Advertisement

A Perspective: the Technical Barriers of Zn Metal Batteries

  • Xiulei JiEmail author
  • Heng Jiang
Review
  • 10 Downloads

Abstract

Energy storage will witness a leap of understanding of new battery chemistries. Considering the safety that cannot be compromised, new aqueous batteries may surface as the solutions to meet the immense market needs, where the growth of renewables is no longer limited by the lack of storage. Aqueous Zn-metal batteries are intriguing candidates to deliver the desirable properties and exhibit competitive levelized energy cost. However, the fact that most commercial Zn batteries are primary batteries states the difficulty of reversibility for the reactions of electrodes in such batteries. This article will highlight the practical needs that guide the development of storage batteries. The causes of irreversibility for both cathode and zinc metal anode are discussed, and the potential solutions for these challenges are summarized. Zn metal batteries may one day address the storage needs, and there exists a vast potential to further improve the properties of reactions in this battery.

Keywords

Zn-metal battery Storage battery Zn-metal anode Hydrogen evolution reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ji X., Energy & Environment Science, 2019, 12, 3203CrossRefGoogle Scholar
  2. [2]
  3. [3]
    Wang X., Yasukawa E., Kasuya S., Journal of the Electrochemistry Society, 2001, 148, A1058CrossRefGoogle Scholar
  4. [4]
    Zeng Z., Murugesan V., Han K. S., Jiang X., Cao Y., Xiao L., Ai X., Yang H., Zhang J. G., Sushko M. L., Liu J., Nature Energy, 2018, 3, 674.CrossRefGoogle Scholar
  5. [5]
    Wang J., Yamada Y., Sodeyama K., Watanabe E., Takada K., Tateyama Y., Yamada A., Nature Energy, 2018, 3, 22CrossRefGoogle Scholar
  6. [6]
    Kundu D., Talaie E., Duffort V., Nazar L. F., Angewandte Chemie International Edition, 2015, 54, 3431PubMedCrossRefGoogle Scholar
  7. [7]
    Delmas C, Advanced Energy Materials, 2018, 8, 1703137CrossRefGoogle Scholar
  8. [8]
    Wu X., Leonard D. P., Ji X., Chemistry ofMateriasl, 2017, 29, 5031Google Scholar
  9. [9]
    Jian Z., Luo W., Ji X., Journal of the American Chemical Society, 2015, 137, 11566PubMedCrossRefGoogle Scholar
  10. [10]
    Li Z., Bommier C., Chong Z. S., Jian Z., Surta T. W., Wang X., Xing Z., Neuefeind J. C., Stickle W. E., Dolgos M., Greaney P. A., Ji X., Advanced Energy Materials, 2017, 7, 1602894CrossRefGoogle Scholar
  11. [11]
    Aurbach D., Lu Z., Schechter A., Gofer Y., Gizbar EL, Turgeman R., Cohen Y., Moshkovich M., Levi E., Nature, 2000, 407, 724PubMedCrossRefGoogle Scholar
  12. [12]
    Lin M. C., Gong M., Lu B., Wu Y., Wang D. Y., Guan M., Angell M., Chen C., Yang J., Hwang B. J., Dai H., Nature, 2015, 520, 324CrossRefGoogle Scholar
  13. [13]
    Shyamsunder A., Blanc L. E., Assoud A., Nazar L. F., ACS Energy Letter, 2019, 4, 2271CrossRefGoogle Scholar
  14. [14]
    Zhang M., Song X., Ou X., Tang Y., Energy Storage Materials, 2019, 76, 65CrossRefGoogle Scholar
  15. [15]
    Rodriguez-Perez I. A., Ji X., ACS Energy Letter, 2017, 2, 1762CrossRefGoogle Scholar
  16. [16]
    Zhou X., Liu Q., Jiang C., Ji B., Ji X., Tang Y., Cheng H M., Angewandte Chemie International Edition, 2019, 58, 2CrossRefGoogle Scholar
  17. [17]
    Edison T. A., Reversible Galvanic Battery, U.S. Patent 678, 722, 1901 Google Scholar
  18. [18]
    Whittingham M. S., Science, 1976, 192, 1126PubMedCrossRefGoogle Scholar
  19. [19]
    Mizushima K., Jones P., Wiseman P., Goodenough J. B., Materials Research Bulletin, 1980, 75, 783CrossRefGoogle Scholar
  20. [20]
    Turney D. E., Gallaway J. W., Yadav G. G., Ramirez R., Nyce M., Banerjee S., Chen-Wiegart Y. C. K., Wang J., D’Ambrose M. J., Kolhekar S., Chemistry of Materials, 2017, 29, 4819CrossRefGoogle Scholar
