Advertisement

Study of the Synergistic Effect Between Corrosion Inhibitors by Using Fractional Free Volume

  • Yuan Lu
  • Chen Zhang
  • Wei Wang
  • Jingmao ZhaoEmail author
Article
  • 2 Downloads

Abstract

The fractional free volumes(FFVs) of the adsorption films formed with different ratios of dipropargyl methoxythiourea imidazoline(DPFTAI) and pyridine quaternary ammonium salt(16BD) were calculated by simulation to determine their synergistic corrosion inhibition effect. The results suggest that the composite corrosion inhibitor at the molar ratio between DPFTAI and 16BD of 4:1 gives the best corrosion inhibition effect. This simulation method to predict the synergistic effect between corrosion inhibitors was further validated by mass loss and electrochemical experiments. This finding delivers valuable understandings of inhibition mechanism of corrosion inhibitors.

Keywords

CO2/H2S corrosion Imidazoline Corrosion inhibitor Synergistic effect Fractional free volume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zhang C., Zhao J. M., Int. J. Electrochem. Sci., 2017, 12, 9161CrossRefGoogle Scholar
  2. [2]
    Kermani M. B., Morshed A., Corrosion, 2003, 59(8), 659CrossRefGoogle Scholar
  3. [3]
    Fierro G., Ingo G. M., Mancia F., Corrosion, 1989, 45, 814CrossRefGoogle Scholar
  4. [4]
    Masamura K., Hashizume S., Sakai J., Corrosion, 1987, 43, 359CrossRefGoogle Scholar
  5. [5]
    Jeyaprabha C., Sathiyanarayanan S., Venkatachari G., Electrochim. Acta, 2006, 51(19), 4080CrossRefGoogle Scholar
  6. [6]
    Masamura K., Hashizume S., Sakai J., Matsushima I., Corrosion, 1987, 43, 359CrossRefGoogle Scholar
  7. [7]
    Oguzie E. E., Li Y., Wang F. H., Electrochim. Acta, 2007, 52(24), 6988CrossRefGoogle Scholar
  8. [8]
    Asefi D., Arami M., Corros. Sci., 2010, 52(3), 794CrossRefGoogle Scholar
  9. [9]
    Khamis A., Saleh M. M., Awad M. I., Corros. Sci., 2013, 66, 343CrossRefGoogle Scholar
  10. [10]
    Brown G. M., Hope G. A., Schweinsberg D. P., J. Electroanal. Chem., 1995, 380(1), 161CrossRefGoogle Scholar
  11. [11]
    Zhao J. M., Chen G. H., Electrochim. Acta, 2012, 69, 247CrossRefGoogle Scholar
  12. [12]
    Zhang C., Zhao J. M., Acta Phys.-Chim. Sin., 2014, 30(4), 677Google Scholar
  13. [13]
    Archimedes F. A., Walney S. A., Diego F. D., Luis P. M. S., Adriana N. C., Pedro D. L., Electrochim. Acta, 2018, 286, 339CrossRefGoogle Scholar
  14. [14]
    Sui P. F., Sun J. B., Hua Y., Liu H. F., Zhou M. N, Zhang Y. C., Liu J. H., Wang Y., International Journal of Greenhouse Gas Control, 2018, 73, 60CrossRefGoogle Scholar
  15. [15]
    Chen Z., Zhao J., Corros. Sci., 2017, 126, 247CrossRefGoogle Scholar
  16. [16]
    Qiang Y., Zhang S., Guo L., Corros. Sci., 2017, 119, 68CrossRefGoogle Scholar
  17. [17]
    Salarvand Z., Amirnasr M., Corros. Sci., 2017, 114, 133CrossRefGoogle Scholar
  18. [18]
    Sun H., J. Phys. Chem. B, 1998, 102, 7338CrossRefGoogle Scholar
  19. [19]
    Zhang J., Yu W., Yu L. J., Yan Y. G., Qiao G. M., Hu S. Q., Ti Y., Corros. Sci., 2011, 53(4), 1331CrossRefGoogle Scholar
  20. [20]
    Kong D. S., Yuan S. L, Sun Y. X., Yu Z. Y., Surf. Sci., 2004, 573(2), 272CrossRefGoogle Scholar
  21. [21]
    Wang T., Tian X., Yang Y., Li Y. W., Wang J. G., Beller M., Jiao H. J., Catal. Today., 2016, 261, 82CrossRefGoogle Scholar
  22. [22]
    Liu J., Zhu R., Xu T. Y., Xu Y., Ge F., Xi Y. F., Zhu J. X., He H. P., Chemosphere., 2016, 144, 1148CrossRefGoogle Scholar
  23. [23]
    Bondi A., J. Phys. Chem., 1964, 68, 441CrossRefGoogle Scholar
  24. [24]
    Pan F., Peng F., Jiang Z., Chem. Eng. Sci., 2007, 62, 703CrossRefGoogle Scholar
  25. [25]
    Zhao J., Duan H., Jiang R., Corros. Sci., 2015, 91, 108CrossRefGoogle Scholar
  26. [26]
    Li X., Deng S., Lin T., Xie X. G., Du G. B., Corros. Sci., 2017, 118, 202CrossRefGoogle Scholar
  27. [27]
    Hosseini M., Mertens S. F. L., Arshadi M. R., Corros. Sci., 2003, 45, 1473CrossRefGoogle Scholar
  28. [28]
    Singh A., Lin Y., Obot I. B., Ebenso E. E., J. Mol. Liq., 2016, 219, 865CrossRefGoogle Scholar
  29. [29]
    Ferreira E. S., Giacomelli C., Giacomelli F. C., Spinelli A., Mater. Chem. Phys., 2004, 83(1), 129CrossRefGoogle Scholar
  30. [30]
    Benedeti A. V., Sumodjo P. T. A., Nobe K., Cabot P. L., Electrochim. Acta, 1995, 40(16), 2657CrossRefGoogle Scholar
  31. [31]
    Zhang C., Zhao J. M., Res. Chem. Intermed., 2018, 44(2), 1275CrossRefGoogle Scholar
  32. [32]
    Azghandi M. V., Davoodi A., Farzi G. A., Kosari A., Corros. Sci., 2012, 64, 4Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
  2. 2.Sinopec Marking South China CompanyGuangzhouP. R. China
  3. 3.Beijing Key Laboratory of Electrochemical Process and Technology for MaterialsBeijingP. R. China

Personalised recommendations