Novel Small Four-armed Molecules with Triphenylamine-bridged Structure for Organic Solar Cells Featuring High Open-circuit Voltage

  • Xiaodong He
  • Jianling Zhu
  • Lunxiang Yin
  • Bao Xie
  • Kechang Li
  • Yanqin LiEmail author


In view of few attention on star-shaped molecules containing triphenylamine(TPA) unit as π-linker, a series of small four-armed molecules, consisting of octyloxy-substituted 2,1,3-benzothiadiazole(DOBT) or 4-octyl-2-thienyl functionalized DOBT as the core, TPA as π-bridge and 4-methylphenyl or 4-methoxyphenyl groups as terminal units, was designed and synthesized. The effects of πbridges and substitute groups on molecular photoe-lectric performance and photovoltaic performance were fully explored. With the help of the additional thiophene-linkers incorporation, 3-octylthienyl substituted molecule with end-capping 4-methylphenyl(T-BTTPAM) and 3-octylthienyl substituted molecule with end-capping 4-methoxyphenyl(T-BTTPAOM) showed stronger and broader absorption, as well as higher charge mobilities compared to the molecules without thiophene-linkers(BTTPAM and BTTPAOM). Additionally, changing substitute groups from methyl to methoxy helped BTTPAOM and T-BTTPAOM achieve better absorption properties than BTTPAM and T-BTTPAM, respectively. When paired with PC61BM as the electron acceptor to fabricate solution-processed photovoltaic devices, the four materials gave high open-circuit voltage(Voc) values over 0.90 V. These results demonstrate that our materials are promising candidates as donor materials for organic solar cells(OSCs), and further device optimization is in progress in our laboratory.


Triphenylamine Four-armed structure High open-circuit voltage Organic solar cell Small-molecule do-nor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9179_MOESM1_ESM.pdf (958 kb)
Novel four-armed small molecules with triphenylamine-bridged structure for organic solar cells featuring high open-circuit voltage


