Advertisement

Solid-liquid Phase Equilibria in the Process of Producing Lithium Hydroxide from Lithium Sulfate

  • Jian Guo
  • Peng Wu
  • Yaoyao Li
  • Min Zhang
  • Wenxuan Li
  • Huan ZhouEmail author
Article
  • 4 Downloads

Abstract

The solid-liquid phase equilibria in the process of producing lithium hydroxide from lithium sulfate at 283.15, 298.15 and 323.15 K were studied via the isothermal solubility equilibrium method, and the solid species, phase diagrams, solution densities and pH were determined. The results show that four solid species of Na2SO4·10H2O, Na2SO4·2.5H2O, Na2SO4 and LiOH·H2O occurred in the system, among them, Na2SO4·2.5H2O was a new solid species not reported in the open literature, which was determined via chemical analysis, Karl Fischer water titration, X-ray diffraction(XRD), thermogravimetic analysis(TG) and differential scanning calorimetry(DSC) testing. Based on the SLE data, one systemic process to produce LiOH·H2O from Li2SO4·H2O was proposed including two crystallization steps at lower and higher temperatures.

Keywords

Solid-liquid equilibrium Phase diagram Lithium hydroxide Lithium sulfate Sodium sulfate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ebensperger A., Maxwell P., Moscoso C., Resources Policy, 2006, 30(3), 218CrossRefGoogle Scholar
  2. [2]
    Brina W. J., 2015 Minerals Yearbook-Lithium, USGS, 2017 Google Scholar
  3. [3]
    Dai Y. P., Guo J., Zhou H., IM&P, 2018, 5, 21Google Scholar
  4. [4]
    Dittmar W. J., Soc. Chem. Ind., 1888, 7, 730Google Scholar
  5. [5]
    Spencer U. P., J. Chem. Soc., 1893, 63, 890CrossRefGoogle Scholar
  6. [6]
    van Meurs G. J., Z. Phys. Chem., 1916, 91, 313CrossRefGoogle Scholar
  7. [7]
    Stephen E. F., Miller P. D., J. Chem. Eng. Data, 1962, 7(4), 501CrossRefGoogle Scholar
  8. [8]
    Ogbonnaya C., Okorafor., J. Chem. Eng. Data, 1999, 44(3), 488CrossRefGoogle Scholar
  9. [9]
    Seidell A., Solubilities of Inorganic and Organic Compounds, van Nostrand co., Inc., Princeton, 1940 Google Scholar
  10. [10]
    Andrea H., Robert I. M., J. Raman Spectroscopy, 2010, 41(9), 1014CrossRefGoogle Scholar
  11. [11]
    Balarew C., Tepavitcharova S., Kamburov S., Monatsheftefür Chemie-Chemical Monthly, 2017, 1Google Scholar
  12. [12]
    Skarulis J. A., Horan H. A., J. American Chemical Society, 1955, 77(13), 3489CrossRefGoogle Scholar
  13. [13]
    Campbell A. N., Kartzmark E. M., Canadian Journal of Chemistry, 1958, 36(1), 171CrossRefGoogle Scholar
  14. [14]
    Guo Y. F., Deng T. L., J. Chem. Eng. Data, 1962, 58(10), 2763CrossRefGoogle Scholar
  15. [15]
    Tulinova V. B., Morzhina L. G., Plyushchev V. E., Zh. Neorg. Khim., 1959, 4, 1170Google Scholar
  16. [16]
    Tan L. N., Wang J. M., Zhou H., Fluid Phase Equilib., 2015, 388, 66CrossRefGoogle Scholar
  17. [17]
    Cao H. Y., Zhou H., J. Chem. Thermodyn, 2016, 93, 255CrossRefGoogle Scholar
  18. [18]
    Gao S. Z., Shi X. Y., Zhou H., Fluid PhaseEquilib., 2016, 411, 7Google Scholar
  19. [19]
    Harris D. C., Freeman W. H., Quantitative Chemical Analysis(8th Edition), W. H. Freeman and Company, New York, 2009 Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Jian Guo
    • 1
  • Peng Wu
    • 1
  • Yaoyao Li
    • 2
  • Min Zhang
    • 2
  • Wenxuan Li
    • 1
  • Huan Zhou
    • 1
    • 2
    Email author
  1. 1.College of Marine and Environmental SciencesTianjin University of Science and TechnologyTianjinP. R. China
  2. 2.College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Marine Resources and ChemistryTianjin University of Science and TechnologyTianjinP. R. China

Personalised recommendations