Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 6, pp 972–977 | Cite as

A Smartphone-assisted Paper-based Analytical Device for Fluorescence Assay of Hg2+

  • Jiawen Ye
  • Yijia Geng
  • Fanghao Cao
  • Dan Sun
  • Shuping Xu
  • Jingjing Chang
  • Weiqing XuEmail author
  • Qidan ChenEmail author
Article
  • 6 Downloads

Abstract

Rapid, efficiency and portable detection systems in low-resource settings with limited laboratory equipment and technical expertise are urgently needed. Herein, an integrated platform composed of a paper-based analytical device and a smartphone detection system for Hg2+ onsite testing was developed. Nitrogen-doped carbon dots(N-CDs) were synthesized by a simple hydrothermal method using citric acid as the carbon source and ethanediamine as the nitrogen source, which gave out bright blue fluorescence under the excitation at 350 nm UV light and the absolute fluorescence quantum yield was 17.1%. The fluorescence of the prepared N-CDs can be effectively quenched by Hg2+. In addition, an external attachment of smartphone for illumination and external light interference was designed to trace the fluorescence signals, and a software application of Android system with simple operation program was developed to perform snapshot and image processing. The smartphone-assisted detection system was combined with the N-CDs decorated paper chip to achieve the sensitive detection of Hg2+ in water samples. This integrated method for reliable sensing of Hg2+ shows a good linear detection range of 10–800 µmol/L(R2=0.9595) with detection limit of 1.07×10−8 mol/L.

Keywords

Paper-based analytical device Nitrogen-doped carbon dot Integrated sensing platform Mercury ion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9234_MOESM1_ESM.pdf (458 kb)
A smartphone-assisted paper-based analytical device for fluorescence assay of Hg2+