  21. [21]
    Wu X., Xu Y., Jiang H., Wei Z., Hong J. J., Hernandez A. S., Du E., Ji X., ACS Applied Energy Materials, 2018, 7, 3077CrossRefGoogle Scholar
  22. [22]
    Wang F., Borodin O., Gao T., Fan X., Sun W., Han F., Faraone A., Dura J. A., Xu K., Wang C., Nature Materials, 2018, 17, 543PubMedCrossRefGoogle Scholar
  23. [23]
    Yufit V., Tariq F., Eastwood D. S., Biton M., Wu B., Lee P. D., Brandon N. P., Joule, 2019, 3, 485CrossRefGoogle Scholar
  24. [24]
    Higashi S., Lee S. W., Lee J. S., Takechi K., Cui Y., Nature Communications, 2016, 7, 11801PubMedPubMedCentralCrossRefGoogle Scholar
  25. [25]
    Li S., Jiang M., Xie Y., Xu H., Jia J., Li I., Advanced Materials, 2018, 30, 1706375CrossRefGoogle Scholar
  26. [26]
    Parker J. E., Pala I. R., Chervin C. N., Long J. W., Rolison D. R., Journal of the Electrochemistry Society, 2016, 163, A351CrossRefGoogle Scholar
  27. [27]
    Parker J. F., Chervin C. N., Pala I. R., Machler M., Burz M. R., Long J. W., Rolison D. R., Science, 2017, 356, 415PubMedCrossRefGoogle Scholar
  28. [28]
    Xu C., Li B., Du H., Kang F., Angewandte Chemie International Edition, 2012, 57, 933CrossRefGoogle Scholar
  29. [29]
    Zhang N., Cheng F., Liu Y., Zhao Q., Lei K., Chen C., Liu X., Chen J., Journal of the American Chemical Society, 2016, 138, 12894PubMedCrossRefGoogle Scholar
  30. [30]
    Ma L., Li N., Long C., Dong B., Fang D., Liu Z., Zhao Y., Li X., Fan I., Chen S., Advanced Functional Materials, 2019, 29, 1906142CrossRefGoogle Scholar
  31. [31]
    Zhao Q., Huang W., Luo Z., Liu L., Lu Y., Li Y., Li L., Hu J., Ma H., Chen J., Science Advances, 2018, 4, e1761CrossRefGoogle Scholar
  32. [32]
    Wu X., Xu Y., Zhang C., Leonard D. P., Markir A., Lu J., Ji X., Journal of the American Chemical Society, 2019, 141, 6338PubMedCrossRefGoogle Scholar
  33. [33]
    Kundu D., Adams B. D., Duffort V., Vajargah S. H., Nazar L. F., Nature Energy, 2016, 1, 16119CrossRefGoogle Scholar
  34. [34]
    Sun W., Wang F., Hou S., Yang C., Fan X., Ma Z., Gao T., Han F., Hu R., Zhu M., Wang C., Journal of the American Chemical Society, 2017, 139, 9775PubMedCrossRefGoogle Scholar
  35. [35]
    Yadav G. G., Gallaway J. W., Purney D. E., Nyce M., Huang J., Wei X., Banerjee S., Nature Communications, 2017, 8, 14424PubMedPubMedCentralCrossRefGoogle Scholar
  36. [36]
    Zhang C., Holoubek J., Wu X., Daniyar A., Zhu L., Chen C., Leonard D. P., Rodriguez-Perez I. A., Jiang J. X. Jiang C., Ji X., Chemical Communications, 2018, 54, 14097PubMedCrossRefGoogle Scholar
  37. [37]
    Suo L., Borodin O., Gao P., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K., Science, 2015, 350, 938PubMedCrossRefGoogle Scholar
  38. [38]
    Dubouis N., Lemaire P., Mirvaux B., Salager E., Deschamps M., Grimaud A., Energy & Environmental Science, 2018, 11, 3491CrossRefGoogle Scholar
  39. [39]
    Zheng J., Pan G., Shan P., Liu P., Hu J., Feng Y., Yang L., Zhang M., Chen Z., Lin Y., Chem, 2018, 4, 2872CrossRefGoogle Scholar
  40. [40]
    Li X., Liu L., Schlegel H. B., Journal of the American Chemical Society, 2002, 124, 9639PubMedCrossRefGoogle Scholar
  41. [41]
    Dou Q., Lu Y., Su L., Zhang X., Lei S., Bu X., Liu L., Xiao D., Chen J., Shi S., Energy Storage Materials, 2019, 23, 603CrossRefGoogle Scholar
  42. [42]
    Zhao J., Ren H., Liang Q., Yuan D., Xi S., Wu C., Manalastas Jr. W., Ma J., Fang W., Zheng Y., Nano Energy, 2019, 62, 94CrossRefGoogle Scholar
  43. [43]
    Wu X., Markir A., Xu Y., Zhang C., Leonard D. P., Shin W., Ji X., Advanced Functional Materials, 2019, 29, 1900911CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2020

Authors and Affiliations

  1. 1.Department of ChemistryOregon State UniversityCorvallisUSA

Personalised recommendations