Comparison of Two Rhodamine-polyamine Polystyrene Solid-phase Fluorescence Sensors for Hg(II) Detection Based on Theoretical Calculation
Article
First Online:
- 5 Downloads
Abstract
Two novel rhodamine-based polystyrene solid-phase fluorescence sensors PS-PA-I and PS-PA-II with different lengths of polyamines were synthesized for Hg(II) determination. The detection mechanism involving the Hg(II) chelation-induced spirocycle open of rhodamine was proposed with the aid of theoretical calculation. The stronger N—Hg bond and the longer polyamine chain in PS-PA-II led to a better selectivity, much higher and more quickly fluorescence response to Hg(II).
Keywords
Carboxylated polystyrene microsphere Rhodamine polyamine Solid-phase fluorescence sensor Fluorescent property Hg(II) detection mechanismPreview
Unable to display preview. Download preview PDF.
References
- [1]Patil S. K., Das D., Spectrochim. Acta A, 2020, 225, 117504CrossRefGoogle Scholar
- [2]Li Y., Qi S., Xia C., Xu Y., Duan G., Ge Y., Anal. Chim. Acta, 2019, 1077, 243CrossRefGoogle Scholar
- [3]Wang Y., Ding H., Wang S., Fan C., Tu Y., Liu G., Pu S., RSC Adv., 2019, 9, 11664CrossRefGoogle Scholar
- [4]Ni J., Li B., Zhang L., Zhao H., Jiang H., Sensor Actuat B: Chem., 2015, 215, 174CrossRefGoogle Scholar
- [5]Lan T., Wang F., Xi X., Cheng C., Lei W., Xia M., Wang F., Anal. Sci., 2016, 32, 1223CrossRefGoogle Scholar
- [6]Wan D., Li Y., Zhu P., Sensor Actuat B: Chem., 2015, 221, 1271CrossRefGoogle Scholar
- [7]Feng L., Sha J., He Y., Chen S., Liu B., Zhang H., Lu C., Micropor Mesopor Mat., 2015, 208, 113CrossRefGoogle Scholar
- [8]Jeong J., Rao B. A., Son Y., Sensor Actuat B: Chem., 2015, 220, 1254CrossRefGoogle Scholar
- [9]Sen B., Mukherjee M., Banerjee S., Pal S., Chattopadhyay P., Dalton Trans., 2015, 44, 8708CrossRefGoogle Scholar
- [10]Kumar P., Kumar V., Gupta R., RSC Adv., 2017, 7, 7734CrossRefGoogle Scholar
- [11]Zhang D., Zhou W., Li J., Mi Y., Su Z., Ma G., Polymers: Basel, 2016, 8, 142CrossRefGoogle Scholar
- [12]Qin L., He X., Zhang W., Li W., Zhang Y., J. Chromatogr. A, 2009, 1216, 807CrossRefGoogle Scholar
- [13]Leng L., Li Y., Liu Y., Li F., Xiong X., Anal. Lett., 2017, 50, 2944CrossRefGoogle Scholar
- [14]Lee M. H., Wu J., Lee J. W., Jung J. H., Kim J. S., Org. Lett., 2007, 9, 2501CrossRefGoogle Scholar
- [15]Yuan M., Zhou W., Liu X., Zhu M., Li J., Yin X., Zheng H., Zuo Z., Ouyang C., Liu H., Li Y., Zhu D., J. Org. Chem., 2008, 73, 5008CrossRefGoogle Scholar
- [16]Kaewtong C., Noiseephum J., Uppa Y., Morakot N., Morakot N., Wanno B., Tuntulani T., Pulpoka B., New J. Chem., 2010, 34, 1104CrossRefGoogle Scholar
- [17]Bai F., Yang X., Li R., Huang B., Huang W., Polymer, 2006, 47, 5775CrossRefGoogle Scholar
- [18]Zhang B., Lu J., Liu X., Jin H., He G., Guo X., Int. J. Polym. Sci., 2018, 8702597Google Scholar
- [19]Zhang H., Seaman J., Wang Y., Zeng H., Narain R., Ulrich A., Liu Y., J. Environ. Eng., 2017, 143, 04017032CrossRefGoogle Scholar
- [20]Clark M., Cramer R. D., Opdenbosh N. V., J. Comput. Chem., 1989, 10, 982CrossRefGoogle Scholar
- [21]Liu Y., He G., Kai C., Li Y., Zhu H., J. Heterocyclic Chem., 2012, 49, 1370CrossRefGoogle Scholar
- [22]Abu El-Reash G. M., Zaky R. R., El-Gamil M. M., El-Emam S. M., J. Mol. Liq., 2019, 288, 111030CrossRefGoogle Scholar
- [23]Hasan S. H., Othman N. S., Surchi K. M., Curr Anal Chem., 2016, 12, 330CrossRefGoogle Scholar
- [24]Neupane L. N., Kim J. M., Lohani C. R., Lee K. H., J. Mater. Chem., 2012, 22, 4003CrossRefGoogle Scholar
- [25]Hu B., Hu L., Chen M., Wang J., Biosens. Bioelectron., 2013, 49, 499CrossRefGoogle Scholar
Copyright information
© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019