References

  1. [1]
    Shahvar A., Saraji M., Shamsaei D., Sens. Actuators B Chem., 2018, 5, 891CrossRefGoogle Scholar
  2. [2]
    Yang K., Peretz-Soroka H., Liu Y., Lin F., Lab Chip, 2016, 16, 943CrossRefGoogle Scholar
  3. [3]
    Zhang D., Liu Q., Biosens. Bioelectron., 2016, 75, 273CrossRefGoogle Scholar
  4. [4]
    Sumriddetchkajorn S., Chaitavon K., Intaravanne Y., Sens. Actuators B Chem., 2014, 191, 561CrossRefGoogle Scholar
  5. [5]
    Chen Y., Fu Q., Li D., Xie J., Ke D., Song Q., Tang Y., Wang H., Anal. Bioanal. Chem., 2017, 409, 6567CrossRefGoogle Scholar
  6. [6]
    Liu Z., Zhang Y., Xu S., Zhang H., Tan Y., Ma C., Song R., Jiang L., Yi C., Anal. Chim. Acta, 2017, 966, 81CrossRefGoogle Scholar
  7. [7]
    Gong M., Sinton D., Chem. Rev., 2017, 117, 8447CrossRefGoogle Scholar
  8. [8]
    Liu C., Gomez F. A., Miao Y., Cui P., Lee W., Talanta, 2019, 194, 171CrossRefGoogle Scholar
  9. [9]
    Fang M., Zhou L., Zhang H., Liu L., Gong Z., Food Chem., 2019, 274, 156CrossRefGoogle Scholar
  10. [10]
    Xu Y., Liu J., Zhang J., Zong X., Jia X., Li D., Wang E., Nanoscale, 2015, 7, 9421CrossRefGoogle Scholar
  11. [11]
    Qu H., Zhang Y., Qu B., Kong H., Qin G., Liu S., Cheng J., Wang Q., Zhao Y., Biosens. Bioelectron., 2016, 81, 358CrossRefGoogle Scholar
  12. [12]
    Di Nardo F., Anfossi L., Giovannoli C., Goftman V., Goryacheva I. Y., Baggiani C., Talanta, 2016, 150, 463CrossRefGoogle Scholar
  13. [13]
    You M., Lin M., Gong Y., Wang S., Li A., Ji L., Zhao H., Ling K., Wen T., Huang Y., Gao D., Q Ma., Wang T., Ma A., Li X., Xu F., ACS Nano, 2017, 6, 6261CrossRefGoogle Scholar
  14. [14]
    Mohammad J. M., Talanta, 2019, 196, 456CrossRefGoogle Scholar
  15. [15]
    Asadian E., Ghalkhani M., Shahrokhian S., Sens. Actuators B Chem., 2019, 293, 183CrossRefGoogle Scholar
  16. [16]
    Li L., Yu B., You T., Biosens. Bioelectron., 2015, 74, 263CrossRefGoogle Scholar
  17. [17]
    Luo L., Wang P., Wang Y., Wang F., Sens. Actuators B: Chem., 2018, 273, 1640CrossRefGoogle Scholar
  18. [18]
    Yan F., Kong D., Luo Y., Ye Q., Wang Y., Chen L., Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 68, 732CrossRefGoogle Scholar
  19. [19]
    Kaur N., Sharma V., Tiwari P., Actuators B: Chem., 2019, 291, 275CrossRefGoogle Scholar
  20. [20]
    Zhu S., Zhao X., Song Y., Lu S., Yang B., Nano Today, 2016, 11, 128CrossRefGoogle Scholar
  21. [21]
    Zhou N., Zhang X., Shi Y., Li Z., Feng Z., New J. Chem., 2018, 42, 14332CrossRefGoogle Scholar
  22. [22]
    Lan M., Zhang J., Chui Y., Wang H., Yang Q., Zhu X., Wei H., Liu W., Ge J., Wang P., Chen X., Lee C., Zhang W., J. Mater. Chem. B, 2015, 3, 127CrossRefGoogle Scholar
  23. [23]
    Chen T., Wang X., Liu Y., Li B., Cheng Z., Wang Z., Lai W., Liu X., Phys. Chem. Chem. Phys., 2017, 19, 5504CrossRefGoogle Scholar
  24. [24]
    Hallaj R., Hosseonchi Z., Babamiri B., Zandi S., Spectrochim. Acta, Part A, 2019, 216, 418CrossRefGoogle Scholar
  25. [25]
    Zhang R., Chen W., Biosens. Bioelectron., 2014, 55, 83CrossRefGoogle Scholar
  26. [26]
    Huang H., Weng Y., Zheng L., Yao B., Weng W., Lin X., J. Colloid. Interf. Sci., 2017, 506, 373CrossRefGoogle Scholar
  27. [27]
    Li M., Wang B., An X., Li Z., Zhu H., Mao B., Calatayud D., James T., Dyes and Pigments, 2019, 170, 107476CrossRefGoogle Scholar
  28. [28]
    Qiu Y., Dong L., Xiang D., Li L., Zhu L., Chem. Res. Chinese Universities, 2018, 34(6), 971CrossRefGoogle Scholar
  29. [29]
    Tanvir F., Yaqub A., Tanvir S., An R., Anderson W., Materials, 2019, 12, 1533CrossRefGoogle Scholar
  30. [30]
    Qi Y., Zhao J., Weng G., Li J., Li X, Zhu J., Zhao J., J. Mater. Chem. C, 2018, 6, 12283CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Jiawen Ye
    • 1
    • 2
    • 3
  • Yijia Geng
    • 1
  • Fanghao Cao
    • 1
    • 3
  • Dan Sun
    • 1
  • Shuping Xu
    • 1
  • Jingjing Chang
    • 2
  • Weiqing Xu
    • 1
    Email author
  • Qidan Chen
    • 3
    Email author
  1. 1.State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin UniversityChangchunP. R. China
  2. 2.School of Chemistry and Environmental EngineeringChangchun University of Science and TechnologyChangchunP. R. China
  3. 3.School of Chemical Engineering and New Energy Materials, Zhuhai CollegeJilin UniversityZhuhaiP. R. China

Personalised recommendations