudy of the EUROPA study: PERTINENT. Cardiovasc Res. 2007;73(1):237–46.Google Scholar
  451. 451.
    Roncal C, Orbe J, Rodriguez JA, et al. Influence of the 4G/5G PAI-1 genotype on angiotensin II-stimulated human endothelial cells and in patients with hypertension. Cardiovasc Res. 2004;63(1):176–85.Google Scholar
  452. 452.
    Gräfe M, Bossaller C, Graf K, et al. Effect of angiotensin-converting-enzyme inhibition on bradykinin metabolism by vascular endothelial cells. Am J Physiol. 1993;264(5 Pt 2):H1493–7.Google Scholar
  453. 453.
    Brown NJ, Gainer JV, Murphey LJ, Vaughan DE. Bradykinin stimulates tissue plasminogen activator release from human forearm vasculature through B(2) receptor-dependent, NO synthase-independent, and cyclooxygenase-independent pathway. Circulation. 2000;102(18):2190–6.Google Scholar
  454. 454.
    Van Guilder GP, Pretorius M, Luther JM, et al. Bradykinin type 2 receptor BE1 genotype influences bradykinin-dependent vasodilation during angiotensin-converting enzyme inhibition. Hypertension. 2008;51(2):454–9.Google Scholar
  455. 455.
    Oliveira-Paula GH, Lacchini R, Fontana V, Silva PS, Biagi C, Tanus-Santos JE. Polymorphisms in VEGFA gene affect the antihypertensive responses to enalapril. Eur J Clin Pharmacol. 2015;71(8):949–57.Google Scholar
  456. 456.
    Oliveira-Paula GH, Lacchini R, Luizon MR, et al. Endothelial nitric oxide synthase tagSNPs influence the effects of enalapril in essential hypertension. Nitric Oxide. 2016;55–56:62–9.Google Scholar
  457. 457.
    Mooser V, Nussberger J, Juillerat L, et al. Reactive hyperreninemia is a major determinant of plasma angiotensin II during ACE inhibition. J Cardiovasc Pharmacol. 1990;15(2):276–82.Google Scholar
  458. 458.
    Galea V, Triantafyllidi H, Theodoridis T, et al. Long-term treatment with ramipril favourably modifies the haemostatic response to acute submaximal exercise in hypertensives. J Renin Angiotensin Aldosterone Syst. 2013;14(4):322–9.Google Scholar
  459. 459.
    Cresci B, Giannini S, Pala L, Mavilia C, Manuelli C, Cappugi P, Maggi E, Rotella CM. AT1 and AT2 receptors in human glomerular endothelial cells at different passages. Microvasc Res. 2003;66(1):22–9.Google Scholar
  460. 460.
    Gräfe M, Auch-Schwelk W, Zakrzewicz A, Regitz-Zagrosek V, Bartsch P, Graf K, Loebe M, Gaehtgens P, Fleck E. Angiotensin II-induced leukocyte adhesion on human coronary endothelial cells is mediated by E-selectin. Circ Res. 1997;81(5):804–11.Google Scholar
  461. 461.
    Benndorf R, Böger RH, Ergün S, Steenpass A, Wieland T. Angiotensin II type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Circ Res. 2003;93(5):438–47.Google Scholar
  462. 462.
    Nishida T, Ayaori M, Shiotani K, et al. Beneficial effect of azilsartan and amlodipine on endothelial function in hypertensive patients. Atherosclerosis. 2016;252:e53.Google Scholar
  463. 463.
    Adachi S, Miura S, Shiga Y, et al. Depressor and anti-inflammatory effects of angiotensin II receptor blockers in metabolic and/or hypertensive patients with coronary artery disease: a randomized, prospective study (DIAMOND Study). J Clin Med Res. 2016;8(10):743–8.Google Scholar
  464. 464.
    Núñez A, Gómez J, Zalba LR, et al. Losartan inhibits in vitro platelet activation: comparison with candesartan and valsartan. J Renin Angiotensin Aldosterone Syst. 2000;1(2):175–9.Google Scholar
  465. 465.
    Montón M, Jiménez A, Núñez A, et al. Comparative effects of angiotensin II AT-1-type receptor antagonists in vitro on human platelet activation. J Cardiovasc Pharmacol. 2000;35(6):906–13.Google Scholar
  466. 466.
    Buda V, Andor M, Cristescu C, et al. The effect of candesartan on pentraxin-3 plasma levels as marker of endothelial dysfunction in patients with essential arterial hypertension. Ir J Med Sci. 2017;186(3):621–9.Google Scholar
  467. 467.
    Derosa G, Maffioli P, Salvadeo SA, et al. Candesartan effect on inflammation in hypertension. Hypertens Res. 2010;33(3):209–13.Google Scholar
  468. 468.
    Koh KK, Han SH, Chung WJ, et al. Comparison of effects of losartan, irbesartan, and candesartan on flow-mediated brachial artery dilation and on inflammatory and thrombolytic markers in patients with systemic hypertension. Am J Cardiol. 2004;93(11):1432–5 (A10).Google Scholar
  469. 469.
    Koh KK, Ahn JY, Han SH, et al. Pleiotropic effects of angiotensin II receptor blocker in hypertensive patients. J Am Coll Cardiol. 2003;42(5):905–10.Google Scholar
  470. 470.
    Skurk T, Lee YM, Nicuta-Rölfs TO, Haastert B, Wirth A, Hauner H. Effect of the angiotensin II receptor blocker candesartan on fibrinolysis in patients with mild hypertension. Diabetes Obes Metab. 2004;6(1):56–62.Google Scholar
  471. 471.
    Agirbasli M, Cincin A, Baykan OA. Short-term effects of angiotensin receptor blockers on blood pressure control, and plasma inflammatory and fibrinolytic parameters in patients taking angiotensin-converting enzyme inhibitors. J Renin Angiotensin Aldosterone Syst. 2008;9(1):22–6.Google Scholar
  472. 472.
    Sawathiparnich P, Murphey LJ, Kumar S, Vaughan DE, Brown NJ. Effect of combined AT1 receptor and aldosterone receptor antagonism on plasminogen activator inhibitor-1. J Clin Endocrinol Metab. 2003;88(8):3867–73.Google Scholar
  473. 473.
    Sakamoto M, Suzuki H, Hayashi T, et al. Effects of candesartan in hypertensive patients with type 2 diabetes mellitus on inflammatory parameters and their relationship to pulse pressure. Cardiovasc Diabetol. 2012;11:118.Google Scholar
  474. 474.
    Perrone-Filardi P, Corrado L, Brevetti G, et al. Effects of AT1 receptor antagonism with candesartan on endothelial function in patients with hypertension and coronary artery disease. J Clin Hypertens (Greenwich). 2009;11(5):260–5.Google Scholar
  475. 475.
    Isobe N, Taniguchi K, Oshima S, et al. Candesartan cilexetil improves left ventricular function, left ventricular hypertrophy, and endothelial function in patients with hypertensive heart disease. Circ J. 2002;66(11):993–9.Google Scholar
  476. 476.
    Suzuki H, Sakamoto M, Hayashi T, et al. Effects of co-administration of candesartan with pioglitazone on inflammatory parameters in hypertensive patients with type 2 diabetes mellitus: a preliminary report. Cardiovasc Diabetol. 2013;12:71.Google Scholar
  477. 477.
    Ghiadoni L, Virdis A, Magagna A, Taddei S, Salvetti A. Effect of the angiotensin II type 1 receptor blocker candesartan on endothelial function in patients with essential hypertension. Hypertension. 2000;35(1 Pt 2):501–6.Google Scholar
  478. 478.
    Palming J, Jansson PA, Renström F, et al. Hydrochlorothiazide compared to candesartan treatment increases adipose tissue gene expression and circulating levels of serum amyloid A in hypertensive patients. Horm Metab Res. 2011;43(5):319–24.Google Scholar
  479. 479.
    Koh KK, Chung WJ, Ahn JY, et al. Angiotensin II type 1 receptor blockers reduce tissue factor activity and plasminogen activator inhibitor type-1 antigen in hypertensive patients: a randomized, double-blind, placebo-controlled study. Atherosclerosis. 2004;177(1):155–60.Google Scholar
  480. 480.
    Rahman ST, Lauten WB, Khan QA, Navalkar S, Parthasarathy S, Khan BV. Effects of eprosartan versus hydrochlorothiazide on markers of vascular oxidation and inflammation and blood pressure (renin-angiotensin system antagonists, oxidation, and inflammation). Am J Cardiol. 2002;89(6):686–90.Google Scholar
  481. 481.
    Makris TK, Stavroulakis G, Papadopoulos DP, et al. Eprosartan effect on fibrinolytic/hemostatic variables in arterial hypertension: a comparative study to losartan. Drugs Exp Clin Res. 2004;30(3):125–32.Google Scholar
  482. 482.
    Labiós M, Martínez M, Gabriel F, Guiral V, Munoz A, Aznar J. Effect of eprosartan on cytoplasmic free calcium mobilization, platelet activation, and microparticle formation in hypertension. Am J Hypertens. 2004;17(9):757–63.Google Scholar
  483. 483.
    Rizos EC, Spyrou A, Liberopoulos EN, et al. Effects of eprosartan on serum metabolic parameters in patients with essential hypertension. Open Cardiovasc Med J. 2007;1:22–6.Google Scholar
  484. 484.
    Vázquez-Oliva G, Fernández-Real JM, Zamora A, Vilaseca M, Badimón L. Lowering of blood pressure leads to decreased circulating interleukin-6 in hypertensive subjects. J Hum Hypertens. 2005;19(6):457–62.Google Scholar
  485. 485.
    Jiang Y, Jiang LL, Maimaitirexiati XM, Zhang Y, Wu L. Irbesartan attenuates TNF-α-induced ICAM-1, VCAM-1, and E-selectin expression through suppression of NF-κB pathway in HUVECs. Eur Rev Med Pharmacol Sci. 2015;19(17):3295–302.Google Scholar
  486. 486.
    Bragulat E, Larrousse M, Coca A, de la Sierra A. Effect of long-term irbesartan treatment on endothelium-dependent vasodilation in essential hypertensive patients. Br J Biomed Sci. 2003;60(4):191–6.Google Scholar
  487. 487.
    Lethen H, Tries HP, Kersting S, Bramlage P, Lambertz H. Improvement of coronary microvascular function after Angiotensin receptor blocker treatment with irbesartan in patients with systemic hypertension. J Clin Hypertens (Greenwich). 2011;13(3):155–61.Google Scholar
  488. 488.
    Schieffer B, Bünte C, Witte J, et al. Comparative effects of AT1-antagonism and angiotensin-converting enzyme inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease. J Am Coll Cardiol. 2004;44(2):362–8.Google Scholar
  489. 489.
    Hwang YS, Tsai WC, Lu YH, Lin CC, Tsai KY. Effects of angiotensin II-receptor blockers on soluble cell adhesion molecule levels in uncomplicated systemic hypertension: an observational, controlled pilot study in Taiwanese adults. Curr Ther Res Clin Exp. 2005;66(3):181–94.Google Scholar
  490. 490.