  1. [1]
    Yadagiri B., Narayanaswamy K., Revoju S., Eliasson B., Sharma G. D., Singh S. P., J. Mater. Chem. C, 2019, 7, 709CrossRefGoogle Scholar
  2. [2]
    Lin Y. C., Lu Y. J., Tsao C. S., Saeki A., Li J. X., Chen C. H., Wang H. C., Chen H. C., Meng D., Wu K. H., Yang Y., Wei K. H., J. Mater. Chem. A, 2019, 7, 3027Google Scholar
  3. [3]
    Xu X., Yu T., Bi Z., Ma W., Li Y., Peng Q., Adv. Mater., 2018, 30, 1703973CrossRefGoogle Scholar
  4. [4]
    Zhou L., Guan S., Li L., Zhao L., Chem. Res. Chinese Universities, 2015, 31(5), 801CrossRefGoogle Scholar
  5. [5]
    Meng L., Wan X., Li C., Zhang X., Wang Y., Xiao Z., Ding L., Xia R., Yip H. L., Chao Y., Chen Y., Science, 2018, 361, 1094CrossRefGoogle Scholar
  6. [6]
    Revoju S., Biswas S., Eliasson B., Sharma G. D., Phys. Chem. Chem. Phys., 2018, 20, 6390CrossRefGoogle Scholar
  7. [7]
    He X., Yin L., Li Y., New J. Chem., 2019, 43, 6577CrossRefGoogle Scholar
  8. [8]
    Geng Y., Tang A., Tajima K., Zeng Q., Zhou E., J. Mater. Chem. A., 2019, 7, 64CrossRefGoogle Scholar
  9. [9]
    Bin H., Yao J., Yang Y., Angunawela I., Sun C., Gao L., Ye L., Qiu B., Xue L., Zhu C., Yang C., Zhang Z. G., Ade H., Li Y., Adv. Mater., 2018, 30, 1706361CrossRefGoogle Scholar
  10. [10]
    Tu Q., Yin Z., Ma Y., Chen S. C., Zheng Q., Dyes Pigm., 2018, 149, 747CrossRefGoogle Scholar
  11. [11]
    Kim S. W., Lee Y. J., Lee Y. W., Koh C. W., Lee Y., Kim M. J., Liao K., Cho J. H., Kim B. J., Woo H. Y., ACS Appl. Mater. Interfaces., 2018, 10, 39952CrossRefGoogle Scholar
  12. [12]
    Wan J., Xu X., Zhang G., Li Y., Feng K., Peng Q., Energy Environ. Sci., 2017, 10, 1739CrossRefGoogle Scholar
  13. [13]
    Song J., Xue X., Fan B., Huo L., Sun Y., Mater. Chem. Front., 2018, 2, 1626CrossRefGoogle Scholar
  14. [14]
    Deng J., Chen J., Tao Q., Yan D., Fu Y., Tan H., Tetrahedron, 2018, 74, 3989CrossRefGoogle Scholar
  15. [15]
    Malytskyi V., Simon J. J., Patrone L., Raimundo J. M., RSC Adv., 2015, 5, 354CrossRefGoogle Scholar
  16. [16]
    Zhang Q., Xiao B., Du M., Li G., Tang A., Zhou E., J. Mater. Chem. C, 2018, 6, 10902CrossRefGoogle Scholar
  17. [17]
    Wang H., Yue Q., Nakagawa T., Zieleniewska A., Okada H., Ogumi K., Ueno H., Guldi D. M., Zhu X., Matsuo Y., J. Mater. Chem. A, 2019, 7, 4072CrossRefGoogle Scholar
  18. [18]
    Yang D., Yang Q., Yang L., Luo Q., Huang Y., Lu Z., Zhao S., Chem. Commun., 2013, 49, 10465CrossRefGoogle Scholar
  19. [19]
    Vybornyi O., Jiang Y., Baert F., Demeter D., Roncali J., Blanchard P., Cabanetos C., Dyes Pigm., 2015, 115, 17CrossRefGoogle Scholar
  20. [20]
    Liu X., Xie Y., Zhao H., Cai X., Wu H., Su S. J., Cao Y., New J. Chem., 2015, 39, 8771CrossRefGoogle Scholar
  21. [21]
    Wang Q., Duan L., Tao Q., Peng W., Chen J., Tan H., Yang R., Zhu W., ACS Appl. Mater. Interfaces, 2016, 8, 30320CrossRefGoogle Scholar
  22. [22]
    Yuan C., Liu W., Shi M., Li S., Wang Y., Chen H., Li C. Z., Chen H., Dyes Pigm., 2017, 143, 217CrossRefGoogle Scholar
  23. [23]
    Jia T., Peng Z., Li Q., Zhu T., Hou Q., Hou L., New J. Chem., 2015, 39, 994CrossRefGoogle Scholar
  24. [24]
    Wang J., Liu K., Ma L., Zhan X., Chem. Rev., 2016, 116, 14675CrossRefGoogle Scholar
  25. [25]
    Zhen H., Peng Z., Hou L., Jia T., Li Q., Hou Q., Dyes Pigm., 2015, 113, 451CrossRefGoogle Scholar
  26. [26]
    Zhi Y., Zhao B., Cao R., Xu Y., Wang J., Dang D., Gao C., Meng L., Dyes Pigm., 2018, 153, 291CrossRefGoogle Scholar
  27. [27]
    Wang L., Yin L., Wang L., Xie B., Ji C., Li Y., Dyes Pigm., 2017, 140, 203CrossRefGoogle Scholar
  28. [28]
    Blom P. W. M., Jong M. J. M., Munster G. M., Phys. Rev. B, 1997, 55, 656CrossRefGoogle Scholar
  29. [29]
    Li Z., Dong Q., Li Y., Xu B., Deng M., Pei J., Zhang J., Chen F., Wen S., Gao Y., Tian W., J. Mater. Chem., 2011, 21, 2159CrossRefGoogle Scholar
  30. [30]
    Ji C., Yin L., Wang L., Jia T., Meng S., Sun Y., Li Y., J. Mater. Chem. C, 2014, 2, 4019CrossRefGoogle Scholar
  31. [31]
    Zeng S., Yin L., Ji C., Jiang X., Li K., Li Y., Wang Y., Chem. Commun., 2012, 48, 10627CrossRefGoogle Scholar
  32. [32]
    Wang L., Yin L., Ji C., Li Y., Dyes Pigm., 2015, 118, 37CrossRefGoogle Scholar
  33. [33]
    Lin Y., Li Y., Zhan X., Adv. Energy Mater., 2013, 3, 724CrossRefGoogle Scholar
  34. [34]
    Shi H., Fu W., Shi M., Ling J., Chen H., J. Mater. Chem. A, 2015, 3, 1902CrossRefGoogle Scholar
  35. [35]
    Fan Q., Xu Z., Guo X., Meng X., Li W., Su W., Ou X., Ma W., Zhang M., Li Y., Nano Energy, 2017, 40, 20CrossRefGoogle Scholar
  36. [36]
    Fan Q., Liu Y., Xiao M., Su W., Gao H., Chen J., Tan H., Wang Y., Yang R., Zhu W., J. Mater. Chem. C, 2015, 3, 6240CrossRefGoogle Scholar
  37. [37]
    He X., Yin L., Li Y., J. Mater. Chem. C, 2019, 7, 2487CrossRefGoogle Scholar
  38. [38]
    Bai H., Wang Y., Cheng P., Li Y., Zhu D., Zhan X., ACS Appl. Mater. Interfaces, 2014, 6, 8426CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Xiaodong He
    • 1
  • Jianling Zhu
    • 2
  • Lunxiang Yin
    • 1
  • Bao Xie
    • 1
  • Kechang Li
    • 2
  • Yanqin Li
    • 1
    Email author
  1. 1.School of Chemical EngineeringDalian University of TechnologyDalianP. R. China
  2. 2.College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations