Advertisement

pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion

  • 3 Accesses

Abstract

pH-Responsive DNA assembles have drawn growing attentions owing to their great potential in diverse areas. However, pH-responsive motifs are limited to specific DNA sequences and annealing is usually needed for DNA assemblies; therefore, sequence-independent pH-responsive DNA assembly at room temperature is highly desired as a more general way. Here, we propose a reversible pH-responsive DNA assembly strategy at room-temperature using zwitterion, glycine betaine(GB), as charge-regulation molecules. The reversible assembly and disassembly of DNA nanostructures could be achieved by alternatively regulating the acidic and basic environments in the presence of GB, respectively. In an acidic environment, carboxylate group in GB was protonated and GB was positively charged, which facilitated to shield the inherent electrostatic repulsion of DNA strands. Molecular simulation showed that the newly formed carboxyl group in protonated GB could form hydrogen bonds with bases in DNA to promote the assembly of DNA strands. In a basic solution, carboxylate group in GB was deprotonated and GB was neutral, thus inducing the dissociation of DNA assembly.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Zhang D. Y., Seelig G., Nat. Chem., 2011, 3(2), 103

  2. [2]

    Liu X., Lu C. H., Willner I., Acc. Chem. Res., 2014, 47(6), 1673

  3. [3]

    Modi S., Nizak C., Surana S., Halder S., Krishnan Y., Nat. Nanotechnol., 2013, 8(6), 459

  4. [4]

    Han X. G., Zhou Z. H., Yang F., Deng Z. X., J. Am. Chem. Soc., 2008, 130(44), 14414

  5. [5]

    Wang C., Ren J., Qu X., Chem. Commun., 2011, 47(5), 1428

  6. [6]

    Wang Z. G., Elbaz J., Willner I., Nano Lett., 2011, 11(1), 304

  7. [7]

    Qi X. J., Lu C. H., Liu X., Shimron S., Yang H. H., Willner I., Nano Lett., 2013, 13(10), 4920

  8. [8]

    Amodio A., Adedeji A. F., Castronovo M., Franco E., Ricci F., J. Am. Chem. Soc., 2016, 138(39), 12735

  9. [9]

    Green L. N., Amodio A., Subramanian H. K. K., Ricci F., Franco E., Nano Lett., 2017, 17(12), 7283

  10. [10]

    Guo W., Lu C. H., Orbach R., Wang F., Qi X. J., Cecconello A., Seliktar D., Willner I., Adv. Mater., 2015, 27(1), 73

  11. [11]

    Hu Y., Guo W., Kahn J. S., Aleman-Garcia M. A., Willner I., Angew. Chem. Int. Ed., 2016, 55(13), 4210

  12. [12]

    Cheng E., Xing Y., Chen P., Yang Y., Sun Y., Zhou D., Xu L., Fan Q., Liu D., Angew. Chem. Int. Ed., 2009, 48(41), 7660

  13. [13]

    Idili A., Vallee-Belisle A., Ricci F., J. Am. Chem. Soc., 2014, 136(16), 5836

  14. [14]

    Li F., Tang J., Geng J., Luo D., Yang D., Prog. Polym. Sci., 2019, 98

  15. [15]

    Fu W., Tang L., Wei G., Fang L., Zeng J., Zhan R., Liu X., Zuo H., Huang C. Z., Mao C., Angew. Chem. Int. Ed., 2019, 58(46), 16405

  16. [16]

    Chen H., Zhang H., Pan J., Cha T. G., Li S., Andreasson J., Choi J. H., ACS Nano, 2016, 10(5), 4989

  17. [17]

    Jungmann R., Liedl T., Sobey T. L., Shih W., Simmel F. C., J. Am. Chem. Soc., 2008, 130(31), 10062

  18. [18]

    Zhang Z., Song J., Besenbacher F., Dong M., Gothelf K. V., Angew. Chem. Int. Ed., 2013, 52(35), 9219

  19. [19]

    Rees W. A., Yager T. D., Korte J., von Hippel P. H., Biochemistry, 1993, 32(1), 137

  20. [20]

    Henke W., Herdel K., Jung K., Schnorr D., Loening S. A., Nucleic Acids Res., 1997, 25(19), 3957

  21. [21]

    Kopielski A., Schneider A., Csaki A., Fritzsche W., Nanoscale, 2015, 7(5), 2102

  22. [22]

    Li Y., Song L., Wang B., He J., Li Y., Deng Z., Mao C., Angew. Chem. Int. Ed., 2018, 57(23), 6892

  23. [23]

    Govrin R., Tcherner S., Obstbaum T., Sivan U., J. Am. Chem. Soc., 2018, 140(43), 14206

  24. [24]

    Zipper H., Brunner H., Bernhagen J., Vitzthum F., Nucleic Acids Res., 2004, 32(12), e103

  25. [25]

    Yang L., Yao C., Li F., Dong Y., Zhang Z., Yang D., Small, 2018, 14(16), e1800185

  26. [26]

    Li F., Dong Y., Zhang Z., Lv M., Wang Z., Ruan X., Yang D., Biosens. Bioelectron., 2018, 117, 562

  27. [27]

    Dong Y., Yao C., Wang Z., Luo D., Yang D., Science, 2019, 21, 228

  28. [28]

    Colotte M., Coudy D., Tuffet S., Bonnet J., Biopreserv. Biobank., 2011, 9(1), 47

  29. [29]

    Ma C., Wang Y., Zhang P., Shi C., Anal. Biochem., 2017, 530, 1

  30. [30]

    Guinn E. J., Pegram L. M., Capp M. W., Pollock M. N., Record M. T. Jr., Proc. Natl. Acad. Sci. USA, 2011, 108(41), 16932

  31. [31]

    Shao Q., Jiang S., Adv. Mater., 2015, 27(1), 15

  32. [32]

    Portella G., Germann M. W., Hud N. V., Orozco M., J. Am. Chem. Soc., 2014, 136(8), 3075

  33. [33]

    Nakano M., Tateishi-Karimata H., Tanaka S., Sugimoto N., J. Phys. Chem. B, 2014, 118(2), 379

  34. [34]

    Sarkar S., Maity A., Sarma Phukon A., Ghosh S., Chakrabarti R., J. Phys. Chem. B, 2019, 123(1), 47

Download references

Author information

Correspondence to Feng Li or Dayong Yang.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21621004, 21575101, 21622404, 21905196 and 31971305).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Pan, X., Li, F. et al. pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion. Chem. Res. Chin. Univ. (2020) doi:10.1007/s40242-020-9067-8

Download citation

Keywords

  • DNA nanotechnology
  • Dynamic assembly
  • pH responsiveness
  • Zwitterion