    Morii J, Miura S, Shiga Y, et al. Comparison of the efficacy and safety of irbesartan and olmesartan in patients with hypertension (EARTH study). Clin Exp Hypertens. 2012;34(5):342–9.Google Scholar
  491. 491.
    Akdemir R, Ozhan H, Yazici M, et al. In vivo effect of losartan on platelet aggregation in patients with hypertension. Heart Vessels. 2004;19(4):167–71.Google Scholar
  492. 492.
    Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S, Iwasaka T. Losartan and simvastatin inhibit platelet activation in hypertensive patients. J Thromb Thrombolysis. 2004;18(3):177–85.Google Scholar
  493. 493.
    Sardo MA, Mandraffino G, Riggio S, et al. Effects of the angiotensin II receptor blocker losartan on the monocyte expression of biglycan in hypertensive patients. Clin Exp Pharmacol Physiol. 2010;37(9):933–8.Google Scholar
  494. 494.
    Koh KK, Quon MJ, Han SH, et al. Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients. Circulation. 2004;110(24):3687–92.Google Scholar
  495. 495.
    Doumas MN, Douma SN, Petidis KM, Vogiatzis KV, Bassagiannis IC, Zamboulis CX. Different effects of losartan and moxonidine on endothelial function during sympathetic activation in essential hypertension. J Clin Hypertens (Greenwich). 2004;6(12):682–9.Google Scholar
  496. 496.
    Papakonstantinou E, Roth M, Kokkas B, Papadopoulos C, Karakiulakis G. Losartan inhibits the angiotensin II-induced modifications on fibrinolysis and matrix deposition by primary human vascular smooth muscle cells. J Cardiovasc Pharmacol. 2001;38(5):715–28.Google Scholar
  497. 497.
    Seljeflot I, Moan A, Kjeldsen S, Sandvik E, Arnesen H. Effect of angiotensin II receptor blockade on fibrinolysis during acute hyperinsulinemia in patients with essential hypertension. Hypertension. 1996;27(6):1299–304.Google Scholar
  498. 498.
    Fogari R, Zoppi A, Mugellini A, Lazzari P, Derosa G. Different effects of aliskiren and losartan on fibrinolysis and insulin sensitivity in hypertensive patients with metabolic syndrome. Horm Metab Res. 2010;42(12):892–6.Google Scholar
  499. 499.
    Takase B, Nagata M. Fixed-dose combination of losartan and hydrochlorothiazide significantly improves endothelial function in uncontrolled hypertension by low-dose amlodipine: a randomized study. Anadolu Kardiyol Derg. 2014;14(8):685–91.Google Scholar
  500. 500.
    Perlstein TS, Henry RR, Mather KJ, et al. Effect of angiotensin receptor blockade on insulin sensitivity and endothelial function in abdominally obese hypertensive patients with impaired fasting glucose. Clin Sci (Lond). 2012;122(4):193–202.Google Scholar
  501. 501.
    Sosa-Canache B, Hernández-Hernández R, Armas-Padilla MC, et al. Effect of losartan therapy on endothelial function in hypertensive patients. Am J Ther. 2007;14(2):166–71.Google Scholar
  502. 502.
    Perl S, Schmölzer I, Sourij H, et al. Telmisartan improves vascular function independently of metabolic and antihypertensive effects in hypertensive subjects with impaired glucose tolerance. Int J Cardiol. 2010;139(3):289–96.Google Scholar
  503. 503.
    Chung NA, Beevers DG, Lip G. Effects of losartan versus hydrochlorothiazide on indices of endothelial damage/dysfunction, angiogenesis and tissue factor in essential hypertension. Blood Press. 2004;13(3):183–9.Google Scholar
  504. 504.
    Sardo MA, Castaldo M, Cinquegrani M, et al. Effects of AT1 receptor antagonist losartan on sICAM-1 and TNF-alpha levels in uncomplicated hypertensive patients. Angiology. 2004;55(2):195–203.Google Scholar
  505. 505.
    Cottone S, Vadalà A, Vella MC, et al. Changes of plasma endothelin and growth factor levels, and of left ventricular mass, after chronic AT1-receptor blockade in human hypertension. Am J Hypertens. 1998;11(5):548–53.Google Scholar
  506. 506.
    Hu ZP, Wang BN, Qian HY, Zhou Q, Wei W, Wang Y. Fixed-dose telmisartan/hydrochlorothiazide in comparison with losartan/hydrochlorothiazide in decreasing serum hepatocyte growth factor and improving endothelial dysfunction in hypertensive patients. Int Heart J. 2010;51(4):252–8.Google Scholar
  507. 507.
    Shand BI, Gilchrist NL, Nicholls MG, Bailey RR. Effect of losartan on haematology and haemorheology in elderly patients with essential hypertension: a pilot study. J Hum Hypertens. 1995;9(4):233–5.Google Scholar
  508. 508.
    Jiang P, Loyau S, Tchitchinadze M, Ropers J, Jondeau G, Jandrot-Perrus M. Inhibition of glycoprotein VI clustering by collagen as a mechanism of inhibiting collagen-induced platelet responses: the example of losartan. PLoS One. 2015;10(6):e0128744.Google Scholar
  509. 509.
    Calò LA, Dal Maso L, Pagnin E, et al. Effect of olmesartan medoxomil on number and survival of circulating endothelial progenitor cells and calcitonin gene related peptide in hypertensive patients. J Hypertens. 2014;32(1):193–9.Google Scholar
  510. 510.
    Mandraffino G, Aragona CO, Cairo V, et al. Circulating progenitor cells in hypertensive subjects: effectiveness of a treatment with olmesartan in improving cell number and miR profile in addition to expected pharmacological effects. PLoS One. 2017;12(3):e0173030.Google Scholar
  511. 511.
    Bulur S, Ozhan H, Erden I, et al. Efficacy of olmesartan therapy on fibrinolytic capacity in patients with hypertension. Blood Coagul Fibrinolysis. 2011;22(1):29–33.Google Scholar
  512. 512.
    Sacristán D, Marques M, Zamorano-León JJ, et al. Modifications by olmesartan medoxomil treatment of the platelet protein profile of moderate hypertensive patients. Proteom Clin Appl. 2008;2(9):1300–12.Google Scholar
  513. 513.
    Mason RP, Jacob RF, Kubant R, et al. Effects of angiotensin receptor blockers on endothelial nitric oxide release: the role of eNOS variants. Br J Clin Pharmacol. 2012;74(1):141–6.Google Scholar
  514. 514.
    Kaiser SE, Sanjuliani AF, Estato V, Gomes MB, Tibiriçá E. Antihypertensive treatment improves microvascular rarefaction and reactivity in low-risk hypertensive individuals. Microcirculation. 2013;20(8):703–16.Google Scholar
  515. 515.
    Naya M, Tsukamoto T, Morita K, et al. Olmesartan, but not amlodipine, improves endothelium-dependent coronary dilation in hypertensive patients. J Am Coll Cardiol. 2007;50(12):1144–9.Google Scholar
  516. 516.
    Kishi T, Hirooka Y, Konno S, Sunagawa K. Angiotensin II receptor blockers improve endothelial dysfunction associated with sympathetic hyperactivity in metabolic syndrome. J Hypertens. 2012;30(8):1646–55.Google Scholar
  517. 517.
    Cicha I, Urschel K, Daniel WG, Garlichs CD. Telmisartan prevents VCAM-1 induction and monocytic cell adhesion to endothelium exposed to non-uniform shear stress and TNF-α. Clin Hemorheol Microcirc. 2011;48(1):65–73.Google Scholar
  518. 518.
    Wago T, Yoshimoto T, Akaza I, et al. Improvement of endothelial function in patients with hypertension and type 2 diabetes after treatment with telmisartan. Hypertens Res. 2010;33(8):796–801.Google Scholar
  519. 519.
    Syrbe U, Moebes A, Scholze J, Swidsinski A, Dörffel Y. Effects of the angiotensin II type 1 receptor antagonist telmisartan on monocyte adhesion and activation in patients with essential hypertension. Hypertens Res. 2007;30(6):521–8.Google Scholar
  520. 520.
    Ono Y, Nakaya Y, Bando S, Soeki T, Ito S, Sata M. Telmisartan decreases plasma levels of asymmetrical dimethyl-l-arginine and improves lipid and glucose metabolism and vascular function. Int Heart J. 2009;50(1):73–83.Google Scholar
  521. 521.
    Galle J, Schwedhelm E, Pinnetti S, Böger RH, Wanner C; VIVALDI investigators. Antiproteinuric effects of angiotensin receptor blockers: telmisartan versus valsartan in hypertensive patients with type 2 diabetes mellitus and overt nephropathy. Nephrol Dial Transpl. 2008;23(10):3174–83.Google Scholar
  522. 522.
    Tomiyama H, Yamada J, Koji Y, Shiina K, Yoshida M, Yamashina A. Effect of telmisartan on forearm postischemic hyperemia and serum asymmetric dimethylarginine levels. Am J Hypertens. 2007;20(12):1305–11.Google Scholar
  523. 523.
    Xie QY, Wang YJ, Sun ZL, Yang TL. Effects of valsartan and indapamide on plasma cytokines in essential hypertension. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2006;31(5):629–34.Google Scholar
  524. 524.
    Liu L, Zhao SP, Zhou HN, Li QZ, Li JX. Effect of fluvastatin and valsartan, alone and in combination, on postprandial vascular inflammation and fibrinolytic activity in patients with essential hypertension. J Cardiovasc Pharmacol. 2007;50(1):50–5.Google Scholar
  525. 525.
    Serebruany VL, Pokov AN, Malinin AI, et al. Valsartan inhibits platelet activity at different doses in mild to moderate hypertensives: valsartan Inhibits Platelets (VIP) trial. Am Heart J. 2006;151(1):92–9.Google Scholar
  526. 526.
    Serebruany VL, Malinin AI, Lowry DR, et al. Effects of valsartan and valeryl 4-hydroxy valsartan on human platelets: a possible additional mechanism for clinical benefits. J Cardiovasc Pharmacol. 2004;43(5):677–84.Google Scholar
  527. 527.
    Celık T, Balta S, Karaman M, et al. Endocan, a novel marker of endothelial dysfunction in patients with essential hypertension: comparative effects of amlodipine and valsartan. Blood Press. 2015;24(1):55–60.Google Scholar
  528. 528.
    Conen D, Everett BM, Glynn RJ, Ridker PM. Effect of valsartan compared with valsartan/hydrochlorothiazide on plasma levels of cellular adhesion molecules: the Val-MARC trial. Heart. 2008;94(3):e13.Google Scholar
  529. 529.
    Wu ZB, Zhang Y, Yu QG, Sun CX, Tao CW. Effects of valsartan combined with amlodipine or hydrochlorothiazide regimen on blood pressure variation in elderly hypertensive patients. Zhonghua Xin Xue Guan Bing Za Zhi. 2012;40(1):8–13.Google Scholar
  530. 530.
    Wu F, Wang HY, Cai F, et al. Valsartan decreases platelet activity and arterial thrombotic events in elderly patients with hypertension. Chin Med J (Engl). 2015;128(2):153–8.Google Scholar
  531. 531.
    Pathansali R, Smith NM, Bath PM. Prothrombotic megakaryocyte and platelet changes in hypertension are reversed following treatment: a pilot study. Platelets. 2001;12(3):144–9.Google Scholar
  532. 532.
    Ridker PM, Danielson E, Rifai N, Glynn RJ, Val-MARC Investigators. Valsartan, blood pressure reduction, and C-reactive protein: primary report of the Val-MARC trial. Hypertension. 2006;48(1):73–9.Google Scholar
  533. 533.
    Ruilope LM, Malacco E, Khder Y, Kandra A, Bönner G, Heintz D. Efficacy and tolerability of combination therapy with valsartan plus hydrochlorothiazide compared with amlodipine monotherapy in hypertensive patients with other cardiovascular risk factors: the VAST study. Clin Ther. 2005;27(5):578–87.Google Scholar
  534. 534.
    Liu Q, Han L, Du Q, Zhang M, Zhou S, Shen X. The association between oxidative stress, activator protein-1, inflammatory, total antioxidant status and artery stiffness and the efficacy of olmesartan in elderly patients with mild-to-moderate essential hypertension. Clin Exp Hypertens. 2016;38(4):365–9.Google Scholar
  535. 535.
    Dörffel Y, Lätsch C, Stuhlmüller B, et al. Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension. 1999;34(1):113–7.Google Scholar
  536. 536.
    Lorenzen JM, Neunhöffer H, David S, Kielstein JT, Haller H, Fliser D. Angiotensin II receptor blocker and statins lower elevated levels of osteopontin in essential hypertension–results from the EUTOPIA trial. Atherosclerosis. 2010;209(1):184–8.Google Scholar
  537. 537.
    Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600.Google Scholar
  538. 538.
    Toyama T, Sato C, Koyama K, et al. Olmesartan improves coronary flow reserve of hypertensive patients using coronary magnetic resonance imaging compared with amlodipine. Cardiology. 2012;122(4):230–6.Google Scholar
  539. 539.
    Ramadan R, Dhawan SS, Binongo JN, et al. Effect of angiotensin II type I receptor blockade with valsartan on carotid artery atherosclerosis: a double blind randomized clinical trial comparing valsartan and placebo (EFFERVESCENT). Am Heart J. 2016;174:68–79.Google Scholar
  540. 540.
    Terashima M, Kaneda H, Nasu K, et al. Protective effect of telmisartan against endothelial dysfunction after coronary drug-eluting stent implantation in hypertensive patients. JACC Cardiovasc Interv. 2012;5(2):182–90.Google Scholar
  541. 541.
    Gkaliagkousi E, Gavriilaki E, Yiannaki E, et al. Platelet activation in essential hypertension during exercise: pre- and post-treatment changes with an angiotensin II receptor blocker. Am J Hypertens. 2014;27(4):571–8.Google Scholar
  542. 542.
    Liakos CI, Vyssoulis GP, Michaelides AP, et al.The effects of angiotensin receptor blockers vs. calcium channel blockers on the acute exercise-induced inflammatory and thrombotic response. Hypertens Res. 2012;35(12):1193–200.Google Scholar
  543. 543.
    Davis PG, Ferguson MA, Alderson NL, Pate RR, Bodary PF, Durstine JL. Effect of exercise duration on plasma endothelin-1 concentration. J Sports Med Phys Fitness. 2005;45(3):419–23.Google Scholar
  544. 544.
    Young LS, Murphy G, Kelly SN, Smith TP, Cunningham SK, Joseph McKenna T. Differential production of adrenal steroids by purified cells of the human adrenal cortex is relative rather than absolute. Eur J Endocrinol. 2003;148(1):139–45.Google Scholar
  545. 545.
    Atlas SA, Case DB, Sealey JE, Laragh JH, McKinstry DN. Interruption of the renin-angiotensin system in hypertensive patients by captopril induces sustained reduction in aldosterone secretion, potassium retention and natruiresis. Hypertension. 1979;1(3):274–80.Google Scholar
  546. 546.
    Wu CT, Wang ZH, Li ZQ, Wang LF. Effect of spironolactone on cardiac remodeling after acute myocardial infarction. World J Emerg Med. 2013;4(1):48–53.Google Scholar
  547. 547.
    Yalcin AI, Dincer M, Aslan V, Gulbas Z. Effect of spironolactone on impaired fibrinolysis of hypertensive patients. Kidney Blood Press Res. 2002;25(4):260–4.Google Scholar
  548. 548.
    Yano Y, Hoshide S, Tamaki N, et al. Efficacy of eplerenone added to renin-angiotensin blockade in elderly hypertensive patients: the Jichi-Eplerenone Treatment (JET) study. J Renin Angiotensin Aldosterone Syst. 2011;12(3):340–7.Google Scholar
  549. 549.
    Kaşifoğlu T, Yalçin AU. The effects of thiazide and thiazide-potassium sparing diuretics on fibrinolytic system parameters. Anadolu Kardiyol Derg. 2006;6(2):143–7.Google Scholar
  550. 550.
    Sawathiparnich P, Kumar S, Vaughan DE, Brown NJ. Spironolactone abolishes the relationship between aldosterone and plasminogen activator inhibitor-1 in humans. J Clin Endocrinol Metab. 2002;87(2):448–52.Google Scholar
  551. 551.
    Angeli F, Reboldi G, Mazzotta G, Poltronieri C, Verdecchia P. Safety and efficacy of aliskiren in the treatment of hypertension: a systematic overview. Expert Opin Drug Saf. 2012;11(4):659–70.Google Scholar
  552. 552.
    Serebruany VL, Malinin A, Barsness G, Vahabi J, Atar D. Effects of aliskiren, a renin inhibitor, on biomarkers of platelet activity, coagulation and fibrinolysis in subjects with multiple risk factors for vascular disease. J Hum Hypertens. 2008;22(5):303–10.Google Scholar
  553. 553.
    Ishibashi K, Kurisu S, Kato Y, et al. Effects of aliskiren on the fibrinolytic system in patients with coronary artery disease receiving angiotensin-converting enzyme inhibitor or angiotensin II type 1 receptor blocker. Heart Vessels. 2013;28(1):7–11.Google Scholar
  554. 554.
    Mackie PH, Thomson MR, Levine DF, Branch RA. A comparison of the effect of furosemide and bumetanide on the diuretic response and fibrinolytic mechanism in man. Br J Clin Pharmacol. 1976;3(4):613–9.Google Scholar
  555. 555.
    Kribben A, Fritschka E, Sibold M, et al. Different effects of furosemide on alpha-adrenoceptors and on platelet aggregation in man. Klin Wochenschr. 1988;66(14):624–7.Google Scholar
  556. 556.
    Funder J, Hershco L, Rothstein A, Livne A. Na+/H+ exchange and aggregation of human platelets activated by ADP: the exchange is not required for aggregation. Biochim Biophys Acta. 1988;938(3):425–33.Google Scholar
  557. 557.
    Siffert W, Gengenbach S, Scheid. Inhibition of platelet aggregation by amiloride. Thrombosis Res 1986;44:235–240.Google Scholar
  558. 558.
    Rendu F, Bachelot C, Molle D, Caen J, Guez D. Indapamide inhibits human platelet aggregation in vitro: comparison with hydrochlorothiazide. J Cardiovasc Pharmacol. 1993;22(Suppl 6):S57–63.Google Scholar
  559. 559.
    Chohan IS. Effects of piretanide on plasma fibrinolytic activity, platelet aggregation and platelet factor-4 release in man. J Biosci. 1986;10:243–9.Google Scholar
  560. 560.
    Zeng S, Yi FX, Guo ZG. Platelet activating factor-induced P-selectin expression in platelets and its related signal transduction. Zhongguo Yao Li Xue Bao. 1999;20(10):948–50.Google Scholar
  561. 561.
    Khder Y, Bray des Boscs L, el Ghawi R, et al. Calcium antagonists and thiazide diuretics have opposite effects on blood rheology and radial artery compliance in arterial hypertension: a randomized double-blind study. Fundam Clin Pharmacol. 1998;12(4):457–62.Google Scholar
  562. 562.
    Muravyov AV, Yakusevich VV, Kabanov AV, Petrochenko AS. The effect of diuretics on red blood cell microrheological parameters in female hypertensive patients. Clin Hemorheol Microcirc. 2005;33(2):121–6.Google Scholar
  563. 563.
    Labiós M, Romero M, Gabriel F, Fuster E, Tatay E, Vallés R. The blood rheology of diuretics. Rev Clin Esp. 1990;187(4):158–61.Google Scholar
  564. 564.
    Schram MT, van Ittersum FJ, Spoelstra-de Man A, et al. Aggressive antihypertensive therapy based on hydrochlorothiazide, candesartan or lisinopril as initial choice in hypertensive type II diabetic individuals: effects on albumin excretion, endothelial function and inflammation in a double-blind, randomized clinical trial. J Hum Hypertens. 2005;19(6):429–37.Google Scholar
  565. 565.
    Vinereanu D, Dulgheru R, Magda S, et al. The effect of indapamide versus hydrochlorothiazide on ventricular and arterial function in patients with hypertension and diabetes: results of a randomized trial. Am Heart J. 2014;168(4):446–56.Google Scholar
  566. 566.
    Mühlen BV, Millgård J, Lind L. Effects of digoxin, furosemide, enalaprilat and metoprolol on endothelial function in young normotensive subjects. Clin Exp Pharmacol Physiol. 2001;28(5–6):381–5.Google Scholar
  567. 567.
    Semenkin AA, Zhivilova LA, Golevtsova ZSh, et al. Comparative assessment of hypotensive, metabolic, and endothelial effects of indapamide-retard and hydrochlorothiazide in patients with essential hypertension. Kardiologiia. 2006;46(5):35–9.Google Scholar
  568. 568.
    Dell’Omo G, Penno G, Del Prato S, Pedrinelli R. Chlorthalidone improves endothelial-mediated vascular responses in hypertension complicated by nondiabetic metabolic syndrome. J Cardiovasc Pharmacol Ther. 2005;10(4):265–72.Google Scholar
  569. 569.
    Yamanari H, Nakamura K, Miura D, Yamanari S, Ohe T. Spironolactone and chlorthalidone in uncontrolled elderly hypertensive patients treated with calcium antagonists and angiotensin II receptor-blocker: effects on endothelial function, inflammation, and oxidative stress. Clin Exp Hypertens. 2009;31(7):585–94.Google Scholar
  570. 570.
    Lenders M, Hofschröer V, Schmitz B, et al. Differential response to endothelial epithelial sodium channel inhibition ex vivo correlates with arterial stiffness in humans. J Hypertens. 2015;33(12):2455–62.Google Scholar
  571. 571.
    Bricca G, Dontenwill M, Molines A, et al. Rilmenidine selectivity for imidazoline receptors in human brain. Eur J Pharmacol. 1989;163(2–3):373–7.Google Scholar
  572. 572.
    Giugliano D, Acampora R, Marfella R, et al. Hemodynamic and metabolic effects of transdermal clonidine in patients with hypertension and non-insulin-dependent diabetes mellitus. Am J Hypertens. 1998;11(2):184–9.Google Scholar
  573. 573.
    Lazzarin M, Ferrari S. Effects of clonidine on various blood-coagulation parameters in hypertension. Minerva Med. 1977;68(4):229–34.Google Scholar
  574. 574.
    Knypl K, Wocial B, Chodakowska J, et al. Effect of long-term treatment with guanfacine on selected humoral metabolic indices in patients with primary hypertension. Pol Tyg Lek. 1989;44(12–13):293–6.Google Scholar
  575. 575.
    Hayashi J, Sato H, Tanaka Y, et al. Guanabenz, an antihypertensive centrally acting alpha2-agonist, suppresses morning elevations in aggregation of human platelets. J Cardiovasc Pharmacol. 2001;37(1):89–93.Google Scholar
  576. 576.
    Bergerhausen J. Moxonidine (BE 5895), a full agonist at human platelet alpha 2 adrenoceptors. Naunyn Schmiedeberg’s Arch Pharmac. 1985;329:R80.Google Scholar
  577. 577.
    Baliakina EV, Patrusheva IF, Rynskova EE, Iurenev AP. Efficacy of moxonidine, an imidazoline receptor agonist, in patients with essential hypertension. Ter Arkh. 1998;70(1):15–9.Google Scholar
  578. 578.
    Krespi PG, Makris TK, Hatzizacharias AN, et al. Moxonidine effect on microalbuminuria, thrombomodulin, and plasminogen activator inhibitor-1 levels in patients with essential hypertension. Cardiovasc Drugs Ther. 1998;12(5):463–7.Google Scholar
  579. 579.
    Vengerovskiĭ AI, Idrisova EM, Bushkova EA, Mananko EI, Krasnova NM. The influence of antihypertensive agents on plasmatic and vascular-thrombocytic homeostasis in metabolic syndrome. Eksp Klin Farmakol. 2008;71(6):8–12.Google Scholar
  580. 580.
    Topal E, Cikim AS, Cikim K, Temel I, Ozdemir R. The effect of moxonidine on endothelial dysfunction in metabolic syndrome. Am J Cardiovasc Drugs. 2006;6(5):343–8.Google Scholar
  581. 581.
    Dorresteijn JA, Schrover IM, Visseren FL, et al. Differential effects of renin-angiotensin-aldosterone system inhibition, sympathoinhibition and diuretic therapy on endothelial function and blood pressure in obesity-related hypertension: a double-blind, placebo-controlled cross-over trial. J Hypertens. 2013;31(2):393–403.Google Scholar
  582. 582.
    Remková A, Kratochvíl’ová H. Effect of the new centrally acting antihypertensive agent rilmenidine on endothelial and platelet function in essential hypertension. J Hum Hypertens. 2002;16(8):549–55.Google Scholar
  583. 583.
    Laukkanen JA, Jennings JR, Kauhanen J, Mäkikallio TH, Ronkainen K, Kurl S. Relation of systemic blood pressure to sudden cardiac death. Am J Cardiol. 2012;110(3):378–82.Google Scholar
  584. 584.
    Kurl S, Laukkanen JA, Rauramaa R, Lakka TA, Sivenius J, Salonen JT. Systolic blood pressure response to exercise stress test and risk of stroke. Stroke. 2001;32(9):2036–41.Google Scholar
  585. 585.
    Laukkanen JA, Willeit P, Kurl S, et al. Elevated systolic blood pressure during recovery from exercise and the risk of sudden cardiac death. J Hypertens. 2014;32(3):659–66.Google Scholar
  586. 586.
    Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 4. Effects of various classes of antihypertensive drugs–overview and meta-analyses. J Hypertens. 2015;33(2):195–211.Google Scholar
  587. 587.
    Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–67.Google Scholar
  588. 588.
    Paz MA, de-La-Sierra A, Sáez M, et al. Treatment efficacy of anti-hypertensive drugs in monotherapy or combination: ATOM systematic review and meta-analysis of randomized clinical trials according to PRISMA statement. Medicine (Baltimore). 2016;95(30):e4071.Google Scholar
  589. 589.
    Motro M, Shemesh J. Calcium channel blocker nifedipine slows down progression of coronary calcification in hypertensive patients compared with diuretics. Hypertension. 2001;37(6):1410–3.Google Scholar
  590. 590.
    Cuspidi C, Negri F, Giudici V, Capra A, Sala C. Effects of antihypertensive drugs on carotid intima-media thickness: focus on angiotensin II receptor blockers. A review of randomized, controlled trials. Integr Blood Press Control. 2009;2:1–8.Google Scholar
  591. 591.
    Freemantle N, Cleland J, Young P, Mason J, Harrison J. beta Blockade after myocardial infarction: systematic review and meta regression analysis. BMJ. 1999;318(7200):1730–7.Google Scholar
  592. 592.
    Kendall MJ, Lynch KP, Hjalmarson A, Kjekshus J. Beta-blockers and sudden cardiac death. Ann Intern Med. 1995;123(5):358–67.Google Scholar
  593. 593.
    Chen ZM, Pan HC, Chen YP, et al; COMMIT (ClOpidogrel and Metoprolol in Myocardial Infarction Trial) collaborative group. Early intravenous then oral metoprolol in 45, 852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet. 2005; 366(9497):1622–32.Google Scholar
  594. 594.
    Heart Outcomes Prevention Evaluation Study Investigators, Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342(3):145–53.Google Scholar
  595. 595.
    Fox KM; EURopean trial On reduction of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362(9386):782–8.Google Scholar
  596. 596.
    SOLVD Investigators, Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325(5):293–302.Google Scholar
  597. 597.
    Turnbull F, Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362(9395):1527–35.Google Scholar
  598. 598.
    van Vark LC, Bertrand M, Akkerhuis KM, et al. Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: a meta-analysis of randomized clinical trials of renin-angiotensin-aldosterone system inhibitors involving 158, 998 patients. Eur Heart J. 2012;33(16):2088–97.Google Scholar
  599. 599.
    Sleight P. The HOPE Study (Heart Outcomes Prevention Evaluation). J Renin Angiotensin Aldosterone Syst. 2000;1(1):18–20.Google Scholar
  600. 600.
    Sindone A, Erlich J, Lee C, Newman H, Suranyi M, Roger SD. Cardiovascular risk reduction in hypertension: angiotensin-converting enzyme inhibitors, angiotensin receptor blockers. Where are we up to? Intern Med J. 2016;46(3):364–72.Google Scholar
  601. 601.
    Brugts JJ, van Vark L, Akkerhuis M, et al. Impact of renin-angiotensin system inhibitors on mortality and major cardiovascular endpoints in hypertension: a number-needed-to-treat analysis. Int J Cardiol. 2015;181:425–9.Google Scholar
  602. 602.
    Li EC, Heran BS, Wright JM. Angiotensin converting enzyme (ACE) inhibitors versus angiotensin receptor blockers for primary hypertension. Cochrane Database Syst Rev. 2014;(8):CD009096.Google Scholar
  603. 603.
    Mancia G, De Backer G, Dominiczak A, et al. 2007 guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25:1105–87.Google Scholar
  604. 604.
    Chobanian AV, Bakris GL, Black HR, et al. The Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72.Google Scholar
  605. 605.
    Salvetti A, Ghiadoni L. Thiazide diuretics in the treatment of hypertension: an update. J Am Soc Nephrol. 2006;17(4 Suppl 2):S25–9.Google Scholar
  606. 606.
    Verdecchia P, Angeli F, Reboldi GP, Gattobigio R. New-onset diabetes in treated hypertensive patients. Curr Hypertens Rep. 2005;7(3):174–9.Google Scholar
  607. 607.
    Medical Research Council Working Party. Medical Research Council trial of treatment of hypertension in older adults: principal results. BMJ. 1992;304(6824):405–12.Google Scholar
  608. 608.
    Curb JD, Pressel SL, Cutler JA, et al. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. Systolic Hypertension in the Elderly Program Cooperative Research Group. JAMA. 1996;276(23):1886–92.Google Scholar
  609. 609.
    Blood Pressure Lowering Treatment Trialists’ Collaboration, Turnbull F, Neal B, Ninomiya T, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ. 2008;336(7653):1121–3.Google Scholar
  610. 610.
    Olde Engberink RH, Frenkel WJ, van den Bogaard B, Brewster LM, Vogt L, van den Born BJ. Effects of thiazide-type and thiazide-like diuretics on cardiovascular events and mortality: systematic review and meta-analysis. Hypertension. 2015;65(5):1033–40.Google Scholar
  611. 611.
    Williams B, Lacy PS, Thom SM, et al., CAFE Investigators, Anglo-Scandinavian Cardiac Outcomes Trial Investigators, CAFE Steering Committee and Writing Committee. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113(9):1213–25.Google Scholar
  612. 612.
    Mackenzie IS, McEniery CM, Dhakam Z, Brown MJ, Cockcroft JR, Wilkinson IB. Comparison of the effects of antihypertensive agents on central blood pressure and arterial stiffness in isolated systolic hypertension. Hypertension. 2009;54(2):409–13.Google Scholar
  613. 613.
    Mancia G, Fagard R, Narkiewicz K, et al, Task Force for the Management of Arterial Hypertension of the European Society of Hypertension and the European Society of Cardiology. 2013 ESH/ESC practice guidelines for the management of arterial hypertension. Blood Press. 2014;23(1):3–16.Google Scholar
  614. 614.
    Fretheim A, Odgaard-Jensen J, Brørs O, et al. Comparative effectiveness of antihypertensive medication for primary prevention of cardiovascular disease: systematic review and multiple treatments meta-analysis. BMC Med. 2012;10:33.Google Scholar
  615. 615.
    Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering treatment on cardiovascular outcomes and mortality: 14—effects of different classes of antihypertensive drugs in older and younger patients: overview and meta-analysis. J Hypertens. 2018.  https://doi.org/10.1097/hjh.0000000000001777 (Epub ahead of print).
  616. 616.
    Bots ML, Remme WJ, Lüscher TF, et al; EUROPA-PERFECT Investigators. ACE inhibition and endothelial function: main findings of PERFECT, a sub-study of the EUROPA trial. Cardiovasc Drugs Ther. 2007;21(4):269–79.Google Scholar
  617. 617.
    De Caprio L, De Rosa ML, Di Palma A, et al. Regression of left ventricular hypertrophy and improvement of renal hemodynamics in hypertensive patients treated with quinapril. Cardiovasc Drugs Ther. 1994;8(5):735–40.Google Scholar
  618. 618.
    Mitsunami K, Inoue S, Maeda K, et al. Three-month effects of candesartan cilexetil, an angiotensin II type 1 (AT1) receptor antagonist, on left ventricular mass and hemodynamics in patients with essential hypertension. Cardiovasc Drugs Ther. 1998;12(5):469–74.Google Scholar
  619. 619.
    Remme WJ, Deckers JW, Fox KM, Ferrari R, Bertrand M, Simoons ML, EUROPA Investigators. Secondary prevention of coronary disease with ACE inhibition–does blood pressure reduction with perindopril explain the benefits in EUROPA? Cardiovasc Drugs Ther. 2009;23(2):161–70.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ambulatory of Cardiovascular DiseasesTrapaniItaly

Personalised recommendations